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Abstract. In the k-party set disjointness problem, the goal is to determine whether given subsets
S1, S2, . . . , Sk ⊆ {1, 2, . . . , n} have empty intersection. We study this problem in the number-on-the-
forehead model of communication, where the ith party knows all the sets except for Si, and prove
a lower bound of Ω(n/4k)1/4 on the randomized and nondeterministic communication complexity.
This lower bound is close to tight. Previous lower bounds for set disjointness with k > 3 parties were

weaker than Ω(n/2k
3
)1/(k+1).

We also prove that solving ℓ instances of set disjointness requires ℓ ·Ω(n/4k)1/4 bits of communi-
cation, even to achieve correctness probability exponentially close to 1/2. This gives the first direct-
product result for multiparty set disjointness, solving an open problem due to Beame et al. (2005).

Finally, we construct a read-once {∧,∨}-circuit of depth 3 with exponentially small discrepancy
for up to k ≈ 1

2
logn parties. This result is optimal with respect to depth and solves an open problem

due to Beame and Huynh-Ngoc (FOCS ’09), who gave a depth-6 construction.
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1. Introduction. Communication complexity theory, initiated in a seminal pa-
per by Yao [56], studies the communication requirements of evaluating a function when
its arguments are distributed among several parties. In the basic model, two parties
seek to evaluate a function f(x, y) with minimal communication, where the first party
knows only x and the second party only y. To capture communication among three
or more parties, one considers a function f with several arguments that are somehow
distributed among the parties, possibly with overlap. For a model to be meaningful,
no party should know all the arguments (making communication necessary to evalu-
ate f), and every argument should be known to some party (making communication
sufficient). The number-on-the-forehead model of multiparty communication, due to
Chandra, Furst, and Lipton [19], is the most powerful model that obeys these two
principles. This model features k parties and a function f(x1, x2, . . . , xk) with k ar-
guments. The ith party knows all the arguments except for xi; one can think of xi
as written on the ith party’s forehead, hence the name of the model. Communica-
tion occurs in broadcast, a bit sent by any given party instantly reaching everyone
else. The main research question is whether f has low communication complexity,

i.e., can be computed by a protocol in which the number of bits communicated
is small on every input. We will be primarily interested in randomized protocols,
which are allowed to err with a small constant probability, as well as nondetermin-

istic and Merlin-Arthur protocols. The number-on-the-forehead model is a natural
computational model in its own right and has additionally found a variety of appli-
cations, including streaming algorithms, circuit complexity, pseudorandomness, and
proof complexity [6, 57, 29, 46, 12].

The number-on-the-forehead model draws its richness from the overlap in the
parties’ inputs, which makes it challenging to prove lower bounds. For this reason,
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several fundamental questions in this model remain open despite much research. One
such unresolved question is the communication complexity of set disjointness, ar-
guably the most studied problem in the area [3, 31, 4, 7, 45, 53, 35, 13, 55, 49, 52,
39, 22, 11, 14, 34]. In the k-party version of set disjointness, the inputs are sets
S1, S2, . . . , Sk ⊆ {1, 2, . . . , n}, and the ith party knows all the sets except for Si. The
goal is to determine whether S1∩S2∩· · ·∩Sk = ∅. One also studies a promise version
of this problem called unique set disjointness, in which the input sets S1, S2, . . . , Sk

either have empty intersection or intersect in a unique element, i.e., either |⋂Si| = 0
or |

⋂
Si| = 1. It is common to represent set disjointness in function form as

DISJn,k(x1, x2, . . . , xk) =

n∧

j=1

k∨

i=1

xij ,

where the bit strings x1, x2, . . . , xk ∈ {0, 1}n are the characteristic vectors of the k
sets. Unique set disjointness UDISJn,k is represented by an identical formula, with
the understanding that the strings x1, x2, . . . , xk are legal inputs if and only if their
bitwise conjunction x1 ∧ x2 ∧ · · · ∧ xk has at most one nonzero bit. In communication
complexity, set disjointness plays a role closely analogous to the role of satisfiability
in computational complexity. Outside of communication complexity the study of set
disjointness is motivated by various applications, some of which we will discuss shortly
in the context of our results.

Previous work. In the model with two parties, the communication complexity
of set disjointness is thoroughly understood. One of the earliest results in the area is a
tight lower bound of n+1 bits for deterministic protocols solving set disjointness. For
randomized protocols, a lower bound of Ω(

√
n) was obtained by Babai, Frankl, and

Simon [3] and strengthened to a tight Ω(n) by Kalyanasundaram and Schnitger [31].
Simpler proofs of the linear lower bound were discovered by Razborov [44] and Bar-
Yossef et al. [7]. All three proofs [31, 44, 7] of the linear lower bound apply to
unique set disjointness as well. Finally, Razborov [45] obtained a tight lower bound of
Ω(

√
n) on the bounded-error quantum communication complexity of set disjointness

and unique set disjointness, with a simpler proof discovered several years later in [49].
Already in the two-party model, set disjointness has been a driving force for various
technical innovations, including ideas from combinatorics, Kolmogorov complexity,
information theory, matrix analysis, and Fourier analysis.

For k > 3 parties, progress on the communication complexity of set disjointness
prior to this paper is summarized in Table 1. In a surprising result, Grolmusz [28]
proved an upper bound of O(log2 n+ k2n/2k) on the deterministic communication
complexity of this problem. Proving a strong lower bound, even for k = 3, turned
out to be difficult. Tesson [53] and Beame et al. [13] obtained a lower bound of
Ω
(
1
k log n

)
for randomized protocols. Four years later, Lee and Shraibman [39] and

Chattopadhyay and Ada [22] gave an improved result. These authors generalized the
two-party method of [47, 49] to k > 3 parties and thereby obtained a lower bound

of Ω(n/22
kk)1/(k+1) on the randomized communication complexity of set disjoint-

ness. The only subsequent work of which we are aware is due to Beame and Huynh-

Ngoc [11], who proved a lower bound of
(
2Ω(

√
k logn)/2k

2)1/(k+1)
on the randomized

communication complexity. This improves on the previous bound for k sufficiently
large. In what follows, we state the new results of this paper on set disjointness and
related problems.
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Table 1
Randomized number-on-the-forehead communication complexity of k-party set disjointness, k > 3.

Bound Reference

O

(

log2 n+
k2n

2k

)

Grolmusz [28]

Ω

(

logn

k

)

Tesson [53]
Beame, Pitassi, Segerlind, and Wigderson [13]

Ω

(

n

22
kk

)1/(k+1)
Lee and Shraibman [39]
Chattopadhyay and Ada [22]

Ω

(

2Ω(
√

k logn)

2k
2

)1/(k+1)

Beame and Huynh-Ngoc [11]

Ω
( n

4k

)1/4
This paper

Communication complexity of set disjointness. To summarize Table 1,
lower bounds on the k-party communication complexity of set disjointness prior to
this paper, both deterministic and randomized, were weaker than Ω(n/2k

3

)1/(k+1).
In particular, no polynomial lower bounds were known for k = ω(1) parties. Our
first result is the following theorem, where Rǫ denotes randomized communication
complexity with error probability ǫ.

Theorem 1.1. Set disjointness and unique set disjointness have randomized

communication complexity

R1/3(DISJn,k) > R1/3(UDISJn,k) = Ω
( n
4k

)1/4
.

Theorem 1.1 comes close to matching Grolmusz’s longstanding upper bound and
shows in particular that the randomized communication complexity of set disjoint-
ness remains polynomial for up to k ≈ 1

2 log n parties. This is representative of
the state of the art in multiparty communication complexity in general: no explicit
function F : ({0, 1}n)k → {0, 1} is currently known with nontrivial communication
complexity for k > log n parties. Theorem 1.1 subsumes all previous multiparty lower
bounds, with a strict improvement starting at k = 4. Finally, several restrictions of
the number-on-the-forehead model have been considered [4, 53, 13, 55, 14, 34], in-
cluding simultaneous message passing, one-way protocols, and certain intermediate
models. The strongest communication lower bound [53, 13] in these restricted models
was Ω(n/kk)1/(k−1), which is already weaker than Theorem 1.1 starting at k = 6.

XOR lemmas and direct product theorems. A natural question to ask in
any computational model is how the resources needed to solve ℓ instances of a problem
scale with ℓ. Suppose that solving a single instance of a given decision problem, with
probability of correctness 2/3, requires R units of a computational resource (such
as time, memory, communication, or queries). How many units of the resource are
needed to solve ℓ independent instances of the problem? Common sense suggests
that the answer should be Ω(ℓR). After all, having less than ǫℓR units overall, for
a small constant ǫ > 0, leaves less than ǫR units per instance, intuitively forcing
the algorithm to guess random answers for many of the instances and resulting in
overall correctness probability 2−Θ(ℓ). Such a statement is called a strong direct product
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theorem. A related notion is an XOR lemma, which asserts that computing the XOR
of the answers to the ℓ problem instances requires Ω(ℓR) resources, even to achieve
correctness probability 1

2 + 2−Θ(ℓ). While intuitively satisfying, XOR lemmas and
strong direct product theorems are hard to prove and sometimes simply not true.

In communication complexity, the direct-product question has been studied for
over twenty years. We refer the reader to [34, 50] for an up-to-date overview of the
literature, focusing here exclusively on set disjointness. In the two-party model, the
direct-product question for set disjointness has been resolved completely and defini-
tively [35, 13, 14, 30, 34, 50], including classical one-way protocols [30], classical
two-way protocols [13, 34], quantum one-way protocols [14], and quantum two-way
protocols [35, 50]. Starting at k = 3, however, we are not aware of direct-product
results of any kind for set disjointness. Obtaining such a result was posed as an open
problem by Beame et al. [13, p. 426]. We prove a direct-product result for up to
k ≈ 1

2 log n parties.

Theorem 1.2. The following tasks have communication complexity ℓ·Ω(n/4k)1/4:
(i) computing with correctness probability 1

2 + 2−Θ(ℓ) the XOR of ℓ independent

instances of unique set disjointness UDISJn,k;
(ii) solving with probability 2−ǫℓ at least (1 − ǫ)ℓ among ℓ instances of unique set

disjointness UDISJn,k, where ǫ > 0 is a small enough constant.

Clearly, this result also holds for set disjointness, a problem harder than UDISJn,k.
Theorem 1.2 generalizes Theorem 1.1, showing that Ω(n/4k)1/4 is in fact a lower bound
on the per-instance cost of set disjointness. Note that by (ii), this lower bound remains
valid if the protocol only needs to solve a 1− ǫ fraction of the given ℓ instances, rather
than all ℓ. Results of this type are known as threshold direct product theorems.

Nondeterministic and Merlin-Arthur communication. Nondeterminism
is a natural counterpart to deterministic and randomized communication. Analo-
gous to computational complexity, a nondeterministic protocol starts with a guess
string, whose length counts toward the protocol’s communication cost, and proceeds
deterministically thenceforth. A nondeterministic protocol for a given communica-
tion problem F is required to output the correct answer for all guess strings when
F = 0, and for some guess string when F = 1. Observe that the complement of
set disjointness has a highly efficient nondeterministic protocol. Indeed, it suffices to
guess an element i ∈ {1, 2, . . . , n} and verify with two bits of communication that
i ∈ S1 ∩ S2 ∩ · · · ∩ Sk. We show that set disjointness, unlike its complement, has high
nondeterministic complexity.

Theorem 1.3. Set disjointness has nondeterministic communication complexity

N(DISJn,k) = Ω
( n
4k

)1/4
.

The best previous lower bound [27] on the nondeterministic complexity of set dis-

jointness was (n/22
kk)Ω(1/k).

We further consider Merlin-Arthur protocols [2, 5], a communication model that
combines the power of randomness and nondeterminism. As before, a Merlin-Arthur
protocol for a given problem F starts with a guess string, whose length counts toward
the communication cost. From then on, the parties run an ordinary randomized
protocol. The randomized phase in a Merlin-Arthur protocol must produce the correct
answer with probability 2/3 for all guess strings when F = 0 and for some guess
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string when F = 1.We prove that set disjointness has high Merlin-Arthur complexity,
denoted MA:

Theorem 1.4. Set disjointness has Merlin-Arthur communication complexity

MA(DISJn,k) = Ω
( n
4k

)1/8
.

Theorem 1.4 can be viewed as a generalization of Theorems 1.1 and 1.3 on randomized
and nondeterministic communication, respectively. These lower bounds are close to
optimal, in view of Grolmusz’s deterministic upper bound. As with nondeterminism,
the best previous lower bound [27] on the Merlin-Arthur complexity of set disjointness

was (n/22
kk)Ω(1/k).

Theorems 1.1, 1.3, and 1.4 shed new light on communication complexity classes,
defined in the seminal work of Babai, Frankl, and Simon [3]. An infinite family
{Fn}∞n=1, where each Fn : ({0, 1}n)k → {0, 1} is a k-party number-on-the-forehead
communication problem, is said to be efficiently solvable in a given model of com-
munication if Fn has communication complexity at most logc n, for a large enough
constant c > 1 and all n > c. This convention allows one to define BPPk, NPk, coNPk,
and MAk as the classes of families with efficient randomized, nondeterministic, co-
nondeterministic, and Merlin-Arthur protocols, respectively. In recent years, the rela-
tions among these classes have been almost fully determined [9, 39, 22, 25, 11, 10, 27].
It particular, for k 6 Θ(log n), it is known [10, 27] that coNPk is not contained in
BPPk, NPk, or even MAk. As a corollary to Theorem 1.4, we show that coNPk can be
separated from all these classes by a particularly simple function, set disjointness.

Corollary. For k 6 ( 12 − ǫ) log n, where ǫ > 0 is any constant,

DISJn,k ∈ coNPk \ BPPk,

DISJn,k ∈ coNPk \ NPk,

DISJn,k ∈ coNPk \MAk.

Prior to this paper, the separation DISJn,k ∈ coNPk\BPPk was known to hold for

up to k 6 Θ(log1/3 n) parties [11], with a much weaker lower bound on randomized
communication complexity (see Table 1). The other two separations were known to
hold for up to k 6 Θ(log log n) parties [27], again with a much weaker lower bound
on nondeterministic and Merlin-Arthur communication complexity.

Discrepancy and circuit complexity. Theorem 1.1 rules out an efficient pro-
tocol that solves set disjointness with correctness probability 2

3 . However, for any
number of parties k, set disjointness has a simple and efficient protocol with nonneg-
ligible correctness probability, 1

2 + n−Θ(1). In fact, such a protocol exists not just for
set disjointness but any function computable by a polynomial-size {∧,∨,¬}-circuit of
depth 2, regardless of how the bits are assigned to the parties. We show that this phe-
nomenon is special to depth 2, by constructing a read-once {∧,∨}-circuit of depth 3
whose communication complexity remains high even for correctness probability expo-
nentially close to 1

2 .
Theorem 1.5. There is a k-party communication problem Hn,k : ({0, 1}n)k →

{0, 1}, given by an explicit read-once {∧,∨}-formula of depth 3, such that solving Hn,k

with correctness probability 1
2+exp(−Ω(n/4k)1/7) requires communication Ω(n/4k)1/7.
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To use a technical term, Theorem 1.5 shows that depth-3 circuits have expo-
nentially small discrepancy for up to k ≈ 1

2 log n parties, i.e., exponentially small
correlation with low-cost communication protocols. As we mentioned in the previous
paragraph, Theorem 1.5 is optimal with respect to circuit depth. It is also quali-
tatively optimal with respect to the number of parties k: by the results in [1, 29],
every polynomial-size {∧,∨,¬}-circuit of constant depth admits a logc n-party proto-
col with communication logc n and correctness probability 1

2 + 2− logc n, where c > 1
is a suitably large constant. Theorem 1.5 solves an open problem posed by Beame
and Huynh-Ngoc [11], who constructed a similarly hard depth-6 formula and asked
whether the depth can be reduced. The communication lower bound in Theorem 1.5
is stronger than in [11], where a lower bound of Ω(n/231k)1/29 bits is derived for
correctness probability 1

2 + exp(−Ω(n/231k)1/29).
Theorem 1.5 has applications to circuit complexity, which we now pause to ex-

plain. Circuits of majority gates are a biologically inspired computational model
whose study spans several decades and several disciplines. Research has shown that
majority circuits of depth 3 already are surprisingly powerful. In particular, Allen-
der [1] proved that depth-3 majority circuits of quasipolynomial size can compute all
of AC0, the class of {∧,∨,¬}-circuits of constant depth and polynomial size. Yao [57]
further proved that depth-3 majority circuits of quasipolynomial size can compute all
of ACC, the class of {∧,∨,¬,mod m}-circuits of constant depth and polynomial size
for an arbitrary but fixed modulus m. For several years, it was open whether these
simulations are optimal. H̊astad and Goldmann [29] showed that Yao’s result for
ACC is optimal with respect to circuit depth, by exhibiting a function in ACC whose
computation by a depth-2 majority circuit requires exponential size. The analogous
question for AC0 long remained open [36]. It was resolved in [47, 18, 49], where AC

0

functions were constructed whose computation by depth-2 majority circuits requires
exponential size. The results of Allender [1] and Yao [57] were thus shown to be
optimal with respect to circuit depth.

Another natural parameter to study is the fan-in of a circuit’s bottom gates.
The simulations of Allender [1] and Yao [57] had bottom fan-in logO(1) n. H̊astad and
Goldmann [29] showed that this fan-in is close to optimal, in that computing ACC by
a depth-3 majority circuit with bottom fan-in ≈ 1

2 log n requires exponentially many

gates. The analogous question for AC
0 was considered by Chattopadhyay [20], who

generalized the method of [49, 47] to show that depth-3 majority circuits with constant
bottom fan-in require exponentially many gates to simulate AC0.More recently, Beame
and Huynh-Ngoc [11] proved an analogous result for bottom fan-in ≈ 1

31 log n. It was
thus shown that the simulations of Allender [1] and Yao [57] are close to optimal with
respect to bottom fan-in.

The lower bounds surveyed in the previous paragraphs [29, 49, 47, 20, 11] apply
not only to majority circuits but all circuits of type MAJ ◦ SYMM ◦ ANY (with a
majority gate at the top, arbitrary symmetric gates at the middle level, and arbitrary
gates at the bottom). This line of research is summarized in Table 2, with quantitative
detail. Theorem 1.5 in this paper implies the following new lower bound.

Theorem 1.6. Let Hn,k : ({0, 1}n)k → {0, 1} be the depth-3 read-once {∧,∨}-
formula constructed in Theorem 1.5. Then every circuit of type MAJ ◦SYMM ◦ANY
with bottom fan-in at most k that computes Hn,k+1 has size

exp

(
1

k
· Ω
( n
4k

)1/7)
.
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Table 2
Lower bounds for computing functions in ACC and AC

0 by circuits of type MAJ◦SYMM◦ANY
with bottom fan-in k. All functions are on n(k + 1) bits.

Function Circuit lower bound Reference

n
⊕

j=1

k+1
∧

i=1

xij exp
(

1
k
· Ω
(

n
4k

))

H̊astad and Goldmann [29]

read-once depth-3
{∧,∨}-formula

exp
(

Ω
(

n1/3
))

for k = 1
Buhrman, Vereshchagin, and de Wolf [18]
Sherstov [47, 49]

depth-3
{∧,∨}-formula

exp

(

Ω

(

n
1

6k2k

))

Chattopadhyay [20]

read-once depth-6
{∧,∨}-formula

exp

(

1
k
· Ω
(

n
231k

)1/29
)

Beame and Huynh-Ngoc [11]

read-once depth-3
{∧,∨}-formula

exp

(

1
k
· Ω
(

n
4k

)1/7
)

This paper

As Table 2 shows, Theorem 1.6 improves on previous AC0 constructions [20, 11] with
respect to all parameters: the function is simpler than those considered previously,
and the circuit lower bound is stronger and applies to MAJ ◦ SYMM ◦ ANY circuits
with larger fan-in. In particular, the construction in Theorem 1.6 has optimal depth
because {∧,∨}-circuits of depth 2 are clearly computable by MAJ ◦ SYMM circuits
of the same size.

Using the method of random restrictions, Razborov andWigderson [46] discovered
a way to convert lower bounds for MAJ◦SYMM◦ANY circuits with restricted fan-in
into lower bounds for MAJ ◦ SYMM ◦ AND without any fan-in restrictions. Using
that technique, we obtain the following consequence of Theorem 1.6.

Theorem 1.7. Every circuit of type MAJ ◦ SYMM ◦ AND that computes the

function

x 7→
n∨

i=1

n∧

j=1

logn∨

k=1

log2 n⊕

ℓ=1

xi,j,k,ℓ

has size nΩ(log logn).
Again, Theorem 1.7 improves on previous work [11], where the same lower bound was
derived for a more complicated, depth-8 AC

0 function. For AC0 functions of depth 10,
stronger superpolynomial lower bounds are known [11], of the form nΩ(logn).

Additional results and generalizations. Theorem 1.1 on the randomized
communication complexity of set disjointness and Theorem 1.2 on the direct product
property are proved here in greater generality. Specifically, our results apply to any k-
party communication problem of the form F = f(UDISJr,k,UDISJr,k, . . . ,UDISJr,k),
i.e., an arbitrary Boolean function f composed coordinatewise with independent in-
stances of k-party set disjointness. Provided that r is not too small, we are able to
bound the ǫ-error randomized communication complexity of F from below in terms
of the ǫ-approximate degree of f, defined as the least degree of a real polynomial
that approximates f within ǫ pointwise. Approximate degree is a thoroughly studied
quantity, with tight estimates known for various ǫ and various functions of interest
to us. By taking ǫ = 1/3, we derive lower bounds for bounded-error communication,
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including the lower bound for set disjointness (f = AND). Letting ǫ ր 1/2, we ob-
tain lower bounds for protocols with error exponentially close to random guessing,
including the discrepancy result for constant-depth circuits.

In the setting of bounded-error communication, we are further able to give a
near-optimal lower bound on the k-party communication complexity of every compo-
sition of the form f(ORk∨ANDk, . . . ,ORk∨ANDk), where f is an arbitrary Boolean
function. The same holds for XOR lemmas and direct-product theorems. Finally, our
randomized lower bounds carry over in full to the quantum model. We provide techni-
cal details as well as introductory references for quantum communication complexity
in Remark 5.3.

Previous analyses. In a precise technical sense, our approach to set disjointness
is the opposite of previous multiparty analyses [20, 39, 22, 24, 25, 11]. In the overview
that follows, we describe the limitations of previous analyses and then explain how this
paper overcomes them. Let F : ({0, 1}n)k → {0, 1} be a given k-party communication
problem. A fundamental fact [6] in communication complexity is that a cost-c deter-
ministic protocol for F gives a representation F = χ1 + χ2 + · · ·+ χ2c , where the χi

are highly structured Boolean functions called cylinder intersections. This fact imme-
diately generalizes to randomized communication since a cost-c randomized protocol
is a probability distribution on cost-c deterministic protocols. Specifically, a cost-c
randomized protocol for F gives a representation F ≈

∑
χ aχχ, where the sum is over

cylinder intersections and
∑ |aχ| 6 2c. Accordingly, proofs of communication lower

bounds often work by bounding the correlations of a relevant function with cylinder in-
tersections. The simplest such technique is the discrepancy method [23, 6, 37], whereby
one carefully chooses a probability distribution µ on the domain ({0, 1}n)k and argues
that F has small correlation under µ with all cylinder intersections. This property
of F is referred to as small discrepancy with respect to µ, hence the name of the
technique. A more powerful technique is the generalized discrepancy method [32, 45],
whereby one constructs a real function Ψ such that Ψ is highly correlated with F but
almost uncorrelated with cylinder intersections.

Even in the two-party setting, it is difficult to construct the right µ or Ψ and an-
alyze the associated correlations. To illustrate, it was an open problem until recently
whether AC0 circuits have small two-party discrepancy with respect to some distribu-
tion. This problem was solved in considerable generality in [47, 49]. The technique
developed in that work, called the pattern matrix method, automates the choice of µ
and Ψ as well as the subsequent analysis of correlations for a class of communication
problems. The communication problems F to which the pattern matrix method ap-
plies are of the following form. Let f : {0, 1}m → {0, 1} be a given function, fixed once
and for all. In the two-party model, the first party receives a bit string x ∈ {0, 1}n
where n ≫ m, the second party receives a subset S ⊂ {1, 2, . . . , n} of cardinality m,
and their goal is to compute F (x, S) = f(x|S). For any f, the pattern matrix method
constructs the desired µ and Ψ, using a dual characterization of the approximate
degree of f. This results in a lower bound of Ω(degǫ(f)) on the ǫ-error randomized
communication complexity, where degǫ(f) denotes the ǫ-approximate degree of f.

Originally formulated in [47, 49] for the two-party model, the pattern matrix
method has been adapted to three or more parties [20, 39, 22, 24, 25, 11], resulting
among other things in improved multiparty lower bounds for set disjointness. Anal-
ogous to the two-party setting, one starts with a function f : {0, 1}m → {0, 1}. In
the case of k parties, the inputs to the communication problem are Boolean strings
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x, y1, y2, . . . , yk−1 and the goal is to compute

F (x, y1, y2, . . . , yk−1) = f
(
x|S(y1,y2,...,yk−1)

)
,

where the selector S(y1, y2, . . . , yk−1) is some mapping into cardinality-m subsets. In
other words, in the multiparty setting, the bit strings y1, y2, . . . , yk−1 jointly deter-
mine to which bits f is to be applied. What fundamentally differentiates the various
multiparty extensions of the pattern matrix method is the definition of the selec-
tor. The simpler the selector, the stronger the communication lower bounds—and
the harder they are to prove. Arguably the simplest meaningful selector is a small
CNF or DNF formula. This is the selector used in the original two-party pattern
matrix method [47, 49] as well as its first multiparty adaptations [20, 39, 22]. This
selector is desirable in that it embeds nicely in the disjointness function and thus
directly gives communication lower bounds for this problem. While the simple selec-
tor works well for k = 2 parties, the situation changes qualitatively at k = 3, and
the multiparty lower bounds degrade rapidly with k. In the case of set disjointness,

one obtains a lower bound of Ω(
√
n) for k = 2 parties [49] and Ω(n/22

kk)1/(k+1) for
k > 3 parties [39, 22]. At the other extreme, one can use the most complicated se-
lector possible, namely, a random mapping. This is the approach taken in [24]. The
communication lower bounds for the random selector remain very strong for up to
k ≈ log n parties, which is excellent. The problem here is that the random selector
cannot be computed by a small circuit, let alone a small CNF formula, and thus
the communication lower bounds do not apply to set disjointness. Finally, selectors
of intermediate complexity were considered in [25, 11], using bounded independence
and XOR gates. These ideas were fruitful, giving an explicit separation of NPk and
BPPk in communication [25] and strong multiparty lower bounds for constant-depth
circuits [11]. However, a strong lower bound for set disjointness has remained off-

limits—the above approaches have not yielded a bound better than Ω(n/2k
3

)1/(k+1)

for the problem.
At a technical level, previous approaches to multiparty set disjointness face the

following fundamental difficulty. Recall that the goal in multiparty lower bounds
is to bound correlations of relevant functions with cylinder intersections. The only
known way [6] to bound the maximum correlation of a given real-valued function
Ψ(x, y1, . . . , yk−1) with a cylinder intersection is in terms of the quantity

∆(Ψ) =


 E

y′
1,y

′′
1

E
y′
2,y

′′
2

· · · E
y′
k−1,y

′′
k−1

∣∣∣∣∣∣
E
x

∏

z∈{′,′′}k−1

Ψ(x, yz11 , y
z2
2 , . . . , y

zk−1

k−1 )

∣∣∣∣∣∣




1

2k−1

.

In the pattern matrix method, the function of interest is Ψ(x, y1, y2, . . . , yk−1) =
ψ(x|S(y1,...,yk−1)), where the low-order Fourier coefficients of ψ are zero. This Fourier-
theoretic fact is what allows one to bound ∆(Ψ). Specifically, previous papers—
starting with the original two-party work [47, 49]—argue that the 2k−1-fold prod-
uct will likely have 0 for the constant Fourier coefficient and thus zero expectation.
To handle the unlikely complementary event, one needs to additionally control the
growth of the 2k−1-fold product. As the number of parties k grows, this argument
requires an increasingly complex selector.

Our proof. Our proof reverses the steps in the above argument: we first apply
the Fourier-theoretic property and then the correlation bound. In more detail, we
first write ψ in terms of its Fourier expansion ψ =

∑
A ψ̂(A)χA, where χA denotes a
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character of the Fourier transform. We then observe that by linearity, the correlation
of Ψ with a cylinder intersection is at most

∑
A |ψ̂(A)|∆(χA). From then on, we work

with the quantities ∆(χA), whereas previous multiparty papers worked directly with
∆(ψ). Intuitively, the switch from an arbitrary real function ψ to χA is motivated by
the convenient multiplicative structure of the characters and their global boundedness.

This leaves us with the challenge of proving a strong upper bound on ∆(χA) with
a selector as weak as a small CNF formula. Prior to this paper, it was unclear whether
it could be done at all, let alone how to do it. Indeed, the “reverse” argument has been
known to researchers since 2007; it was introduced as a refinement [49] of the two-
party pattern matrix method and as part of another duality-based technique [52].
Previous attempts to use the reverse argument in multiparty communication were
unsuccessful. In particular, it was shown in [21, p. 189] that its direct application

gives a lower bound worse than (n/kk)1/(2+k2k) on the (k + 1)-party communication
complexity of set disjointness, which is much weaker than the lower bound [39, 22]
obtained by following the steps of the pattern matrix method in the original order.

We are nevertheless able to prove a strong, essentially exact bound on ∆(χA)
for a selector which is computable by a small CNF formula and thus efficiently em-
beds in the disjointness function. This part of the proof exploits metric properties
of distributions induced by set disjointness on the Boolean cube (such as conditional
independence), as opposed to the Fourier-theoretic content of previous work. Specif-
ically, we use conditioning to make appropriate variables independent and thereby
simulate XOR-like behavior with an OR gate. This simulation is of course only ap-
proximate, and the bounding of error terms requires additional conditioning. The
argument proceeds by induction on the number of parties, the base case admitting a
first-principles solution.

Once ∆(χA) has been bounded, we are in a strong position to prove Theorem 1.1
and its generalization to arbitrary compositions and arbitrary error rates. To be more
precise, we give two alternate proofs of this result. One proof is based, like previous
work [47, 49, 52, 20, 39, 22, 24, 25, 11], on the dual view of the problem. The other
proof is quite different and works with the primal view, explicitly converting a low-
cost protocol for a given communication problem into a low-degree approximant for
the given Boolean function. In addition to being more intuitive, the primal approach
allows us to prove the direct product theorems and XOR lemmas for set disjointness
(Theorem 1.2), by reducing them to a corresponding direct product theorem and
XOR lemma for polynomial approximation and appealing to known results in that
setting [50].

Once Theorem 1.1 has been established, we are able to use it almost as a black
box to obtain Theorems 1.3 and 1.4 on nondeterministic and Merlin-Arthur communi-
cation. Specifically, we are able to apply an earlier argument for these models, due to
Gavinsky and the author [27], using the new randomized lower bound of Theorem 1.1
in place of earlier bounds.

Recent progress. In follow-up work, the author [51] obtained a lower bound of
Ω(

√
n/2kk) on the randomized communication complexity of set disjointness DISJn,k

and its promise version UDISJn,k. The new bound is a quadratic improvement on The-
orem 1.1 and is tight for quantum protocols. More recently, Rao and Yehudayoff [43]
showed that a modification of our argument in Theorem 5.1 gives a lower bound of
Ω(n/4k) on the deterministic communication complexity of set disjointness, which is
essentially tight. It remains open to prove a lower bound of n/2O(k) for randomized
protocols or (a fascinating possibility!) to rule out such a bound.
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2. Preliminaries. From now on we will view Boolean functions as mappings
f : X → {−1,+1} for some finite set X, where −1 and +1 correspond to “true” and
“false,” respectively. A partial function f on a set X is a function whose domain of
definition, denoted dom f, is a proper subset of X. For emphasis, we will sometimes
refer to functions with dom f = X as total. We use lowercase letters (x, y, u, v) for
vectors and Boolean strings, and uppercase letters (A,B,X, Y ) for real and Boolean
matrices. The empty string is denoted ε. The complement of a set S is denoted S.

For a bit string x ∈ {0, 1}n, we let |x| = x1 + x2 + · · ·+ xn denote the Hamming
weight of x. The componentwise conjunction of x, y ∈ {0, 1}n is denoted x ∧ y =
(x1 ∧ y1, . . . , xn ∧ yn). In particular, |x ∧ y| refers to the number of components in
which x and y both have a 1. The bitwise negation of a string x ∈ {0, 1}n is denoted
x = (1 − x1, . . . , 1 − xn). For a string x = (x1, . . . , xn) and a set S ⊆ {1, 2, . . . , n},
we adopt the shorthand x|S = (xi1 , xi2 , . . . , xi|S|

), where i1 < i2 < · · · < i|S| are the
elements of S. For convenience, we adopt the convention that 0/0 = 0. The symbol

.
=

means “equal by definition.” The indicator function of an event E is given by

I[E] =

{
1 if E holds,

0 otherwise.

The set membership sign ∈, when used in the subscript of an expectation operator,
means that the expectation is taken over a uniformly random member of the indicated
set. The uniform distribution on {0, 1}n is denoted Un. The notation log x refers to the
logarithm of x to base 2. For a real function φ on a finite set X, the support of φ is the
subset suppφ = {x ∈ X : φ(x) 6= 0}. For probability distributions µ and λ on finite
sets X and Y, respectively, the symbol µ × λ refers to the probability distribution
on X × Y given by (µ × λ)(x, y) = µ(x)λ(y). The total degree of a multivariate
real polynomial p is denoted deg p. For (possibly partial) Boolean functions f and g
on {−1,+1}n and X, respectively, the symbol f ◦ g refers to the (possibly partial)
Boolean function on Xn given by (f ◦ g)(x1, x2, . . . , xn) = f(g(x1), g(x2), . . . , g(xn)).
Clearly, the domain of f ◦ g is the set of all (x1, x2, . . . , xn) ∈ (dom g)n for which
(g(x1), g(x2), . . . , g(xn)) ∈ dom f.

The symbol {0, 1}n×k denotes the family of n×k matrices with entries 0, 1. The no-
tation ({0, 1}n)k refers to the set of vector sequences (x1, x2, . . . , xk), where each xi ∈
{0, 1}n. Throughout this paper, we identify the sets {0, 1}n×k and ({0, 1}n)k. This
means that (x1, x2, . . . , xk) can be viewed both as a sequence of vectors in {0, 1}n and
as a matrix of size n×k with columns x1, x2, . . . , xk. Taking this convention a step fur-
ther, we view (X1, X2, . . . , Xr) as an element of ({0, 1}n)k1+···+kr ≡ {0, 1}n×(k1+···+kr)

whenever Xi ∈ {0, 1}n×ki (i = 1, 2, . . . , r).
For X ∈ {0, 1}n×k, the disjointness predicate D(X) ∈ {−1,+1} is defined as

D(X) = −1 if and only if each row of X has a 0 entry. By the convention of the pre-
vious paragraph, this also gives meaning to D(X1, X2, . . . , Xr) and D(x1, x2, . . . , xk),
where Xi ∈ {0, 1}n×ki and xi ∈ {0, 1}n. For example,

D(x1, x2, . . . , xk) =

{
−1 if x1 ∧ x2 ∧ · · · ∧ xk = 0n,

1 otherwise.

By convention,

D(ε) = −1.
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For a Boolean matrix X = [Xi,j ] ∈ {0, 1}n×k and a string y ∈ {0, 1}n, we let X|y
denote the submatrix of X obtained by keeping only those rows i for which yi = 1.
More formally,

X|y =




Xi1,1 Xi1,2 . . . Xi1,k

Xi2,1 Xi2,2 . . . Xi2,k

...
...

. . .
...

Xi|y|,1 Xi|y|,2 . . . Xi|y|,k,




where i1 < i2 < · · · < i|y| are the indices with yi1 = yi2 = · · · = yi|y|
= 1. In

particular, X|0n = ε. It is useful to keep in mind that

D(X, y) ≡ D(X|y).

The familiar functions ANDn, ORn, and PARITYn on the Boolean hypercube
{−1,+1}n are given by ANDn(x) =

∧n
i=1 xi, ORn(x) =

∨n
i=1 xi, and PARITYn(x) =⊕n

i=1 xi. We also define a partial Boolean function ÃNDn on {−1,+1}n as the re-
striction of ANDn to the set {x : |{i : xi = −1}| > n− 1}. In other words,

ÃNDn(x) =

{
ANDn(x) if |{i : xi = −1}| > n− 1,

undefined otherwise.

Analogously, we define a partial Boolean function ÕRn on {−1,+1}n as the restriction
of ORn to the set {x : |{i : xi = −1}| 6 1}.

A decision tree in Boolean variables x1, x2, . . . , xn is a binary tree with internal
nodes labeled with one of x1, x2, . . . , xn and leaves labeled −1 or +1. A decision tree
naturally corresponds to a deterministic algorithm with input x ∈ {−1,+1}n and
Boolean output. Specifically, the algorithm starts at the root of the tree and pro-
ceeds down a path toward a leaf, each time descending into the left or right subtree
depending on the value of the variable associated to the current node. The output
of the algorithm is the label of the leaf reached in this manner. The main complex-
ity measure of a decision tree is its depth, or equivalently the worst-case number
of variables queried by the corresponding algorithm. For a given Boolean function
f : {−1,+1}n → {−1,+1}, its decision tree complexity dt(f) is the minimum depth
of a decision tree for f. An excellent introduction to decision trees and related com-
putational models is the survey by Buhrman and de Wolf [17].

Norms and products. For a finite set X, the linear space of real functions on
X is denoted RX . This space is equipped with the usual norms and inner product:

‖φ‖∞ = max
x∈X

|φ(x)| (φ ∈ RX),

‖φ‖1 =
∑

x∈X

|φ(x)| (φ ∈ RX),

〈φ, ψ〉 =
∑

x∈X

φ(x)ψ(x) (φ, ψ ∈ R
X).

The tensor product of φ ∈ RX and ψ ∈ RY is the function φ ⊗ ψ ∈ RX×Y given by
(φ⊗ψ)(x, y) = φ(x)ψ(y). The tensor product φ⊗φ⊗ · · ·⊗φ (n times) is abbreviated
φ⊗n. When specialized to real matrices, the tensor product is the usual Kronecker
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product. The pointwise (Hadamard) product of φ, ψ ∈ RX is denoted φ◦ψ ∈ RX and
given by (φ ◦ψ)(x) = φ(x)ψ(x). Note that as functions, φ ◦ψ is a restriction of φ⊗ψ.
Tensor product notation generalizes to partial functions in the natural way: if φ and
ψ are partial real functions on X and Y, respectively, then φ⊗ψ is a partial function
on X × Y with domain domφ × domψ and is given by (φ ⊗ ψ)(x, y) = φ(x)ψ(y) on
that domain. Similarly, φ⊗n = φ⊗ φ⊗ · · · ⊗ φ (n times) is a partial function on Xn

with domain (domφ)n.
The spectral norm of a real matrix A is given by ‖A‖ = maxx 6=0 ‖Ax‖2/‖x‖2,

where ‖ · ‖2 stands for the Euclidean norm on vectors. The spectral norm is multi-
plicative with respect to tensor product: ‖A⊗B‖ = ‖A‖ ‖B‖.

Fourier transform. Consider the real vector space of functions {−1,+1}n →
R. For S ⊆ {1, 2, . . . , n}, define χS : {−1,+1}n → {−1,+1} by χS(x) =

∏
i∈S xi.

Then every function φ : {−1,+1}n → R has a unique representation of the form

φ =
∑

S φ̂(S)χS , where φ̂(S) = 2−n
∑

x∈{−1,+1}n φ(x)χS(x). The reals φ̂(S) are called
the Fourier coefficients of φ. The following fact is immediate from the definition of
φ̂(S):

Proposition 2.1. For all φ : {−1,+1}n → R,

max
S⊆{1,2,...,n}

|φ̂(S)| 6 2−n‖φ‖1.

Approximation by polynomials. Let φ : X → R be given, for a finite subset
X ⊂ Rn. The ǫ-approximate degree of φ, denoted degǫ(φ), is the least degree of a
real polynomial p such that ‖φ − p‖∞ 6 ǫ. We generalize this definition to partial
functions φ on X by letting degǫ(φ) be the least degree of a real polynomial p with

{
|φ(x)− p(x)| 6 ǫ, x ∈ domφ,

|p(x)| 6 1 + ǫ, x ∈ X \ domφ.
(2.1)

For a (possibly partial) real function φ on a finite subset X ⊂ Rn, we define E(φ, d)
to be the least ǫ such that (2.1) holds for some polynomial of degree at most d.
In this notation, degǫ(φ) = min{d : E(φ, d) 6 ǫ}. We will need the following dual
characterization of approximate degree.

Fact 2.2. Let φ be a (possibly partial) real-valued function on {−1,+1}n. Then
degǫ(φ) > d if and only if there exists ψ : {−1,+1}n → R such that

∑

x∈domφ

φ(x)ψ(x)−
∑

x/∈domφ

|ψ(x)| − ǫ‖ψ‖1 > 0,

and ψ̂(S) = 0 for |S| 6 d.
Fact 2.2 follows from linear programming duality; see [50, 49] for details.

A related notion is that of threshold degree deg±(f), defined for a (possibly partial)
Boolean function f as the limit deg±(f) = limǫց0 deg1−ǫ(f). Equivalently, deg±(f) is
the least degree of a real polynomial p with f(x) = sgn p(x) for x ∈ dom f. We recall
two well-known results on the polynomial approximation of Boolean functions, the
first due to Minsky and Papert [41] and the second due to Nisan and Szegedy [42].

Theorem 2.3 (Minsky and Papert). The function MPn(x) =
∨n

i=1

∧4n2

j=1 xij
obeys

deg±(MPn) = n.
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Theorem 2.4 (Nisan and Szegedy). The functions ANDn and ÃNDn obey

deg1/3(ANDn) > deg1/3(ÃNDn) = Θ(
√
n).

Multiparty communication. An excellent reference on communication com-
plexity is the monograph by Kushilevitz and Nisan [37]. In this overview, we will limit
ourselves to key definitions and notation. The simplest model of communication in
this work is the two-party randomized model. Consider a (possibly partial) Boolean
function F on X × Y, where X and Y are finite sets. Alice receives an input x ∈ X,
Bob receives y ∈ Y, and their objective is to compute F (x, y) with high accuracy
whenever (x, y) ∈ domF. To this end, Alice and Bob share a communication channel
and have an unlimited supply of shared random bits. Alice and Bob’s protocol is
said to have error ǫ if on every input (x, y) ∈ domF , the computed output differs
from the correct answer F (x, y) with probability no greater than ǫ. The cost of a
given protocol is the maximum number of bits exchanged on any input. The ǫ-error
randomized communication complexity of F, denoted Rǫ(F ), is the least cost of an
ǫ-error protocol for F. The canonical quantity to study is R1/3(F ), where the choice
of error parameter is largely arbitrary since the error probability of a protocol can be
decreased from 1/3 to any other positive constant at the expense of increasing the
communication cost by a constant factor.

A generalization of two-party communication is the multiparty number-on-the-

forehead model, due to Chandra, Furst, and Lipton [19]. Here one considers a
(possibly partial) Boolean function F on X1 × X2 × · · · × Xk, for some finite sets
X1, X2, . . . , Xk. There are k parties. A given input (x1, x2, . . . , xk) ∈ X1×X2×· · ·×Xk

is distributed among the parties by placing xi on the forehead of party i (for i =
1, 2, . . . , k). In other words, party i knows x1, . . . , xi−1, xi+1, . . . , xk but not xi. The
parties communicate by writing bits on a shared blackboard, visible to them all. They
additionally have access to a shared source of random bits. Their goal is to devise
a communication protocol that will allow them to accurately predict the value of F
everywhere on the domain of F. As before, an ǫ-error protocol for F is one which, on
every input (x1, x2, . . . , xk) ∈ domF, produces the correct answer F (x1, x2, . . . , xk)
with probability at least 1 − ǫ. The cost of a communication protocol is the total
number of bits written to the blackboard on the worst-case input. Analogous to the
two-party case, the randomized communication complexity Rǫ(F ) is the least cost of
an ǫ-error communication protocol for F in this model.

Let G be a (possibly partial) Boolean function on X1 × X2 × · · · × Xk, repre-
senting a k-party communication problem, and let f be a (possibly partial) Boolean
function on {−1,+1}n. We view the composition f ◦ G as a k-party communica-
tion problem on Xn

1 × Xn
2 × · · · × Xn

k . The primary problem of interest to us is
set disjointness DISJn,k : ({0, 1}n)k → {−1,+1}, given by DISJn,k(x1, x2, . . . , xk) =
D(x1, x2, . . . , xk). We will also consider the partial Boolean function UDISJn,k on
({0, 1}n)k given by

UDISJn,k(x1, x2, . . . , xn) =

{
D(x1, x2, . . . , xn) if |x1 ∧ x2 ∧ · · · ∧ xk| 6 1,

undefined otherwise.

The k-party communication problem that corresponds to UDISJn,k is known as unique
set disjointness. In other words, unique set disjointness is a promise version of set
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disjointness, the promise being that the input matrix (x1, x2, . . . , xk) ∈ {0, 1}n×k has
at most one row consisting entirely of ones. It will be helpful to keep in mind that
for all positive integers r, s, one has DISJrs,k = ANDr ◦ DISJs,k and analogously

UDISJrs,k = ÃNDr ◦UDISJs,k.

A k-dimensional cylinder intersection is a function χ : X1×X2×· · ·×Xk → {0, 1}
of the form

χ(x1, . . . , xk) =

k∏

i=1

χi(x1, . . . , xi−1, xi+1, . . . , xk),

where χi : X1×· · ·×Xi−1×Xi+1×· · ·×Xk → {0, 1}. In other words, a k-dimensional
cylinder intersection is the product of k functions with range {0, 1}, where the ith
function does not depend on the ith coordinate but may depend arbitrarily on the
other k− 1 coordinates. Cylinder intersections were introduced by Babai, Nisan, and
Szegedy [6] and play a fundamental role in the theory due to the following fact.

Fact 2.5. Let Π: X1 × X2 × · · · × Xk → {−1,+1} be a deterministic k-party
communication protocol with cost c. Then

Π =

2c∑

i=1

aiχi

for some cylinder intersections χ1, . . . , χ2c with pairwise disjoint support and some

coefficients a1, . . . , a2c ∈ {−1,+1}.
Recall that a randomized protocol with cost c is a probability distribution on

deterministic protocols of cost c. Therefore, Fact 2.5 immediately implies the following
two results on randomized communication complexity.

Corollary 2.6. Let F be a (possibly partial) Boolean function on X1 × X2 ×
· · · ×Xk. If Rǫ(F ) = c, then

|F (x1, . . . , xk)−Π(x1, . . . , xk)| 6
ǫ

1− ǫ
, (x1, . . . , xk) ∈ domF,

|Π(x1, . . . , xk)| 6
1

1− ǫ
, (x1, . . . , xk) ∈ X1 × · · · ×Xk,

where Π =
∑

χ aχχ is a linear combination of cylinder intersections with
∑

χ |aχ| 6
2c/(1− ǫ).

Corollary 2.7. Let Π be a randomized k-party protocol with domain X1×X2×
· · · ×Xk. If Π has communication cost c bits, then

P[Π(x1, x2, . . . , xk) = −1] ≡
∑

χ

aχχ(x1, x2, . . . , xk)

on X1×X2×· · ·×Xk, where the sum is over cylinder intersections and
∑

χ |aχ| 6 2c.

Discrepancy and generalized discrepancy. For a communication problem
F : X1 ×X2 × · · · ×Xk → {−1,+1} and a probability distribution P on X1 ×X2 ×
· · · ×Xk, the discrepancy of F with respect to P is defined as

discP (F ) = max
χ

|〈F ◦ P, χ〉|,
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where the maximum is over cylinder intersections. We generalize this definition to
partial functions as follows: for a partial Boolean function F on X1 ×X2 × · · · ×Xk

and a probability distribution P on X1 ×X2 × · · · ×Xk,

discP (F ) =
∑

x/∈domF

P (x) + max
χ

∣∣∣∣∣
∑

x∈domF

F (x)P (x)χ(x)

∣∣∣∣∣ ,

where the maximum is again over cylinder intersections; this agrees with the previous
definition if domF = X1 × X2 × · · · × Xk. The least discrepancy over all distribu-
tions is denoted disc(F ) = minP discP (F ). Estimating the discrepancy is difficult and
represents a central obstacle in multiparty communication complexity. For two-party
communication, the following method is frequently useful.

Proposition 2.8 (see Kushilevitz and Nisan [37]). Fix a function F : X × Y →
{−1,+1} and probability distribution P on X×Y. Define Φ

.
= [F (x, y)P (x, y)]x∈X,y∈Y .

Then

discP (F ) 6 ‖Φ‖
√

|X| |Y |.

In light of Fact 2.5, upper bounds on the discrepancy give lower bounds on the
communication complexity. This technique is known as the discrepancy method. The
original treatment [23, 6, 37] of the discrepancy method was specialized to total
Boolean functions. In the theorem that follows, we extend the method to partial
functions.

Theorem 2.9 (Discrepancy method). Let F be a (possibly partial) Boolean

function on X1 ×X2 × · · · ×Xk. Then

2Rǫ(F )
>

1− 2ǫ

disc(F )
.

Proof. (Based on [37, pp. 36–38].) Fix a probability distribution P such that
disc(F ) = discP (F ). The distribution P

′ induced by P on domF satisfies discP ′(F ) 6
discP (F ). Thus, we may assume that suppP ⊆ domF to start with.

Now, suppose that F has a communication protocol with error ǫ and cost c.
Approximate F uniformly by Π =

∑
χ aχχ as in Corollary 2.6. Then

∑

domF

(F (x)−Π(x))F (x)P (x) 6

(
max
domF

|F (x)−Π(x)|
) ∑

domF

P (x)

6
ǫ

1− ǫ
.

On the other hand,

∑

domF

(F (x)−Π(x))F (x)P (x) =
∑

domF

P (x)−
∑

domF

Π(x)F (x)P (x)

> 1−
∑

χ

|aχ|
∣∣∣∣∣
∑

domF

χ(x)F (x)P (x)

∣∣∣∣∣

> 1− 2c

1− ǫ
discP (F ).
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The claimed lower bound on 2c follows.
A more general technique, originally applied by Klauck [32] to the two-party

quantum model and subsequently adapted to many other settings [45, 40, 49, 39, 22],
is the generalized discrepancy method. Again, previous treatments focused on total
Boolean functions. In what follows, we derive a version of the method that applies to
partial functions as well.

Theorem 2.10 (Generalized discrepancy method). Let F be a (possibly partial)
Boolean function on X1 ×X2 × · · · ×Xk. Then for every nonzero Ψ: X1 ×X2 × · · · ×
Xk → R,

2Rǫ(F )
>

1− ǫ

maxχ |〈χ,Ψ〉|

{ ∑

x∈domF

F (x)Ψ(x)−
∑

x/∈domF

|Ψ(x)| − ǫ

1− ǫ
‖Ψ‖1

}
,

where the maximum is over cylinder intersections χ.
Proof. (Based on [45, 49, 39, 22]). Suppose that F has a communication protocol

with error ǫ and cost c. Extend F to a total function G : X1×· · ·×Xk → R by letting
G = 0 outside domF. By Corollary 2.6, there is a linear combination of cylinder
intersections Π =

∑
χ aχχ such that

∑
χ |aχ| 6 2c/(1 − ǫ) and Π approximates F in

the sense that ‖Π‖∞ 6 1/(1 − ǫ) and |F − Π| 6 ǫ/(1 − ǫ) on the domain of F. It
follows that

〈G−Π,Ψ〉 6 ǫ

1− ǫ

∑

x∈domF

|Ψ(x)|+ 1

1− ǫ

∑

x/∈domF

|Ψ(x)|.

However,

〈G−Π,Ψ〉 = 〈G,Ψ〉 − 〈Π,Ψ〉
>

∑

x∈domF

F (x)Ψ(x)−
∑

χ

|aχ| |〈Ψ, χ〉|

>
∑

x∈domF

F (x)Ψ(x)− 2c

1− ǫ
max
χ

|〈Ψ, χ〉|.

These two estimates of 〈G−Π,Ψ〉 force the claimed lower bound on 2c.

3. Preparatory work. For positive integers n, k, we let µn,k denote the uniform
probability distribution on those matrices in {0, 1}n×k that have exactly one row
composed of all ones. Thus µn,k is supported on n(2k−1)n−1 matrices, each occurring
with the same probability. For a Boolean matrix Y = (y1, . . . , yk−1) ∈ {0, 1}n×(k−1),
we consider the marginal probability distribution

µn,k(Y )
.
=

∑

u∈{0,1}n

µn,k(Y, u)

=
|y1 ∧ · · · ∧ yk−1| 2n−|y1∧···∧yk−1|

n(2k − 1)n−1
,(3.1)

and the conditional probability

µn,k(u | Y )
.
=
µn,k(Y, u)

µn,k(Y )
.(3.2)
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Note that the argument to µn,k is a matrix of size either n×k or n×(k−1), depending
on the meaning intended. Finally, we let λn,k be the probability distribution on
{0, 1}n×(k−1) × {0, 1}n × {0, 1}n given by

λn,k(Y, u, v)
.
= µn,k(Y )µn,k(u | Y )µn,k(v | Y ).

In other words, λn,k corresponds to an experiment whereby one first chooses Y accord-
ing to the marginal distribution (3.1) and then, given Y, chooses u and v independently
according to the conditional distribution (3.2). The remainder of this section is de-
voted to establishing various metric properties of λn,k. The four lemmas that follow,
Lemmas 3.1–3.4, are independent and can be read in any order. We alert the reader
that we will refer to the distributions µn,k and λn,k in later sections as well, without
restating the definitions just given.

Lemma 3.1 (On decomposition). For each (Y, u, v) in the support of λn,k and

each x ∈ {0, 1}n,

D(x, Y, u)D(x, Y, v) =

{
D(x, Y, u ∧ v)D(x, Y, u ∧ v) if D(Y, u, v) = −1,

1 otherwise.

Proof. By definition of λn,k, there is exactly one coordinate, call it i, where u and
the columns of Y all have a 1. Analogously, there is exactly one coordinate, call it j,
where v and the columns of Y all have a 1. When D(Y, u, v) = 1, it follows that i = j
and hence D(x, Y, u)D(x, Y, v) = (−1)xi+xj = 1. When D(Y, u, v) = −1, we have

D(x, Y, u) = D(x, Y, u, v) ∧D(x, Y, u, v) = D(x, Y, u, v),

D(x, Y, v) = D(x, Y, u, v) ∧D(x, Y, u, v) = D(x, Y, u, v),

whence D(x, Y, u)D(x, Y, v) = D(x, Y, u, v)D(x, Y, u, v) as claimed.
Lemma 3.2 (On conditional independence). Let (Y, u, v) ∼ λn,k. Conditioned on

fixed values of u, v, Y |u∧v, and Y |u∧v with D(Y |u∧v) = −1, the remaining parts Y |u∧v

and Y |u∧v are independent and distributed according to µ|u∧v|,k−1 and µ|u∧v|,k−1,
respectively.

Proof. Put Y = (y1, . . . , yk−1). By (3.1) and (3.2), the support of λn,k consists of
tuples (Y, u, v) with

|y1 ∧ · · · ∧ yk−1 ∧ u| = |y1 ∧ · · · ∧ yk−1 ∧ v| = 1,(3.3)

each such tuple with probability

λn,k(Y, u, v) =
2|y1∧···∧yk−1|

n(2k − 1)n−12n |y1 ∧ · · · ∧ yk−1|
.(3.4)

Now assign values to u, v, Y |u∧v, and Y |u∧v such that D(Y |u∧v) = −1. We are to
determine the conditional distribution of the remaining variables Y |u∧v and Y |u∧v.
It follows from (3.3) that each of these two matrices will have exactly one row made
up entirely of ones. But by (3.4), any such assignment to Y |u∧v and Y |u∧v carries
the same probability. Hence, Y |u∧v and Y |u∧v are independent and have the claimed
distributions.

Lemma 3.3 (On expected intersection size). For λn,k defined above,

E
λn,k

[
I[D(Y, u, v) = −1]√

|u ∧ v| |u ∧ v|

]
6

4

n
· 2

k − 1

2k − 2
.
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Proof. By convexity,

1√
|u ∧ v| |u ∧ v|

6
1

2|u ∧ v| +
1

2|u ∧ v| .

It is clear by symmetry that the strings u ∧ v and u ∧ v have identical distributions,
leading to

E
λn,k

[
I[D(Y, u, v) = −1]√

|u ∧ v| |u ∧ v|

]
6 E

λn,k

[
I[D(Y, u, v) = −1]

|u ∧ v|

]
.(3.5)

Let y1, . . . , yk−1 denote the columns of Y. Recall that |y1 ∧ · · · ∧ yk−1 ∧ u| = 1 on the
support of λn,k, whence by symmetry the right-hand side of (3.5) is unchanged after
conditioning on y1 ∧ · · · ∧ yk−1 ∧ u = 0n−11. But then the first n− 1 bits of u ∧ v are

distributed independently, each taking on 1 with probability p
.
= 2k−1−1

2k−1
· 1
2 , whereas

the nth bit of u ∧ v takes on 1 whenever D(Y, u, v) = −1. These facts bound the
right-hand side of (3.5) from above by

n−1∑

i=0

(
n− 1

i

)
pi(1− p)n−1−i 1

i+ 1
=

1− (1− p)n

pn
6

4

n
· 2

k − 1

2k − 2
.

Lemma 3.4 (On the probability of disjointness). For λn,k defined above,

P
λn,k

[D(Y, u, v) = 1] 6
2k − 1

n
.(3.6)

Proof. Conditioned on Y = (y1, . . . , yk−1), the probability that y1∧· · ·∧yk−1∧u∧v
is not the zero vector is exactly 1/|y1 ∧ · · · ∧ yk−1|. Thus, the left-hand side of (3.6)
equals

∑

y1,...,yk−1

µn,k(y1, . . . , yk−1)

|y1 ∧ · · · ∧ yk−1|
6

2nk

n(2k − 1)n−1
E

y1,...,yk−1∈{0,1}n

[
1

2|y1∧···∧yk−1|

]

=
2nk

n(2k − 1)n−1

(
1− 1

2k

)n

=
2k − 1

n
,

where the inequality holds by (3.1).

4. A discrepancy result. The goal of this section is to analyze the k-party
discrepancy of (UDISJn,k)

⊗m, the XOR of m independent copies of the unique dis-
jointness problem. In actuality, we will derive a somewhat more general result. For
positive integers n1, n2, . . . , nm, define

Γk(n1, n2, . . . , nm)
.
= max

χ

∣∣∣∣∣ E
(x1,W 1),...,(xm,Wm)

[
χ ·

m∏

i=1

D(xi,W i)

]∣∣∣∣∣ ,

where (xi,W i) ∼ Uni
×µni,k independently for each i, and the maximum is taken over

all (k+1)-dimensional cylinder intersections χ : ({0, 1}n1+n2+···+nm)k+1 → {0, 1}. Our
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objective is to bound Γk from above. The proof will use induction on k, the base case
corresponding to the following proposition.

Proposition 4.1. For all positive integers n1, n2, . . . , nm,

Γ1(n1, n2, . . . , nm) 6
1√

n1n2 · · ·nm
.

Proof. DefineMi = [(−1)xj ]j,x, where the indices range as follows: j = 1, 2, . . . , ni
and x ∈ {0, 1}ni . Then ‖Mi‖ =

√
2ni , whence by Proposition 2.8

Γ1(n1, n2, . . . , nm) 6

∥∥∥∥∥
m⊗

i=1

Mi

ni2ni

∥∥∥∥∥

(
m∏

i=1

ni2
ni

)1/2

=
1√

n1n2 · · ·nm
.

We now proceed to bound Γk for all k.We will use the general technique of Babai,
Nisan, and Szegedy [6] to pass from (k+1)-party discrepancy to k-party discrepancy.
What complicates this passage in our case is the fact that set disjointness does not
have the kind of XOR structure crucially used in [6]. To overcome this difficulty,
we will use the metric properties of the distribution λn,k established in the previous
section. More concretely, we will use conditional independence to simulate XOR
structure.

Theorem 4.2. For all positive integers n1, n2, . . . , nm, and k,

Γk(n1, n2, . . . , nm) 6
(2k − 1)m√
n1n2 · · ·nm

.

Proof. We adopt the following notational shorthand: if X,Y are random vari-
ables with some joint distribution and Φ(X,Y ) is a real function, we abbreviate
EX EY [Φ(X,Y )]

.
= EX EY [Φ(X,Y ) | X]. In other words, the inner expectation is

always with respect to the conditional probability distribution induced by the outer
variable.

The proof will proceed by induction on k, the base case k = 1 having already
been established in Proposition 4.1. For the inductive step, fix k > 2 and consider a
cylinder intersection χ : ({0, 1}n1+···+nm)k+1 → {0, 1} for which Γk is achieved:

Γk(n1, n2, . . . , nm) =

∣∣∣∣∣ E
(x1,Y 1,u1),...,(xm,Y m,um)

[
χ ·

m∏

i=1

D(xi, Y i, ui)

]∣∣∣∣∣ ,(4.1)

where (xi, (Y i, ui)) ∼ Uni
× µni,k independently for each i, and the symbol χ is

shorthand for χ(x1, . . . , xm, Y 1, . . . , Y m, u1, . . . , um). Recall that

χ(x1, . . . , xm, Y 1, . . . , Y m, u1, . . . , um)

= χu1,...,um(x1, . . . , xm, Y 1, . . . , Y m)ξ(x1, . . . , xm, Y 1, . . . , Y m),

where χu1,...,um : ({0, 1}n1+···+nm)k → {0, 1} is a k-dimensional cylinder intersection
for each (u1, . . . , um), and ξ is some function into {0, 1}. Rearranging the right-hand
side of (4.1) gives

Γk(n1, . . . , nm) =

∣∣∣∣∣ E
(x1,Y 1),...,(xm,Y m)

E
u1,...,um

[
χ ·

m∏

i=1

D(xi, Y i, ui)

]∣∣∣∣∣

6 E
(x1,Y 1),...,(xm,Y m)

∣∣∣∣∣ E
u1,...,um

[
χu1,...,um ·

m∏

i=1

D(xi, Y i, ui)

]∣∣∣∣∣ .
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We now apply the technique of Babai, Nisan, and Szegedy [6]. Squaring both sides
and using the Cauchy-Schwarz inequality, we arrive at

Γk(n1, . . . , nm)2 6 E
(x1,Y 1),...,(xm,Y m)


 E
u1,...,um

[
χu1,...,um ·

m∏

i=1

D(xi, Y i, ui)

]2


= E

[
χ′ ·

m∏

i=1

D(xi, Y i, ui)D(xi, Y i, vi)

]
,(4.2)

where χ′ .
= χu1,...,um · χv1,...,vm and the expectation in (4.2) is taken with respect

to (xi, (Y i, ui, vi)) ∼ Uni
× λni,k, independently for each i. It is crucial to ob-

serve that with u1, . . . , um and v1, . . . , vm fixed, χ′ is a cylinder intersection on
({0, 1}n1+···+nm)k.

We now need to analyze (4.2). It is here that similarities with Babai, Nisan, and
Szegedy [6] end, and we must exploit properties specific to set disjointness. To restate
Lemma 3.1,

(4.3) D(xi, Y i, ui)D(xi, Y i, vi) = I
[
D
(
Y i|ui∧vi

)
= 1
]

+ I
[
D
(
Y i|ui∧vi

)
= −1

]
D
(
(xi, Y i)|ui∧vi

)
D
(
(xi, Y i)|ui∧vi

)

on the support of λni,k. To bound (4.2), we will take advantage of conditioning.
Specifically, using (4.3) and conditioning on ui, vi, Y

i|ui∧vi , and Y i|ui∧vi for each i,
we arrive at the following expectation over the remaining variables xi, Y i|ui∧vi , and
Y i|ui∧vi :

E

[
χ′ ·

m∏

i=1

D(xi, Y i, ui)D(xi, Y i, vi)

]
(4.4)

=
∑

z∈{−1,+1}m

E

[
χ′ ·

∏

i:zi=−1

D
(
(xi, Y i)|ui∧vi

)
D
(
(xi, Y i)|ui∧vi

)
]

×
m∏

i=1

I
[
D
(
Y i|ui∧vi

)
= zi

]
.

The expectations on the right-hand side of (4.4) admit direct analysis. By Lemma 3.2,
conditioning on any fixed value of ui, vi, Y i|ui∧vi , Y i|ui∧vi with D(Y i|ui∧vi) = −1
makes the remaining variables Y i|ui∧vi and Y i|ui∧vi independent and distributed ac-
cording to µ|ui∧vi|,k−1 and µ|ui∧vi|,k−1, respectively. Since χ

′ is a cylinder intersection

for fixed u1, . . . , um and v1, . . . , vm, the inductive hypothesis applies to the right-hand
side of (4.4), bounding it in absolute value by

∑

z∈{−1,+1}m

∏

i:zi=−1

(2k−1 − 1)2 I
[
D
(
Y i|ui∧vi

)
= −1

]
√

|ui ∧ vi| |ui ∧ vi|
·
∏

i:zi=1

I
[
D
(
Y i|ui∧vi

)
= 1
]
.
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Passing to expectations, one concludes that Γk(n1, n2, . . . , nm)2 is at most

∑

z∈{−1,+1}m

∏

i:zi=−1

E
λni,k

[
(2k−1 − 1)2 I

[
D
(
Y i|ui∧vi

)
= −1

]
√

|ui ∧ vi| |ui ∧ vi|

]

×
∏

i:zi=1

P
λni,k

[
D
(
Y i|ui∧vi

)
= 1
]

=

m∏

i=1

(
(2k−1 − 1)2 E

λni,k

[
I
[
D
(
Y i|ui∧vi

)
= −1

]
√

|ui ∧ vi| |ui ∧ vi|

]
+ P

λni,k

[
D
(
Y i|ui∧vi

)
= 1
]
)
.

The probabilities and expectations in the final expression are given by Lemmas 3.3
and 3.4, leading to Γk(n1, n2, . . . , nm)2 6 (2k − 1)2m/(n1n2 · · ·nm) and thereby com-
pleting the inductive proof.

Notes. We are only interested in Γk(n1, n2, . . . , nm) for n1 = n2 = · · · = nm. How-
ever, the above inductive proof requires consideration of the more general quantity.
We also note that the base case, given by Proposition 4.1, could have been handled
by a first-principles argument analogous to Theorem 4.2. However, we find the above
treatment more concise and modular.

5. Randomized communication. Combining the technical work of the pre-
vious sections with additional ideas, we will now derive a general lower bound on
randomized communication complexity for composed functions (Section 5.1). We will
specifically be interested in compositions of the form f ◦ UDISJr,k. In Sections 5.2
and 5.3, we will apply our findings to the bounded-error and small-bias communica-
tion complexity of AC0 circuits, including set disjointness itself.

5.1. A master theorem. We start with the main technical result of the section.
We present two different proofs for it, one based on the primal view of the problem
and the other, on the dual view. The primal proof seems more intuitive to the author,
whereas the dual proof is more versatile. Both proofs will be needed in later sections
to obtain additional results.

Theorem 5.1. Let f be a (possibly partial) Boolean function on {−1,+1}n.
Consider the k-party communication problem F = f ◦UDISJr,k. Then for ǫ, δ > 0,

2Rǫ(F )
> (δ − ǫ(1 + δ))

(
degδ(f)

√
r

2ken

)degδ(f)

.(5.1)

The idea of the primal proof is to convert a communication protocol for F into
a low-degree polynomial approximating f in the infinity norm. The dual proof pro-
ceeds in the reverse direction and manipulates explicit witness objects, in the sense of
Fact 2.2 and Theorem 2.10. More specifically, the dual proof converts a witness of f ’s
inapproximability by polynomials to a witness of F ’s high communication complexity.
The primal point of view is original to this paper, whereas the dual approach is due
to [49, 52].

Primal proof of Theorem 5.1. Define µ = Ur × µr,k−1, a probability distribution
on the domain of UDISJr,k. Let µ−1 and µ+1 stand for the probability distributions
induced by µ on UDISJ−1

r,k(−1) and UDISJ−1
r,k(+1), respectively. Consider the following

averaging operator M, which linearly sends real functions χ on ({0, 1}r×k)n to real

22



functions on {−1,+1}n:

(Mχ)(z)
.
= E

X1∼µz1

· · · E
Xn∼µzn

[χ(X1, . . . , Xn)] .

When χ is a k-dimensional cylinder intersection,

|M̂χ(S)| =
∣∣∣∣∣ E
z∈{−1,+1}n

E
X1∼µz1

· · · E
Xn∼µzn

[
χ(X1, . . . , Xn)

∏

i∈S

zi

]∣∣∣∣∣

=

∣∣∣∣∣ E
X1,...,Xn∼µ

[
χ(X1, . . . , Xn)

∏

i∈S

UDISJr,k(Xi)

]∣∣∣∣∣

6 Γk−1(

|S|︷ ︸︸ ︷
r, r, . . . , r)

6

(
2k−1

√
r

)|S|
,(5.2)

where the second equality uses the fact that µ = (µ−1 + µ+1)/2, and the final step
follows by Theorem 4.2.

Fix a randomized protocol for F with error ǫ and cost c
.
= Rǫ(F ). Approximate

F as in Corollary 2.6 by a linear combination of cylinder intersections Π =
∑

χ aχχ,
where

∑
χ |aχ| 6 2c/(1 − ǫ). We claim that MΠ is approximable by a low-degree

polynomial. Indeed, let d be a positive integer to be chosen later. Discarding the
Fourier coefficients of MΠ of order d and higher gives

E(MΠ, d− 1) 6 min





1

1− ǫ
,
∑

χ

|aχ|
∑

|S|>d

|M̂χ(S)|





6 min

{
1

1− ǫ
,

2c

1− ǫ

n∑

i=d

(
n

i

)(
2k−1

√
r

)i
}

6
2c

1− ǫ

(
2ken

d
√
r

)d

,(5.3)

where the second step uses (5.2). On the other hand, recall from Corollary 2.6 that
Π approximates F in the sense that ‖Π‖∞ 6 1/(1− ǫ) and |F −Π| 6 ǫ/(1− ǫ) on the
domain of F. It follows that ‖MΠ‖∞ 6 1/(1 − ǫ) and |f −MΠ| 6 ǫ/(1 − ǫ) on the
domain of f, whence

E(f, d− 1) 6
ǫ

1− ǫ
+ E(MΠ, d− 1).

Substituting the estimate from (5.3),

E(f, d− 1) 6
ǫ

1− ǫ
+

2c

1− ǫ

(
2ken

d
√
r

)d

.(5.4)

For d = degδ(f), the left-hand side of (5.4) must exceed δ, forcing the claimed lower
bound on 2c.

We now present an alternate proof, which combines the argument in [49, 52] with
the discrepancy result in this paper.

23



Dual proof of Theorem 5.1. As before, consider the distribution µ = Ur × µr,k−1

on the domain of UDISJr,k. For d
.
= degδ(f), Fact 2.2 provides ψ : {−1,+1}n → R

with

∑

z∈dom f

f(z)ψ(z)−
∑

z/∈dom f

|ψ(z)| > δ,(5.5)

‖ψ‖1 = 1,(5.6)

ψ̂(S) = 0, |S| < d.(5.7)

Define Ψ: ({0, 1}r×k)n → R by

Ψ(X1, . . . , Xn) = 2nψ (DISJr,k(X1), . . . ,DISJr,k(Xn))

n∏

i=1

µ(Xi).

Since µ places equal weight on UDISJ−1
r,k(−1) and UDISJ−1

r,k(+1), we have

‖Ψ‖1 = 2n E
z∈{−1,+1}n

[|ψ(z)|] = 1(5.8)

and analogously

∑

domF

F (X1, . . . , Xn)Ψ(X1, . . . , Xn)−
∑

domF

|Ψ(X1, . . . , Xn)|(5.9)

=
∑

z∈dom f

f(z)ψ(z)−
∑

z/∈dom f

|ψ(z)|

> δ,

where the final step in the two derivations uses (5.5) and (5.6). It remains to bound
the inner product of Ψ with a k-dimensional cylinder intersection χ. By (5.7),

|〈Ψ, χ〉| 6 2n
∑

|S|>d

|ψ̂(S)|
∣∣∣∣∣ E
X1,...,Xn∼µ

[
χ(X1, . . . , Xn)

∏

i∈S

DISJr,k(Xi)

]∣∣∣∣∣

6 2n
∑

|S|>d

|ψ̂(S)| Γk−1(r, r, . . . , r︸ ︷︷ ︸
|S|

)

6
∑

|S|>d

(
2k−1

√
r

)|S|
,

where the final step uses Proposition 2.1 and Theorem 4.2. Combining this with the
trivial bound |〈Ψ, χ〉| 6 ‖Ψ‖1‖χ‖∞ = 1,

|〈Ψ, χ〉| 6 min

{
1,

n∑

i=d

(
n

i

)(
2k−1

√
r

)i
}

6

(
2ken

d
√
r

)d

.(5.10)

By (5.8)–(5.10) and Theorem 2.10, the proof is complete.
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5.2. Bounded-error communication. The general theorem that we have just
proved allows us to obtain lower bounds on bounded-error communication in terms
of the 1/3-approximate degree, as follows.

Theorem 5.2. Let f be a (possibly partial) Boolean function on {−1,+1}n. Let
d = deg1/3(f). Then

R1/3

(
f ◦UDISJ

4k+2⌈n
d ⌉2

,k

)
> Ω(d).

Proof. Take ǫ = 1/5, δ = 1/3, r = 4k+2⌈n/d⌉2 in Theorem 5.1.
As a corollary, we obtain our main result on the randomized communication

complexity of set disjointness, stated as Theorem 1.1 in the Introduction.
Corollary. The k-party set disjointness problem obeys

R1/3(DISJn,k) > R1/3(UDISJn,k) = Ω
( n
4k

)1/4
.

Proof. Recall that UDISJnr,k = ÃNDn◦UDISJr,k for all integers n, r. Theorem 2.4

shows that deg1/3(ÃNDn) > δ
√
n for some constant δ > 0. Thus, taking f = ÃNDn

and d = δ
√
n in Theorem 5.2 gives R1/3(UDISJ4k+2n⌈√n/δ⌉2,k) = Ω(

√
n), which is

equivalent to the claimed bound.
Remark 5.3 (On quantum protocols). As shown by the dual proof of Theo-

rem 5.1, we obtain the Ω(n/4k)1/4 communication lower bound for set disjointness
using the generalized discrepancy method. By the results of [38, 15], the generalized
discrepancy method applies to quantum multiparty protocols as well. In particular,
Theorem 1.1 carries over to the quantum setting. The same applies to the other ran-
domized communication lower bounds in this paper. For formal statements and an
introduction to quantum communication, we refer the reader to [26, 16, 38, 15].

Theorem 5.2 gives a general lower bound on bounded-error communication com-
plexity for compositions f ◦ G, where G is a gadget on a relatively large number of
variables. We will now derive an alternate lower bound, in which the gadget G is
essentially as simple as possible and in particular depends on only 2k variables.

We first recall some combinatorial complexity measures of a Boolean function
f : {−1,+1}n → {−1,+1}. For a string x ∈ {−1,+1}n and a subset S ⊆ {1, 2, . . . , n},
let xS stand for the string obtained from x by negating the bit positions in S, i.e.,

(xS)i =

{
−xi if i ∈ S,

xi otherwise.

The block sensitivity of f, denoted bs(f), is the maximum number of nonempty,
pairwise disjoint subsets S1, S2, S3, . . . ⊆ {1, 2, . . . , n} such that f(x) 6= f(xS1) =
f(xS2) = f(xS3) = · · · for some string x ∈ {−1,+1}n. The sensitivity of f, denoted
s(f), is defined analogously with the additional requirement that S1, S2, S3, . . . con-
tain exactly one element each. In other words, the sensitivity of f is the maximum
of |{i : f(x) 6= f(x1, . . . , xi−1,−xi, xi+1, . . . , xn)}| over all strings x ∈ {−1,+1}n.
Recall from Section 2 that the decision tree complexity of f, denoted dt(f), is the
minimum depth of a decision tree for f. It is a remarkable fact [42] that bs(f),
dt(f), and deg1/3(f) are polynomially related for every total Boolean function. Fi-
nally, a contraction of a Boolean function f : {−1,+1}n → {−1,+1} is any func-
tion g : {−1,+1}n → {−1,+1} such that g(x) ≡ f(xi1 , xi2 , . . . , xin) for some indices
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i1, i2, . . . , in ∈ {1, 2, . . . , n}. Informally, a contraction is the result of replacing groups
of variables by a single variable (and possibly permuting the variables).

We are now in a position to prove the alternate lower bound on communication
for composed functions. We will study compositions of the form f ◦ (ORk ∨ ANDk).
Here ORk ∨ ANDk refers to the k-party communication problem (x1, . . . , x2k) 7→
x1 ∨ · · · ∨ xk ∨ (xk+1 ∧ · · · ∧ x2k) in which the ith party sees all the bits except for xi
and xk+i. Observe that f ◦ (ORk∨ANDk) has a deterministic k-party communication
protocol with cost 3 dt(f): simply evaluate an optimal-depth decision tree for f. (In
this protocol, a query by the decision tree corresponds to computing the function
ORk ∨ ANDk on a given set of variables, which players 1 and 2 can do using only
three bits of communication.) In what follows, we prove that this trivial upper bound
on the communication complexity of f ◦ (ORk ∨ ANDk) is close to tight, even for
randomized protocols.

Theorem 5.4. Let f : {−1,+1}n → {−1,+1} be given, deg1/3(f) = d. Then

R1/3(f ◦ (ORk ∨ANDk)) > Ω

(
bs(f)

4k

)1/4

> Ω

(
dt(f)1/3

4k

)1/4

> Ω

(
d1/3

4k

)1/4

.

This result broadly generalizes Theorem 1.1. By symmetry, it also holds with ORk ∧
ANDk in place of ORk ∨ANDk.

Proof of Theorem 5.4. It is clear that d 6 dt(f), and it is known [8, p. 791] that
dt(f) 6 bs(f)3. Thus, it suffices to prove the lower bound in terms of bs(f). We will
actually prove the following stronger result: for some fixed z ∈ {−1,+1}n,

R1/3(fz ◦ANDk) > Ω

(
bs(f)

4k

)1/4

,

where fz : {−1,+1}n → {−1,+1} is defined by fz(x) = f(z ⊕ x).
Choose z such that f(z) 6= f(zS1) = f(zS2) = · · · = f(zSbs(f)) for some nonempty,

pairwise disjoint subsets S1, S2, . . . , Sbs(f) ⊆ {1, 2, . . . , n}. This means that fz(1) 6=
fz(1

S1) = fz(1
S2) = · · · = fz(1

Sbs(f)), where 1 = (1, 1, . . . , 1). But then there is a
contraction g of fz such that

g(1, 1, . . . , 1) 6= g(1, . . . , 1,−1︸ ︷︷ ︸
i

, 1, . . . , 1)

for i = 1, 2, . . . , bs(f). Indeed, such a contraction can be obtained from fz by re-
placing the variables in each block Si by a single variable, and suitably permuting
the resulting variable set. In other words, ÕRbs(f) is a subfunction of g. Therefore,

ÕRbs(f)◦ANDk = ¬UDISJbs(f),k is a subfunction of g◦ANDk, and R1/3(g◦ANDk) =

Ω(bs(f)/4k)1/4 by Theorem 1.1. The same lower bound holds for fz ◦ ANDk since
passage to a contraction cannot increase communication complexity.

It is tempting to go further and try to bound R1/3(f ◦ANDk) from below in terms
of the approximate degree of f. Unfortunately, the gap between R1/3(f ◦ANDk) and
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deg1/3(f) can be as large as Θ(1) versus Θ(
√
n); simply take f = ANDn. As it turns

out, the right approach is to consider themaximum of the communication complexities
of f ◦ANDk and f ◦ORk.

Theorem 5.5. Let f : {−1,+1}n → {−1,+1} be given, deg1/3(f) = d. Then

max{R1/3(f ◦ORk), R1/3(f ◦ANDk)} > Ω

(
bs(f)1/4

2k

)1/2

(5.11)

> Ω

(
dt(f)1/12

2k

)1/2

> Ω

(
d1/12

2k

)1/2

.

Proof. As in the previous proof, it suffices to prove the first inequality, and more-
over we may replace f in the left-hand side of (5.11) by a contraction of f. The
argument is closely analogous to the one in [48] for two-party communication. Specif-
ically, by [48, Lem. 3.3], there is a contraction g of f such that s(g) > α

√
bs(f) for

some absolute constant α > 0. So, fix a subset S ⊆ {1, 2, . . . , n} of size |S| > α
√

bs(f)
and a string z ∈ {−1,+1}n such that g(z) 6= g(z1, . . . , zi−1,−zi, zi+1, . . . , zn) for all
i ∈ S. We consider two cases.
(i) If z|S has more “−1” entries than “+1” entries, then ÃND|S|/2 is a subfunction

of g. As a result, UDISJ|S|/2,k is a subfunction of g ◦ ORk (up to negations of
the input variables), and the proof is complete in view of Theorem 1.1.

(ii) If z|S has no more “−1” entries than “+1” entries, then ÕR|S|/2 is a subfunction
of g. As a result, ¬UDISJ|S|/2,k is a subfunction of g ◦ ANDk, and the proof is
again complete in view of Theorem 1.1.

5.3. Small-bias communication and discrepancy. The counterpart of com-
munication with bounded error is small-bias communication, where the protocol is
only required to produce the correct output with probability vanishingly close to 1/2.
Theorem 5.1 gives communication lower bounds in this setting as well, in terms of
the approximate degree with an appropriate error parameter.

Theorem 5.6. Let f be a (possibly partial) Boolean function on {−1,+1}n. Then

R 1
2− ǫ

2

(
f ◦UDISJ

4k+3⌈n/ deg1−γ(f)⌉2
,k

)
> deg1−γ(f)− log

1

ǫ− γ
,

R 1
2− ǫ

2

(
f ◦UDISJ

4k+3⌈n/ deg±(f)⌉2
,k

)
> deg±(f)− log

1

ǫ
.

Proof. The first lower bound follows from Theorem 5.1 with δ = 1 − γ and
r = 4k+3⌈n/deg1−γ(f)⌉2. The second lower bound follows from the first by passing
to the limit as γ ց 0.

Finally, Theorem 5.1 allows one to directly prove upper bounds on discrepancy,
a complexity measure of interest in its own right. We have:

Theorem 5.7. Let f be a (possibly partial) Boolean function on {−1,+1}n. Then
for every γ > 0,

disc(f ◦UDISJr,k) <

(
2ken

deg1−γ(f)
√
r

)deg1−γ(f)

+ γ.
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In particular,

disc(f ◦UDISJr,k) 6

(
2ken

deg±(f)
√
r

)deg±(f)

.

Proof. The second bound follows from the first by letting γ ց 0. To prove the
first bound, take δ = 1− γ, d = degδ(f), and define Ψ: ({0, 1}r×k)n → R as in the
dual proof of Theorem 5.1. Then (5.8) shows that Ψ = H ◦P, where H is a sign tensor
and P a probability distribution. Letting F = f ◦UDISJr,k, we can restate (5.9) as

∑

domF

F (x)H(x)P (x)− P (domF ) > 1− γ.(5.12)

For every cylinder intersection χ,

∣∣∣∣∣
∑

domF

F (x)P (x)χ(x)

∣∣∣∣∣

=

∣∣∣∣∣∣
〈H ◦ P, χ〉+

∑

domF

(F (x)−H(x))P (x)χ(x)−
∑

domF

H(x)P (x)χ(x)

∣∣∣∣∣∣

6 discP (H) +
∑

domF

|F (x)−H(x)|P (x) + P (domF )

= discP (H) + P (domF )−
∑

domF

F (x)H(x)P (x) + P (domF )

< discP (H) + P (domF )− 1 + γ,(5.13)

where the last step uses (5.12). Maximizing over all cylinder intersections χ,

discP (F ) = max
χ

∣∣∣∣∣
∑

domF

F (x)P (x)χ(x)

∣∣∣∣∣+ P (domF )

< discP (H) + γ

6

(
2ken

d
√
r

)d

+ γ,

where the second step uses (5.13) and the third uses (5.10).
As an application of the above results on small-bias computation, we exhibit

a hard multiparty communication problem F ∈ AC
0. This k-party communication

problem is given by an {∧,∨}-circuit of size kn and depth 3 and has exponentially
small discrepancy: disc(F ) 6 exp(−Ω(n/4k)1/7). In particular, the communication
complexity of F remains high even to achieve an exponentially small advantage over
random guessing. A more detailed statement follows.

Theorem 5.8. Let Fn,k :
(
{0, 1}4kn7)k → {−1,+1} be the k-party communica-

tion problem given by

Fn,k(x) =

n∨

i=1

4kn6∧

j=1

(xi,j,1 ∨ xi,j,2 ∨ · · · ∨ xi,j,k).
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Then

disc(F4n,k) 6 2−n,

R 1
2−

γ
2
(F4n,k) > n− log

1

γ
(γ > 0).

This construction achieves optimal circuit depth because AC0 circuits of depth less
than 3 have multiparty discrepancy 1/nO(1), regardless of how the bits are assigned
to the parties. The previous best construction, due to Beame and Huynh-Ngoc [11],
was a depth-6 circuit of size kn with discrepancy exp(−Ω(n/231k)1/29).

Proof of Theorem 5.8. Let MPn be given by Theorem 2.3, so that deg±(MPn) = n.
Since MPn ◦ DISJ4k+5n4,k is a subfunction of F4n,k (up to negations of the input
variables), Theorem 5.7 yields the discrepancy bound. The communication lower
bound follows by Theorem 2.9.

Theorem 5.8 settles Theorem 1.5 from the Introduction.

6. XOR lemmas and direct product theorems. In Section 5, we proved that
Ω(n/4k)1/4 bits of communication are required to solve the set disjointness problem
with probability of correctness 2/3. In this section, we consider the task of simulta-
neously solving ℓ instances of set disjointness and prove that ℓ · Ω(n/4k)1/4 bits of
communication are necessary to even achieve advantage 2−Ω(ℓ) over random guessing.
We prove an analogous result for computing the XOR of ℓ instances. The theorems
in this section hold in somewhat greater generality, applying to compositions f ◦ G
where f is an arbitrary function and G is an instance of set disjointness on a small
number of variables. Our proof works by reducing these communication statements
to analogous statements about polynomial approximation. We then appeal to known
direct product theorems and XOR lemmas for the latter setting, which were recently
obtained in [50].

6.1. XOR lemmas. We start by proving the XOR lemma for set disjointness,
which happens to admit a more intuitive and direct analysis than the corresponding
direct product theorem. We recall an analogous XOR lemma for polynomial approx-
imation [50, Cor. 5.2].

Theorem 6.1 (Sherstov). Let f be a (possibly partial) Boolean function on

{−1,+1}n. Then for some absolute constant c > 0 and every ℓ,

deg1−2−ℓ−1(f ⊗ · · · ⊗ f︸ ︷︷ ︸
ℓ

) > cℓ deg1/3(f).

Using the small-bias version of the master theorem (Theorem 5.6), we are able to
immediately translate this result to communication.

Theorem 6.2 (XOR lemma). Let f be a (possibly partial) Boolean function on

{−1,+1}n. Define d = deg1/3(f). Then for some absolute constant C > 1, the k-party
communication problem

F = f ◦UDISJ
4k⌈Cn

d ⌉2
,k

obeys

R 1
2−( 1

2 )
ℓ+1(F ⊗ · · · ⊗ F︸ ︷︷ ︸

ℓ

) > ℓ · Ω(d).
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Proof. Define g = f⊗ℓ. Theorem 6.1 provides an absolute constant c > 0 such
that deg1−1/2ℓ+1(g) > cℓd. Letting C = 8/c, Theorem 5.6 implies that the composition

g ◦UDISJ4k⌈Cn
d

⌉2,k = F⊗ℓ obeys R1/2−1/2ℓ+1(F⊗ℓ) = ℓ · Ω(d).
The desired XOR lemma for set disjointness, stated as Theorem 1.2(i) in the

Introduction, now falls out as a corollary.
Corollary 6.3. For every ℓ,

R 1
2−( 1

2 )
ℓ+1(UDISJn,k ⊗ · · · ⊗UDISJn,k︸ ︷︷ ︸

ℓ

) > ℓ · Ω
( n
4k

)1/4
.

Proof. Theorem 2.4 shows that deg1/3(ÃNDn) > ǫ
√
n for a constant ǫ > 0. Thus,

letting f = ÃNDn and d = ǫ
√
n in Theorem 6.2 gives

R1/2−1/2ℓ+1

(
UDISJ4kn⌈C√

n/ǫ⌉2,k
⊗ℓ
)
> ℓ · Ω(

√
n),

which is equivalent to the claimed bound.
Using the argument of Theorem 5.4, we are now able to give an XOR lemma

for arbitrary compositions of the form f ◦ (ORk ∨ ANDk). For this, we will use the
combinatorial complexity measures bs(f) and dt(f), defined in Section 5.

Theorem 6.4. Let f : {−1,+1}n → {−1,+1} be given. Put F = f ◦ (ORk ∨
ANDk). Then for every ℓ,

R 1
2−( 1

2 )
ℓ+1(F ⊗ F ⊗ · · · ⊗ F︸ ︷︷ ︸

ℓ

) > ℓ · Ω
(
bs(f)

4k

)1/4

> ℓ · Ω
(
dt(f)1/3

4k

)1/4

> ℓ · Ω
(
deg1/3(f)

1/3

4k

)1/4

.

Recall from Section 5 that F has a deterministic protocol with cost 3 dt(f), and thus
F⊗ℓ has a deterministic protocol with cost 3ℓ dt(f). In other words, Theorem 6.4 is
reasonably close to tight.

Proof of Theorem 6.4. The argument is essentially identical to that of Theo-
rem 5.4. As argued there, any communication protocol for f◦(ORk∨ANDk) also solves
UDISJbs(f),k, so that the first inequality is immediate from Corollary 6.3. The other
two inequalities follow from general relationships among bs(f), dt(f), and deg1/3(f);
see the proof of Theorem 5.4.

6.2. Direct product theorems. Let F : X1 ×X2 × · · · ×Xk → {−1,+1} be a
given k-party communication problem. We are interested here in the communication
complexity of simultaneously solving ℓ instances of F. More formally, the communica-
tion protocol now receives ℓ inputs x1, . . . , xℓ ∈ X1×X2×· · ·×Xk and outputs a string
in {−1,+1}ℓ, representing a guess at (F (x1), . . . , F (xℓ)). As usual, an ǫ-error protocol
is one whose output differs from the correct answer with probability no greater than
ǫ, on any given input. The least cost of such a protocol for solving ℓ instances of F is
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denoted Rǫ(F, F, . . . , F ), where the number of instances will always be specified with
an underbrace.

It is also meaningful to consider communication protocols that solve all but m
of the ℓ instances (m for “mistake”), where the ratio m/ℓ is a small constant. In
other words, given ℓ input instances x1, . . . , xℓ, the protocol is required to output,
with probability at least 1 − ǫ, a vector z ∈ {−1,+1}ℓ such that zi = F (xi) for at
least ℓ−m indices i. We let

Rǫ,m(F, F, . . . , F︸ ︷︷ ︸
ℓ

)

stand for the least cost of such a protocol. When referring to this formalism, we
will write that a protocol “solves with probability 1 − ǫ at least ℓ − m of the ℓ
instances.” This setting corresponds to threshold direct product theorems, as opposed
to the more restricted notion of strong direct product theorems for which m = 0.
All of our results belong to the former category. The following definition from [50]
analytically formalizes the simultaneous solution of ℓ instances.

Definition 6.5 (Approximants). Let f be a (possibly partial) Boolean function

on a finite set X. A (σ,m, ℓ)-approximant for f is any system {φz} of functions

φz : X
ℓ → R, z ∈ {−1,+1}ℓ, such that for all x1, . . . , xℓ ∈ X,

∑

z∈{−1,+1}ℓ

|φz(x1, . . . , xℓ)| 6 1, x1, . . . , xℓ ∈ X,

∑

z∈{−1,+1}ℓ

|{i:zi=−1}|6m

φ(z1f(x1),...,zℓf(xℓ))(x
1, . . . , xℓ) > σ, x1, . . . , xℓ ∈ dom f.

The following result [50, Cor. 5.7] on polynomial approximation is naturally re-
garded as a threshold direct product theorem in that model of computation.

Theorem 6.6 (Sherstov). Let f be a (possibly partial) Boolean function on

{−1,+1}n. Let β > 0 be a small enough absolute constant. Then every (2−βℓ, βℓ, ℓ)-
approximant {φz} for f obeys

max
z∈{−1,+1}ℓ

{deg φz} > βℓ deg1/3(f).

Using the technique of Theorem 5.1, we are able to translate this result to mul-
tiparty communication complexity.

Theorem 6.7 (Direct product theorem). Let α > 0 be a sufficiently small

absolute constant. Let f be a (possibly partial) Boolean function on {−1,+1}n with

approximate degree d = deg1/3(f). Then the k-party communication problem

F = f ◦UDISJ
4k⌈ n

αd⌉2
,k

obeys

R1−2−αℓ,αℓ(F, F, . . . , F︸ ︷︷ ︸
ℓ

) > αℓd.
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Proof. Our strategy will be to convert a low-cost communication protocol for
solving ℓ instances of F into a low-degree approximant for f, in the sense of Defini-
tion 6.5. Such an approximant would be in contradiction to Theorem 6.6, thus ruling
out the assumed low-cost protocol. The critical part of the proof is the passage from
communication protocols to polynomials, to which end we will mimic the primal proof
of Theorem 5.1.

Abbreviate r = 4k
⌈

n
αd

⌉2
and let µ = Ur × µr,k−1, a probability distribution

on the domain of UDISJr,k. Let µ−1 and µ+1 stand for the probability distributions
induced by µ on UDISJ−1

r,k(−1) and UDISJ−1
r,k(+1), respectively. Consider the following

averaging operator M, which linearly sends real functions φ on ({0, 1}r×k)ℓn to real
functions on {−1,+1}ℓn:

(Mφ)(z)
.
= E

X1,1∼µz1,1

· · · E
Xℓ,n∼µzℓ,n

[φ(X1,1, . . . , Xℓ,n)] .

Now fix a cost-c randomized protocol Π which solves, with probability 2−αℓ, at least
(1−α)ℓ from among ℓ instances of F. We will take α = α(β) > 0 small enough, where
β > 0 is the constant from Theorem 6.6. Starting with the assumption that c < αℓd,
we will arrive at a contradiction.

For z ∈ {−1,+1}ℓ, consider the protocol Πz with Boolean output which on
input from ({0, 1}r×k)ℓn runs Π and outputs −1 if and only if Π outputs z. Let
φz : ({0, 1}r×k)ℓn → [0, 1] be the acceptance probability function for Πz. Then φz =∑
aχχ by Corollary 2.7, where the sum is over k-dimensional cylinder intersections

and
∑ |aχ| 6 2c. By the argument in the primal proof of Theorem 5.1, for every

positive integer D,

E(Mφz, D − 1) 6 2c
(
2keℓn

D
√
r

)D

.(6.1)

Observe that {φz} is a (2−αℓ, αℓ, ℓ)-approximant for F, and analogously {Mφz} is a
(2−αℓ, αℓ, ℓ)-approximant for f. By (6.1), each Mφz can in turn be approximated by
a polynomial of degree less than βℓd to within 2αℓd(αe/β)βℓd. Taking α = α(β) > 0
small enough, we arrive at a (2−βℓ, βℓ, ℓ)-approximant for f of degree less than βℓd,
in contradiction to Theorem 6.6. Hence, c > αℓd.

As a corollary, we obtain a direct product result for set disjointness, stated as
Theorem 1.2(ii) in the Introduction.

Corollary 6.8. For some absolute constant α > 0 and every ℓ,

R1−2−αℓ,αℓ(UDISJn,k, . . . ,UDISJn,k︸ ︷︷ ︸
ℓ

) > ℓ · Ω
( n
4k

)1/4
.

Proof. Theorem 2.4 shows that deg1/3(ÃNDn) > ǫ
√
n for a constant ǫ > 0. As a

result, taking f = ÃNDn and d = ǫ
√
n in Theorem 6.7 gives

R1−2−αℓ,αℓ

(
. . . ,UDISJ4kn⌈√n/αǫ⌉2,k, . . .︸ ︷︷ ︸

ℓ

)
= ℓ · Ω(

√
n),

which is equivalent to the claimed bound.
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Again, the above corollary readily generalizes to arbitrary compositions of the
form F = f ◦ (ORk ∨ANDk).

Theorem 6.9. Let f : {−1,+1}n → {−1,+1} be given. Put F = f ◦ (ORk ∨
ANDk). Then for some absolute constant α > 0 and every ℓ,

R1−2−αℓ,αℓ(

ℓ︷ ︸︸ ︷
F, F, . . . , F ) > ℓ · Ω

(
bs(f)

4k

)1/4

> ℓ · Ω
(
dt(f)1/3

4k

)1/4

> ℓ · Ω
(
deg1/3(f)

1/3

4k

)1/4

.

Proof. Identical to Theorem 6.4, with Corollary 6.8 invoked in place of Corol-
lary 6.3.

We have focused here on XOR lemmas and direct product theorems for ℓ instances
of the same communication problem. The results and proofs above generalize easily
to ℓ distinct communication problems, by invoking, in place of Theorems 6.1 and 6.6,
correspondingly more general results from [50] on polynomial approximation.

7. Nondeterministic and Merlin-Arthur communication. In this section,
we study the communication complexity of set disjointness in the nondeterministic and
Merlin-Arthur multiparty models. We will see that the lower bound of Theorem 1.1
carries over. We will reinterpret our findings in terms of communication complexity
classes.

7.1. Definitions. We start by describing the nondeterministic k-party model of
communication, which is similar in some ways and different in others from the ran-
domized model. As in the randomized model, one considers a function F : X1 ×X2 ×
· · · ×Xk → {−1,+1} for some finite sets X1, X2, . . . , Xk. An input (x1, x2, . . . , xk) ∈
X1×X2×· · ·×Xk is distributed among the k parties as before, giving the ith party all
the arguments except for xi. Beyond this setup, nondeterministic computation pro-
ceeds as follows. At the start of the protocol, c1 bits appear on the shared blackboard.
Given the values of those bits, the parties execute an agreed-upon deterministic proto-
col with communication cost at most c2. A nondeterministic protocol for F is required
to output the correct answer for at least one nondeterministic choice of the c1 bits
when F (x1, x2, . . . , xk) = −1 and for all possible choices when F (x1, x2, . . . , xk) = +1.
The cost of a nondeterministic protocol is defined as c1 + c2. The nondeterministic

communication complexity of F , denoted N(F ), is the least cost of a nondetermin-
istic protocol for F. The co-nondeterministic communication complexity of F is the
quantity N(−F ).

The Merlin-Arthur model [2, 5] combines the power of randomness and non-
determinism. Similarly to the nondeterministic model, the protocol starts with a
nondeterministic guess of c1 bits, followed by c2 bits of communication. However, the
communication can be randomized, and the requirement is that the error probability
be at most ǫ for at least one nondeterministic guess when F (x1, x2, . . . , xk) = −1 and
for all possible nondeterministic guesses when F (x1, x2, . . . , xk) = +1. The cost of a
Merlin-Arthur protocol is defined as c1 + c2. The ǫ-error Merlin-Arthur communica-

tion complexity of F , denoted MAǫ(F ), is the least cost of an ǫ-error Merlin-Arthur
protocol for F. Clearly, MAǫ(F ) 6 min{N(F ), Rǫ(F )} for every F .
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7.2. Communication lower bounds. To analyze the nondeterministic and
Merlin-Arthur complexity of set disjointness, we start with a criterion for high commu-
nication complexity in these models. It was derived by Gavinsky and the author [27,
Theorem 4.1] and builds on earlier work by Klauck [32, 33], including the generalized
discrepancy method.

Theorem 7.1 (Gavinsky and Sherstov). Let F : X → {−1,+1} be a given

k-party communication problem, where X = X1 × X2 × · · · × Xk. Fix a function

H : X → {−1,+1} and a probability distribution P on X. Put

α = P (F−1(−1) ∩H−1(−1)),

β = P (F−1(−1) ∩H−1(+1)),

Q = log
α

β + discP (H)
.

Then

N(F ) > Q,

MA1/3(F ) > min

{
Ω(
√
Q), Ω

(
Q

log(2/α)

)}
.

A key technical observation in [27] is the following property of the AND function,
which we will use in a similar way in this paper.

Theorem 7.2 (Gavinsky and Sherstov). There is a function ψ : {−1,+1}n → R

with

〈ψ,ANDn〉 >
1

3
,

‖ψ‖1 = 1,

ψ̂(S) = 0, |S| < deg1/3(ANDn),

ψ(−1, . . . ,−1) < −1

6
.(7.1)

Proof (Gavinsky and Sherstov). The first three properties of ψ are guaranteed by

Fact 2.2. To establish the remaining property, note that 〈ψ, 1〉 = 0 because ψ̂(∅) = 0.
Thus,

−2ψ(−1, . . . ,−1) =
∑

z∈{−1,+1}n

ψ(z){ANDn(z)− 1}

=
∑

z∈{−1,+1}n

ψ(z)ANDn(z)

>
1

3
.

Gavinsky and the author [27] obtained a lower bound of nΩ(1/k)/22
k

on the non-
deterministic and Merlin-Arthur communication complexity of set disjointness. The
main result of this section, which we are about to establish, is an improved lower
bound of Ω(n/4k)1/4 for nondeterministic and Ω(n/4k)1/8 for Merlin-Arthur proto-
cols. Our proof closely follows the proof in [27], i.e., we use Theorem 7.2 to construct
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H and P for Theorem 7.1. The main difference resides in the discrepancy calculation,
for which we turn to the master theorem in this paper on randomized communication
complexity.

Theorem 7.3 (restatement of Theorems 1.3 and 1.4). The set disjointness prob-

lem obeys

N(DISJn,k) > Ω
( n
4k

)1/4
,

MA1/3(DISJn,k) > Ω
( n
4k

)1/8
.

Proof. Let r be a parameter to be set later. Put f = ANDn, d = deg1/3(ANDn),
and fix ψ : {−1,+1}n → R as in Theorem 7.2. Let F = f ◦ DISJr,k and define
Ψ: ({0, 1}r×k)n → R as in the dual proof of Theorem 5.1, viz.,

Ψ(X1, . . . , Xn) = 2nψ (DISJr,k(X1), . . . ,DISJr,k(Xn))

n∏

i=1

µ(Xi),

where µ = Ur × µr,k−1 as before. Then (5.8) shows that Ψ = H ◦ P for some sign
tensor H and probability distribution P. In particular, (5.10) asserts that

discP (H) 6

(
2ken

d
√
r

)d

.(7.2)

By (7.1), we have ψ(z) < 0 whenever f(z) = −1, so that

P (F−1(−1) ∩H−1(+1)) = 0.(7.3)

Also,

P (F−1(−1) ∩H−1(−1)) = P (F−1(−1)) = |ψ(−1, . . . ,−1)| > 1

6
,(7.4)

where the first step uses (7.3), the second step uses the fact that µ places equal
weight on the sets DISJ−1

r,k(−1) and DISJ−1
r,k(+1), and the final inequality uses (7.1).

By (7.2)–(7.4) and Theorem 7.1,

N(F ) = Ω

(
d log

{
d
√
r

2ken

})
, MA1/3(F ) = Ω

(
d log

{
d
√
r

2ken

})1/2

.

Recall now from Theorem 2.4 that d > c
√
n for some constant c > 0. As a result,

setting r = 4k+2n⌈1/c⌉2 gives N(F ) = Ω(
√
n) and MA1/3(F ) = Ω(n1/4). It remains

to note that F = DISJ4k+2n2⌈1/c⌉2,k.

7.3. Applications to communication classes. Babai, Frankl, and Simon [3]
defined analogues of computational complexity classes in communication. We will only
mention a few of them, namely, those corresponding to efficient randomized, nonde-
terministic, and Merlin-Arthur protocols. For a given number of parties k = k(n),
fix a family {Fn}∞n=1 of k-party communication problems, where Fn : ({0, 1}n)k →
{−1,+1}. The family {Fn} is said to belong to the communication class BPPk if and
only if R1/3(Fn) 6 logc n for some constant c > 1 and all n > c. Analogously, the fam-
ily {Fn} is said to belong to NPk or MAk if and only if the communication complexity
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of Fn in the nondeterministic or Merlin-Arthur models, respectively, is at most logc n
for some constant c > 1 and all n > c. The derived classes coNPk and coMAk have
the usual definition, e.g., {Fn} ∈ coNPk if and only if {−Fn} ∈ NPk.

A corollary to Theorem 7.3 is that set disjointness separates coNPk from NPk,
BPPk, and even MAk for k 6 ( 12 − ǫ) log n parties, where ǫ > 0 is any constant.

Theorem 7.4. For k 6
(
1
2 − ǫ

)
log n, where ǫ > 0 is any constant,

DISJn,k ∈ coNPk \ NPk,

DISJn,k ∈ coNPk \ BPPk,

DISJn,k ∈ coNPk \MAk.

Proof. It suffices to prove the final statement, since MAk contains NPk and BPPk.
Theorem 7.3 shows that DISJn,k /∈ MAk. On the other hand, it is well-known

that N(−DISJn,k) 6 ⌈log n⌉ + 2. Specifically, the parties choose i ∈ {1, 2, . . . , n}
nondeterministically and compute x1,i∧· · ·∧xk,i with two bits of communication. As
a result, DISJn,k ∈ coNPk.

8. Applications to circuit complexity. We will now apply our results on
small-bias communication to circuit complexity. We start with a well-known con-
nection between multiparty communication and circuits, due to H̊astad and Gold-
mann [29].

Proposition 8.1 (H̊astad and Goldmann). Let f be a Boolean function com-

putable by a MAJ ◦ SYMM ◦ ANY circuit, where the top gate has fan-in m, the
middle-level gates have fan-in at most s, and the bottom gates have fan-in at most

k−1. Then the k-party number-on-the-forehead communication complexity of f obeys

R 1
2− 1

2(m+1)
(f) 6 k⌈log(s+ 1)⌉,

regardless of how the bits are assigned to the parties.

Proof (H̊astad and Goldmann). The parties pick a uniformly random gate G at
the middle level, evaluate it deterministically using k⌈log(s+ 1)⌉ bits of communica-
tion, and output the answer. The deterministic computation is possible because every
input to G can be computed by some party without communication, which makes it
possible to partition the bottom gates among the parties and have each party report
the sum of those inputs to G assigned to him. Since G is symmetric, the sum of its
inputs uniquely determines its output.

We arrive at the first result of this section, a lower bound on the size of MAJ ◦
SYMM ◦ANY circuits with small bottom fan-in computing a depth-3 formula.

Theorem 8.2. Let Fn,k : {0, 1}4
kn7k → {−1,+1} be the read-once {∧,∨}-formula

of depth 3 defined in Theorem 5.8. Then any circuit of type MAJ ◦ SYMM ◦ ANY
with bottom fan-in at most k − 1 computing Fn,k has size 2Ω(n/k).

Proof. We interpret Fn,k as the k-party communication problem defined in The-
orem 5.8. Let C be a circuit of type MAJ ◦ SYMM ◦ANY that computes Fn,k, where
the bottom fan-in of C is at most k − 1. If C has size s, then the fan-in of the gates
at the top and middle levels is at most s, which in view of Proposition 8.1 gives

R 1
2− 1

2(s+1)
(Fn,k) 6 k⌈log(s+ 1)⌉.

By Theorem 5.8, this leads to s > exp(Ω(n/k)).
Theorem 8.2 establishes Theorem 1.6 from the Introduction.
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Consider now a different computational model, that of MAJ ◦ SYMM ◦ AND
circuits without any fan-in restrictions. We will prove a superpolynomial lower bound
in this model as well. We will use a well-known argument due to Razborov and
Wigderson [46] which reduces the job to proving lower bounds for MAJ◦SYMM◦ANY
circuits with small bottom fan-in. This argument has already been used by several
authors [54, 11] in the context of proving lower bounds for AC0 functions.

Theorem 8.3 (Razborov and Wigderson). Let δ > 0 be a sufficiently small

absolute constant, f : {0, 1}N → {−1,+1} a given function. For ǫ ∈ (0, δ), define

Fǫ = f ◦ PARITY 1
ǫ
ln2 N .

If Fǫ is computable by a MAJ ◦ SYMM ◦ AND circuit C of size at most N ǫ2 ln lnN ,
then f is computable by a MAJ ◦ SYMM ◦ AND circuit of the same size with bottom

fan-in at most ǫ lnN.
For completeness, we include the short proof of this theorem. In what follows, we

let Gρ denote the result of applying a random restriction ρ to a gate or function G.
Proof of Theorem 8.3 (adapted from [46, 54, 11]). Let ρ be a random restriction

that leaves each variable unset independently with probability p
.
= 2ǫ/ lnN, and

otherwise sets it to 0 or 1 with equal probability. For a conjunction K, let |K| denote
the number of literals in K. We claim that for every conjunction K,

P[|Kρ| > ǫ lnN ] 6 N−Θ(ǫ ln lnN).(8.1)

Indeed, for |K| 6 lnN ln lnN,

P[|Kρ| > ǫ lnN ] 6

( |K|
ǫ lnN

)
pǫ lnN

6 N−Θ(ǫ ln lnN),

whereas for |K| > lnN ln lnN

P[|Kρ| > ǫ lnN ] 6 P[Kρ 6≡ 1] =

(
1 + p

2

)|K|
6 N−Θ(ln lnN).

Applying (8.1) with a union bound across the bottom gates of C, we find that
with probability 1 − o(1) the bottom fan-in of Cρ is at most ǫ lnN. Furthermore,
the probability that ρ does not turn any parity gate in Fǫ into a constant is at least
1−N(1− p)

1
ǫ
ln2 N = 1− o(1). In particular, there is a random restriction ρ such that

on the one hand, Cρ has bottom fan-in at most ǫ lnN, and on the other hand f is a
subfunction of Cρ.

We are now in a position to prove the promised lower bound.

Theorem 1.7 (restated). Every MAJ ◦ SYMM ◦AND circuit that computes

Hn(x) =

n∨

i=1

n∧

j=1

logn∨

k=1

log2 n⊕

ℓ=1

xi,j,k,ℓ

has size nΩ(log logn).
Proof. Without loss of generality, we may assume that n is a power of 2. Let Fn,k

be the depth-3 read-once {∧,∨}-formula constructed in Theorem 5.8. By Theorem 8.2,
every MAJ◦SYMM◦ANY circuit with bottom fan-in log n−1 that computes Fn,logn

has size 2Ω(n/ logn). As a result, Theorem 8.3 gives a lower bound of nΩ(log logn) on the
size of any MAJ ◦ SYMM ◦ AND circuit computing the composition H ′

n = Fn,logn ◦
PARITYc log2 n, where c > 1 is a sufficiently large constant. It remains to note that
H ′

n is a subfunction of HnC for a large enough constant C = C(c) > 1.
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[3] László Babai, Peter Frankl, and Janos Simon, Complexity classes in communication com-

plexity theory, in Proceedings of the Twenty-Seventh Annual IEEE Symposium on Foun-

dations of Computer Science (FOCS), 1986, pp. 337–347.
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[29] Johan Håstad and Mikael Goldmann, On the power of small-depth threshold circuits, Com-

putational Complexity, 1 (1991), pp. 113–129.
[30] Rahul Jain, Hartmut Klauck, and Ashwin Nayak, Direct product theorems for classical

communication complexity via subdistribution bounds, in Proceedings of the Fortieth An-

nual ACM Symposium on Theory of Computing (STOC), 2008, pp. 599–608.
[31] Bala Kalyanasundaram and Georg Schnitger, The probabilistic communication complexity

of set intersection, SIAM J. Discrete Math., 5 (1992), pp. 545–557.
[32] Hartmut Klauck, Lower bounds for quantum communication complexity, in Proceedings of

the Forty-Second Annual IEEE Symposium on Foundations of Computer Science (FOCS),
2001, pp. 288–297.

[33] , Rectangle size bounds and threshold covers in communication complexity, in Proceedings

of the Eighteenth Annual IEEE Conference on Computational Complexity (CCC), 2003,
pp. 118–134.

[34] , A strong direct product theorem for disjointness, in Proceedings of the Forty-Second

Annual ACM Symposium on Theory of Computing (STOC), 2010, pp. 77–86.
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