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Preface

When attempting to make sense of data, statisticians are invariably motivated by causal
questions. For example, “How effective is a given treatment in preventing a disease?”;
“Can one estimate obesity-related medical costs?”; “Could government actions have pre-
vented the financial crisis of 2008?”; “Can hiring records prove an employer guilty of sex
discrimination?”

The peculiar nature of these questions is that they cannot be answered, or even articulated, in
the traditional language of statistics. In fact, only recently has science acquired a mathematical
language we can use to express such questions, with accompanying tools to allow us to answer
them from data.

The development of these tools has spawned a revolution in the way causality is treated
in statistics and in many of its satellite disciplines, especially in the social and biomedical
sciences. For example, in the technical program of the 2003 Joint Statistical Meeting in San
Francisco, there were only 13 papers presented with the word “cause” or “causal” in their titles;
the number of such papers exceeded 100 by the Boston meeting in 2014. These numbers rep-
resent a transformative shift of focus in statistics research, accompanied by unprecedented
excitement about the new problems and challenges that are opening themselves to statistical
analysis. Harvard’s political science professor Gary King puts this revolution in historical per-
spective: “More has been learned about causal inference in the last few decades than the sum
total of everything that had been learned about it in all prior recorded history.”

Yet this excitement remains barely seen among statistics educators, and is essentially absent
from statistics textbooks, especially at the introductory level. The reasons for this disparity is
deeply rooted in the tradition of statistical education and in how most statisticians view the
role of statistical inference.

In Ronald Fisher’s influential manifesto, he pronounced that “the object of statistical
methods is the reduction of data” (Fisher 1922). In keeping with that aim, the traditional task
of making sense of data, often referred to generically as “inference,” became that of finding
a parsimonious mathematical description of the joint distribution of a set of variables of
interest, or of specific parameters of such a distribution. This general strategy for inference is
extremely familiar not just to statistical researchers and data scientists, but to anyone who has
taken a basic course in statistics. In fact, many excellent introductory books describe smart
and effective ways to extract the maximum amount of information possible from the available
data. These books take the novice reader from experimental design to parameter estimation
and hypothesis testing in great detail. Yet the aim of these techniques are invariably the
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description of data, not of the process responsible for the data. Most statistics books do not
even have the word “causal” or “causation” in the index.

Yet the fundamental question at the core of a great deal of statistical inference is causal; do
changes in one variable cause changes in another, and if so, how much change do they cause?
In avoiding these questions, introductory treatments of statistical inference often fail even to
discuss whether the parameters that are being estimated are the relevant quantities to assess
when interest lies in cause and effects.

The best that most introductory textbooks do is this: First, state the often-quoted aphorism
that “association does not imply causation,” give a short explanation of confounding and how
“lurking variables” can lead to a misinterpretation of an apparent relationship between two
variables of interest. Further, the boldest of those texts pose the principal question: “How can
a causal link between x and y be established?”” and answer it with the long-standing “gold stan-
dard” approach of resorting to randomized experiment, an approach that to this day remains
the cornerstone of the drug approval process in the United States and elsewhere.

However, given that most causal questions cannot be addressed through random experimen-
tation, students and instructors are left to wonder if there is anything that can be said with any
reasonable confidence in the absence of pure randomness.

In short, by avoiding discussion of causal models and causal parameters, introductory text-
books provide readers with no basis for understanding how statistical techniques address sci-
entific questions of causality.

It is the intent of this primer to fill this gnawing gap and to assist teachers and students of
elementary statistics in tackling the causal questions that surround almost any nonexperimental
study in the natural and social sciences. We focus here on simple and natural methods to define
causal parameters that we wish to understand and to show what assumptions are necessary for
us to estimate these parameters in observational studies. We also show that these assumptions
can be expressed mathematically and transparently and that simple mathematical machinery is
available for translating these assumptions into estimable causal quantities, such as the effects
of treatments and policy interventions, to identify their testable implications.

Our goal stops there for the moment; we do not address in any detail the optimal param-
eter estimation procedures that use the data to produce effective statistical estimates and
their associated levels of uncertainty. However, those ideas—some of which are relatively
advanced—are covered extensively in the growing literature on causal inference. We thus
hope that this short text can be used in conjunction with standard introductory statistics
textbooks like the ones we have described to show how statistical models and inference can
easily go hand in hand with a thorough understanding of causation.

Itis our strong belief that if one wants to move beyond mere description, statistical inference
cannot be effectively carried out without thinking carefully about causal questions, and without
leveraging the simple yet powerful tools that modern analysis has developed to answer such
questions. It is also our experience that thinking causally leads to a much more exciting and
satisfying approach to both the simplest and most complex statistical data analyses. This is not
a new observation. Virgil said it much more succinctly than we in 29 BC:

“Felix, qui potuit rerum cognoscere causas” (Virgil 29 BC)
(Lucky is he who has been able to understand the causes of things)
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The book is organized in four chapters.

Chapter 1 provides the basic statistical, probabilistic, and graphical concepts that readers
will need to understand the rest of the book. It also introduces the fundamental concepts of
causality, including the causal model, and explains through examples how the model can con-
vey information that pure data are unable to provide.

Chapter 2 explains how causal models are reflected in data, through patterns of statistical
dependencies. It explains how to determine whether a data set complies with a given causal
model, and briefly discusses how one might search for models that explain a given data set.

Chapter 3 is concerned with how to make predictions using causal models, with a particular
emphasis on predicting the outcome of a policy intervention. Here we introduce techniques
of reducing confounding bias using adjustment for covariates, as well as inverse probability
weighing. This chapter also covers mediation analysis and contains an in-depth look at how
the causal methods discussed thus far work in a linear system. Key to these methods is the
fundamental distinction between regression coefficients and structural parameters, and how
students should use both to predict causal effects in linear models.

Chapter 4 introduces the concept of counterfactuals—what would have happened, had we
chosen differently at a point in the past—and discusses how we can compute them, estimate
their probabilities, and what practical questions we can answer using them. This chapter is
somewhat advanced, compared to its predecessors, primarily due to the novelty of the notation
and the hypothetical nature of the questions asked. However, the fact that we read and compute
counterfactuals using the same scientific models that we used in previous chapters should
make their analysis an easy journey for students and instructors. Those wishing to understand
counterfactuals on a friendly mathematical level should find this chapter a good starting point,
and a solid basis for bridging the model-based approach taken in this book with the potential
outcome framework that some experimentalists are pursuing in statistics.

Acknowledgments

This book is an outgrowth of a graduate course on causal inference that the first author has
been teaching at UCLA in the past 20 years. It owes many of its tools and examples to for-
mer members of the Cognitive Systems Laboratory who participated in the development of
this material, both as researchers and as teaching assistants. These include Alex Balke, David
Chickering, David Galles, Dan Geiger, Moises Goldszmidt, Jin Kim, George Rebane, Ilya
Shpitser, Jin Tian, and Thomas Verma.

We are indebted to many colleagues from whom we have learned much about causal prob-
lems, their solutions, and how to present them to general audiences. These include Clark and
Maria Glymour, for providing patient ears and sound advice on matters of both causation and
writing, Felix Elwert and Tyler VanderWeele for insightful comments on an earlier version of
the manuscript, and the many visitors and discussants to the UCLA Causality blog who kept
the discussion lively, occasionally controversial, but never boring (causality.cs.ucla.edu/blog).

Elias Bareinboim, Bryant Chen, Andrew Forney, Ang Li, Karthika Mohan, reviewed the text
for accuracy and transparency. Ang and Andrew also wrote solutions to the study questions,
which are available to instructors from the publisher, see <http://bayes.cs.ucla.edu/PRIMER/
CIS-Manual-PUBLIC.pdf>.



xiv Preface

The manuscript was most diligently typed, processed, illustrated, and proofed by Kaoru
Mulvihill at UCLA. Debbie Jupe and Heather Kay at Wiley deserve much credit for recogniz-
ing and convincing us that a book of this scope is badly needed in the field, and for encouraging
us throughout the production process.

Finally, the National Science Foundation and the Office of Naval Research deserve acknowl-
edgment for faithfully and consistently sponsoring the research that led to these results, with
special thanks to Behzad Kamgar-Parsi.



List of Figures

Figure 1.1
Figure 1.2
Figure 1.3

Figure 1.4

Figure 1.5

Figure 1.6
Figure 1.7
Figure 1.8
Figure 1.9

Figure 1.10

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4

Figure 2.5

Figure 2.6

Results of the exercise—cholesterol study, segregated by age

Results of the exercise—cholesterol study, unsegregated. The data points
are identical to those of Figure 1.1, except the boundaries between the
various age groups are not shown

Scatter plot of the results in Table 1.6, with the value of Die 1 on the
x-axis and the sum of the two dice rolls on the y-axis

Scatter plot of the results in Table 1.6, with the value of Die 1 on the
x-axis and the sum of the two dice rolls on the y-axis. The dotted line
represents the line of best fit based on the data. The solid line represents
the line of best fit we would expect in the population

An undirected graph in which nodes X and Y are adjacent and nodes Y
and Z are adjacent but not X and Z

A directed graph in which node A is a parent of B and B is a parent of C
(a) Showing acyclic graph and (b) cyclic graph

A directed graph used in Study question 1.4.1

The graphical model of SCM 1.5.1, with X indicating years of schooling,
Y indicating years of employment, and Z indicating salary

Model showing an unobserved syndrome, Z, affecting both treatment (X)
and outcome (Y)

The graphical model of SCMs 2.2.1-2.2.3

The graphical model of SCMs 2.2.5 and 2.2.6

A simple collider

A simple collider, Z, with one child, W, representing the scenario from
Table 2.3, with X representing one coin flip, Y representing the second
coin flip, Z representing a bell that rings if either X or Y is heads, and W

representing an unreliable witness who reports on whether or not the bell
has rung

A directed graph for demonstrating conditional independence (error
terms are not shown explicitly)

A directed graph in which P is a descendant of a collider

21

21

25
25
26
26

27

31
37
39
41

44

45
45



xvi List of Figures
Figure 2.7 A graphical model containing a collider with child and a fork 47
Figure 2.8  The model from Figure 2.7 with an additional forked path between

ZandY 48
Figure 2.9 A causal graph used in study question 2.4.1, all U terms (not shown) are

assumed independent 49
Figure 3.1 A graphical model representing the relationship between temperature

(Z), ice cream sales (X), and crime rates (Y) 54
Figure 3.2 A graphical model representing an intervention on the model in Figure

3.1 that lowers ice cream sales 54
Figure 3.3 A graphical model representing the effects of a new drug, with Z repre-

senting gender, X standing for drug usage, and Y standing for recovery 55
Figure 3.4 A modified graphical model representing an intervention on the model

in Figure 3.3 that sets drug usage in the population, and results in the

manipulated probability P,, 56
Figure 3.5 A graphical model representing the effects of a new drug, with X rep-

resenting drug usage, Y representing recovery, and Z representing blood

pressure (measured at the end of the study). Exogenous variables are not

shown in the graph, implying they are mutually independent 58
Figure 3.6 A graphical model representing the relationship between a new drug (X),

recovery (Y), weight (W), and an unmeasured variable Z (socioeconomic

status) 62
Figure 3.7 A graphical model in which the backdoor criterion requires that we

condition on a collider (Z) in order to ascertain the effect of X on Y 63
Figure 3.8  Causal graph used to illustrate the backdoor criterion in the following

study questions 64
Figure 3.9  Scatter plot with students’ initial weights on the x-axis and final weights

on the y-axis. The vertical line indicates students whose initial weights

are the same, and whose final wights are higher (on average) for plan B

compared with plan A 65
Figure 3.10 A graphical model representing the relationships between smoking (X)

and lung cancer (Y), with unobserved confounder (U) and a mediating

variable Z 66
Figure 3.11 A graphical model representing the relationship between gender, qualifi-

cations, and hiring 76
Figure 3.12 A graphical model representing the relationship between gender, quali-

fications, and hiring, with socioeconomic status as a mediator between

qualifications and hiring 77
Figure 3.13 A graphical model illustrating the relationship between path coefficients

and total effects 82
Figure 3.14 A graphical model in which X has no direct effect on Y, but a total effect

that is determined by adjusting for T 83
Figure 3.15 A graphical model in which X has direct effect « on Y 84



List of Figures

xvii

Figure 3.16

Figure 3.17

Figure 3.18

Figure 4.1
Figure 4.2

Figure 4.3

Figure 4.4

Figure 4.5

Figure 4.6

By removing the direct edge from X to Y and finding the set of variables
{W} that d-separate them, we find the variables we need to adjust for to
determine the direct effect of X on Y

A graphical model in which we cannot find the direct effect of X on Y via
adjustment, because the dashed double-arrow arc represents the presence
of a backdoor path between X and Y, consisting of unmeasured variables.
In this case, Z is an instrument with regard to the effect of X on Y that
enables the identification of «

Graph corresponding to Model 3.1 in Study question 3.8.1
A model depicting the effect of Encouragement (X) on student’s score

Answering a counterfactual question about a specific student’s score,
predicated on the assumption that homework would have increased to
H=2

A model representing Eq. (4.7), illustrating the causal relations between
college education (X), skills (Z), and salary (Y)

Mlustrating the graphical reading of counterfactuals. (a) The original
model. (b) The modified model M, in which the node labeled Y,
represents the potential outcome Y predicated on X = x

(a) Showing how probabilities of necessity (PN) are bounded, as a
function of the excess risk ratio (ERR) and the confounding factor (CF)
(Eq. (4.31)); (b) showing how PN is identified when monotonicity is
assumed (Theorem 4.5.1)

(a) The basic nonparametric mediation model, with no confounding.
(b) A confounded mediation model in which dependence exists between
UM and (UT, Uy)

85

85
86
94

95

99

102

118

121






About the Companion Website

This book is accompanied by a companion website:

www.wiley.com/go/Pearl/Causality






Contents

About the Authors
Preface
List of Figures

About the Companion Website

1 Preliminaries: Statistical and Causal Models
1.1 Why Study Causation
1.2 Simpson’s Paradox
1.3 Probability and Statistics
1.3.1 Variables
1.3.2  Events
1.3.3 Conditional Probability
1.3.4  Independence
1.3.5  Probability Distributions
1.3.6  The Law of Total Probability
1.3.7  Using Bayes’ Rule
1.3.8  Expected Values
1.3.9  Variance and Covariance
1.3.10  Regression
1.3.11 Multiple Regression
1.4 Graphs
1.5 Structural Causal Models
1.5.1  Modeling Causal Assumptions
1.5.2 Product Decomposition

2 Graphical Models and Their Applications
2.1 Connecting Models to Data

2.2 Chains and Forks

2.3 Colliders

24  d-separation

2.5 Model Testing and Causal Search

ix

xi

XV

Xix

0 00 N ] — —

10

11
13
16
17
20
22
24
26
26
29

35
35
35
40
45
48



viii Contents
3 The Effects of Interventions 53
3.1 Interventions 53
3.2 The Adjustment Formula 55
3.2.1 To Adjust or not to Adjust? 58
3.2.2  Multiple Interventions and the Truncated Product Rule 60
3.3 The Backdoor Criterion 61
34 The Front-Door Criterion 66
3.5  Conditional Interventions and Covariate-Specific Effects 70
3.6  Inverse Probability Weighing 72
3.7 Mediation 75
3.8 Causal Inference in Linear Systems 78
3.8.1 Structural versus Regression Coefficients 80
3.8.2 The Causal Interpretation of Structural Coefficients 81
3.8.3  Identifying Structural Coefficients and Causal Effect 83
3.8.4  Mediation in Linear Systems 87
4 Counterfactuals and Their Applications 89
4.1 Counterfactuals 89
4.2 Defining and Computing Counterfactuals 91
4.2.1 The Structural Interpretation of Counterfactuals 91
4.2.2 The Fundamental Law of Counterfactuals 93
4.2.3  From Population Data to Individual Behavior — An Illustration 94
4.2.4  The Three Steps in Computing Counterfactuals 96
4.3 Nondeterministic Counterfactuals 98
4.3.1 Probabilities of Counterfactuals 98
4.3.2 The Graphical Representation of Counterfactuals 101
4.3.3  Counterfactuals in Experimental Settings 103
4.3.4  Counterfactuals in Linear Models 106
4.4 Practical Uses of Counterfactuals 107
4.4.1 Recruitment to a Program 107
4.4.2  Additive Interventions 109
4.4.3  Personal Decision Making 111
4.4.4  Discrimination in Hiring 113
4.4.5  Mediation and Path-disabling Interventions 114
4.5 Mathematical Tool Kits for Attribution and Mediation 116
4.5.1 A Tool Kit for Attribution and Probabilities of Causation 116
4.5.2 A Tool Kit for Mediation 120
References 127
Index 133



1

Preliminaries: Statistical
and Causal Models

1.1 Why Study Causation

The answer to the question “why study causation?” is almost as immediate as the answer to
“why study statistics.” We study causation because we need to make sense of data, to guide
actions and policies, and to learn from our success and failures. We need to estimate the effect
of smoking on lung cancer, of education on salaries, of carbon emissions on the climate. Most
ambitiously, we also need to understand how and why causes influence their effects, which
is not less valuable. For example, knowing whether malaria is transmitted by mosquitoes or
“mal-air,” as many believed in the past, tells us whether we should pack mosquito nets or
breathing masks on our next trip to the swamps.

Less obvious is the answer to the question, “why study causation as a separate topic, distinct
from the traditional statistical curriculum?”” What can the concept of “causation,” considered
on its own, tell us about the world that tried-and-true statistical methods can’t?

Quite a lot, as it turns out. When approached rigorously, causation is not merely an aspect of
statistics; it is an addition to statistics, an enrichment that allows statistics to uncover workings
of the world that traditional methods alone cannot. For example, and this might come as a
surprise to many, none of the problems mentioned above can be articulated in the standard
language of statistics.

To understand the special role of causation in statistics, let’s examine one of the most intrigu-
ing puzzles in the statistical literature, one that illustrates vividly why the traditional language
of statistics must be enriched with new ingredients in order to cope with cause—effect relation-
ships, such as the ones we mentioned above.

1.2 Simpson’s Paradox

Named after Edward Simpson (born 1922), the statistician who first popularized it, the paradox
refers to the existence of data in which a statistical association that holds for an entire popu-
lation is reversed in every subpopulation. For instance, we might discover that students who

Causal Inference in Statistics: A Primer, First Edition. Judea Pearl, Madelyn Glymour, and Nicholas P. Jewell.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/Pearl/Causality
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smoke get higher grades, on average, than nonsmokers get. But when we take into account
the students’ age, we might find that, in every age group, smokers get lower grades than
nonsmokers get. Then, if we take into account both age and income, we might discover that
smokers once again get higher grades than nonsmokers of the same age and income. The
reversals may continue indefinitely, switching back and forth as we consider more and more
attributes. In this context, we want to decide whether smoking causes grade increases and in
which direction and by how much, yet it seems hopeless to obtain the answers from the data.

In the classical example used by Simpson (1951), a group of sick patients are given the
option to try a new drug. Among those who took the drug, a lower percentage recovered than
among those who did not. However, when we partition by gender, we see that more men taking
the drug recover than do men are not taking the drug, and more women taking the drug recover
than do women are not taking the drug! In other words, the drug appears to help men and
women, but hurt the general population. It seems nonsensical, or even impossible—which is
why, of course, it is considered a paradox. Some people find it hard to believe that numbers
could even be combined in such a way. To make it believable, then, consider the following
example:

Example 1.2.1 We record the recovery rates of 700 patients who were given access to the
drug. A total of 350 patients chose to take the drug and 350 patients did not. The results of the
study are shown in Table 1.1.

The first row shows the outcome for male patients; the second row shows the outcome for
female patients; and the third row shows the outcome for all patients, regardless of gender.
In male patients, drug takers had a better recovery rate than those who went without the drug
(93% vs 87%). In female patients, again, those who took the drug had a better recovery rate
than nontakers (73% vs 69%). However, in the combined population, those who did not take
the drug had a better recovery rate than those who did (83% vs 78%).

The data seem to say that if we know the patient’s gender—male or female—we can pre-
scribe the drug, but if the gender is unknown we should not! Obviously, that conclusion is
ridiculous. If the drug helps men and women, it must help anyone; our lack of knowledge of
the patient’s gender cannot make the drug harmful.

Given the results of this study, then, should a doctor prescribe the drug for a woman? A
man? A patient of unknown gender? Or consider a policy maker who is evaluating the drug’s
overall effectiveness on the population. Should he/she use the recovery rate for the general
population? Or should he/she use the recovery rates for the gendered subpopulations?

Table 1.1 Results of a study into a new drug, with gender being taken into account

Drug No drug
Men 81 out of 87 recovered (93%) 234 out of 270 recovered (87%)
Women 192 out of 263 recovered (73%) 55 out of 80 recovered (69%)
Combined data 273 out of 350 recovered (78%) 289 out of 350 recovered (83%)
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The answer is nowhere to be found in simple statistics. In order to decide whether the drug
will harm or help a patient, we first have to understand the story behind the data—the causal
mechanism that led to, or generated, the results we see. For instance, suppose we knew an
additional fact: Estrogen has a negative effect on recovery, so women are less likely to recover
than men, regardless of the drug. In addition, as we can see from the data, women are signifi-
cantly more likely to take the drug than men are. So, the reason the drug appears to be harmful
overall is that, if we select a drug user at random, that person is more likely to be a woman and
hence less likely to recover than a random person who does not take the drug. Put differently,
being a woman is a common cause of both drug taking and failure to recover. Therefore, to
assess the effectiveness, we need to compare subjects of the same gender, thereby ensuring
that any difference in recovery rates between those who take the drug and those who do not
is not ascribable to estrogen. This means we should consult the segregated data, which shows
us unequivocally that the drug is helpful. This matches our intuition, which tells us that the
segregated data is “more specific,” hence more informative, than the unsegregated data.

With a few tweaks, we can see how the same reversal can occur in a continuous example.
Consider a study that measures weekly exercise and cholesterol in various age groups. When
we plot exercise on the X-axis and cholesterol on the Y-axis and segregate by age, as in
Figure 1.1, we see that there is a general trend downward in each group; the more young
people exercise, the lower their cholesterol is, and the same applies for middle-aged people
and the elderly. If, however, we use the same scatter plot, but we don’t segregate by age
(as in Figure 1.2), we see a general trend upward; the more a person exercises, the higher
their cholesterol is. To resolve this problem, we once again turn to the story behind the data. If
we know that older people, who are more likely to exercise (Figure 1.1), are also more likely
to have high cholesterol regardless of exercise, then the reversal is easily explained, and easily
resolved. Age is a common cause of both treatment (exercise) and outcome (cholesterol). So
we should look at the age-segregated data in order to compare same-age people and thereby
eliminate the possibility that the high exercisers in each group we examine are more likely to
have high cholesterol due to their age, and not due to exercising.

However, and this might come as a surprise to some readers, segregated data does not always
give the correct answer. Suppose we looked at the same numbers from our first example of drug
taking and recovery, instead of recording participants’ gender, patients’ blood pressure were

Cholesterol

Exercise

Figure 1.1 Results of the exercise—cholesterol study, segregated by age
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Figure 1.2 Results of the exercise—cholesterol study, unsegregated. The data points are identical to
those of Figure 1.1, except the boundaries between the various age groups are not shown

recorded at the end of the experiment. In this case, we know that the drug affects recovery
by lowering the blood pressure of those who take it—but unfortunately, it also has a toxic
effect. At the end of our experiment, we receive the results shown in Table 1.2. (Table 1.2 is
numerically identical to Table 1.1, with the exception of the column labels, which have been
switched.)

Now, would you recommend the drug to a patient?

Once again, the answer follows from the way the data were generated. In the general pop-
ulation, the drug might improve recovery rates because of its effect on blood pressure. But
in the subpopulations—the group of people whose posttreatment BP is high and the group
whose posttreatment BP is low—we, of course, would not see that effect; we would only see
the drug’s toxic effect.

As in the gender example, the purpose of the experiment was to gauge the overall effect of
treatment on rates of recovery. But in this example, since lowering blood pressure is one of
the mechanisms by which treatment affects recovery, it makes no sense to separate the results
based on blood pressure. (If we had recorded the patients’ blood pressure before treatment,
and if it were BP that had an effect on treatment, rather than the other way around, it would be
a different story.) So we consult the results for the general population, we find that treatment
increases the probability of recovery, and we decide that we should recommend treatment.
Remarkably, though the numbers are the same in the gender and blood pressure examples, the
correct result lies in the segregated data for the former and the aggregate data for the latter.

None of the information that allowed us to make a treatment decision—not the timing of the
measurements, not the fact that treatment affects blood pressure, and not the fact that blood

Table 1.2 Results of a study into a new drug, with posttreatment blood pressure taken into account

No drug Drug
Low BP 81 out of 87 recovered (93%) 234 out of 270 recovered (87%)
High BP 192 out of 263 recovered (73%) 55 out of 80 recovered (69%)
Combined data 273 out of 350 recovered (78%) 289 out of 350 recovered (83%)
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pressure affects recovery—was found in the data. In fact, as statistics textbooks have tradi-
tionally (and correctly) warned students, correlation is not causation, so there is no statistical
method that can determine the causal story from the data alone. Consequently, there is no
statistical method that can aid in our decision.

Yet statisticians interpret data based on causal assumptions of this kind all the time. In fact,
the very paradoxical nature of our initial, qualitative, gender example of Simpson’s problem
is derived from our strongly held conviction that treatment cannot affect sex. If it could, there
would be no paradox, since the causal story behind the data could then easily assume the same
structure as in our blood pressure example. Trivial though the assumption “treatment does not
cause sex” may seem, there is no way to test it in the data, nor is there any way to represent
it in the mathematics of standard statistics. There is, in fact, no way to represent any causal
information in contingency tables (such as Tables 1.1 and 1.2), on which statistical inference
is often based.

There are, however, extra-statistical methods that can be used to express and interpret causal
assumptions. These methods and their implications are the focus of this book. With the help of
these methods, readers will be able to mathematically describe causal scenarios of any com-
plexity, and answer decision problems similar to those posed by Simpson’s paradox as swiftly
and comfortably as they can solve for X in an algebra problem. These methods will allow us to
easily distinguish each of the above three examples and move toward the appropriate statisti-
cal analysis and interpretation. A calculus of causation composed of simple logical operations
will clarify the intuitions we already have about the nonexistence of a drug that cures men
and women but hurts the whole population and about the futility of comparing patients with
equal blood pressure. This calculus will allow us to move beyond the toy problems of Simp-
son’s paradox into intricate problems, where intuition can no longer guide the analysis. Simple
mathematical tools will be able to answer practical questions of policy evaluation as well as
scientific questions of how and why events occur.

But we’re not quite ready to pull off such feats of derring-do just yet. In order to rigorously
approach our understanding of the causal story behind data, we need four things:

1. A working definition of “causation.”

2. A method by which to formally articulate causal assumptions—that is, to create causal
models.

3. A method by which to link the structure of a causal model to features of data.

4. A method by which to draw conclusions from the combination of causal assumptions
embedded in a model and data.

The first two parts of this book are devoted to providing methods for modeling causal
assumptions and linking them to data sets, so that in the third part, we can use those assump-
tions and data to answer causal questions. But before we can go on, we must define causation.
It may seem intuitive or simple, but a commonly agreed-upon, completely encompassing def-
inition of causation has eluded statisticians and philosophers for centuries. For our purposes,
the definition of causation is simple, if a little metaphorical: A variable X is a cause of a vari-
able Y if Y in any way relies on X for its value. We will expand slightly upon this definition
later, but for now, think of causation as a form of listening; X is a cause of Y if Y listens to X
and decides its value in response to what it hears.

Readers must also know some elementary concepts from probability, statistics, and graph
theory in order to understand the aforementioned causal methods. The next two sections
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will therefore provide the necessary definitions and examples. Readers with a basic under-
standing of probability, statistics, and graph theory may skip to Section 1.5 with no loss of
understanding.

Study questions
Study question 1.2.1

What is wrong with the following claims?

(a) “Data show that income and marriage have a high positive correlation. Therefore, your
earnings will increase if you get married.”

(b) “Data show that as the number of fires increase, so does the number of fire fighters. There-
fore, to cut down on fires, you should reduce the number of fire fighters.”

(c¢) “Data show that people who hurry tend to be late to their meetings. Don’t hurry, or you'll
be late.”

Study question 1.2.2

A baseball batter Tim has a better batting average than his teammate Frank. However, some-
one notices that Frank has a better batting average than Tim against both right-handed and
left-handed pitchers. How can this happen? (Present your answer in a table.)

Study question 1.2.3

Determine, for each of the following causal stories, whether you should use the aggregate or
the segregated data to determine the true effect.

(a) There are two treatments used on kidney stones: Treatment A and Treatment B. Doctors
are more likely to use Treatment A on large (and therefore, more severe) stones and more
likely to use Treatment B on small stones. Should a patient who doesn’t know the size of
his or her stone examine the general population data, or the stone size-specific data when
determining which treatment will be more effective?

(b) There are two doctors in a small town. Each has performed 100 surgeries in his career,
which are of two types: one very difficult surgery and one very easy surgery. The first doctor
performs the easy surgery much more often than the difficult surgery and the second doctor
performs the difficult surgery more often than the easy surgery. You need surgery, but you
do not know whether your case is easy or difficult. Should you consult the success rate
of each doctor over all cases, or should you consult their success rates for the easy and
difficult cases separately, to maximize the chance of a successful surgery?

Study question 1.2.4

In an attempt to estimate the effectiveness of a new drug, a randomized experiment is con-
ducted. In all, 50% of the patients are assigned to receive the new drug and 50% to receive a
placebo. A day before the actual experiment, a nurse hands out lollipops to some patients who



Preliminaries: Statistical and Causal Models 7

show signs of depression, mostly among those who have been assigned to treatment the next
day (i.e., the nurse’s round happened to take her through the treatment-bound ward). Strangely,
the experimental data revealed a Simpson’s reversal: Although the drug proved beneficial to
the population as a whole, drug takers were less likely to recover than nontakers, among both
lollipop receivers and lollipop nonreceivers. Assuming that lollipop sucking in itself has no
effect whatsoever on recovery, answer the following questions:

(a) Is the drug beneficial to the population as a whole or harmful?

(b) Does your answer contradict our gender example, where sex-specific data was deemed
more appropriate?

(c) Draw a graph (informally) that more or less captures the story. (Look ahead to Section
1.4 if you wish.)

(d) How would you explain the emergence of Simpson’s reversal in this story?

(e) Would your answer change if the lollipops were handed out (by the same criterion) a day
after the study?

[Hint: Use the fact that receiving a lollipop indicates a greater likelihood of being assigned
to drug treatment, as well as depression, which is a symptom of risk factors that lower the
likelihood of recovery.]

1.3 Probability and Statistics

Since statistics generally concerns itself not with absolutes but with likelihoods, the language
of probability is extremely important to it. Probability is similarly important to the study of cau-
sation because most causal statements are uncertain (e.g., “careless driving causes accidents,”
which is true, but does not mean that a careless driver is certain to get into an accident), and
probability is the way we express uncertainty. In this book, we will use the language and laws
of probability to express our beliefs and uncertainty about the world. To aid readers without a
strong background in probability, we provide here a glossary of the most important terms and
concepts they will need to know in order to understand the rest of the book.

1.3.1 Variables

A variable is any property or descriptor that can take multiple values. In a study that compares
the health of smokers and nonsmokers, for instance, some variables might be the age of the
participant, the gender of the participant, whether or not the participant has a family history
of cancer, and how many years the participant has been smoking. A variable can be thought
of as a question, to which the value is the answer. For instance, “How old is this participant?”
“38 years old.” Here, “age” is the variable, and “38” is its value. The probability that variable X
takes value x is written P(X = x). This is often shortened, when context allows, to P(x). We can
also discuss the probability of multiple values at once; for instance, the probability that X = x
and Y = yis written P(X = x, Y = y), or P(x, y). Note that P(X = 38) is specifically interpreted
as the probability that an individual randomly selected from the population is aged 38.

A variable can be either discrete or continuous. Discrete variables (sometimes called cate-
gorical variables) can take one of a finite or countably infinite set of values in any range. A vari-
able describing the state of a standard light switch is discrete, because it has two values: “on”
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and “off.” Continuous variables can take any one of an infinite set of values on a continuous
scale (i.e., for any two values, there is some third value that lies between them). For instance,
a variable describing in detail a person’s weight is continuous, because weight is measured by
a real number.

1.3.2 Events

An event is any assignment of a value or set of values to a variable or set of variables. “X = 17
isanevent,asis“X =1lorX =2,asis“X =1landY =3,”asis “X =1 orY = 3.” “The coin
flip lands on heads,” “the subject is older than 40,” and “the patient recovers” are all events.
In the first, “outcome of the coin flip” is the variable, and “heads” is the value it takes. In the
second, “age of the subject” is the variable and “older than 40” describes a set of values it
may take. In the third, “the patient’s status” is the variable and “recovery” is the value. This
definition of “event” runs counter to our everyday notion, which requires that some change
occur. (For instance, we would not, in everyday conversation, refer to a person being a certain
age as an event, but we would refer to that person furning a year older as such.) Another way
of thinking of an event in probability is this: Any declarative statement (a statement that can
be true or false) is an event.

Study questions

Study question 1.3.1
Identify the variables and events invoked in the lollipop story of Study question 1.2.4

1.3.3 Conditional Probability

The probability that some event A occurs, given that we know some other event B has occurred,
is the conditional probability of A given B. The conditional probability that X = x, given that
Y =y, iswritten P(X = x|Y = y). As with unconditional probabilities, this is often shortened to
P(x]y). Often, the probability that we assign to the event “X = x” changes drastically, depend-
ing on the knowledge “Y = y” that we condition on. For instance, the probability that you have
the flu right now is fairly low. But, that probability would become much higher if you were to
take your temperature and discover that it is 102 °F.

When dealing with probabilities represented by frequencies in a data set, one way to think
of conditioning is filtering a data set based on the value of one or more variables. For instance,
suppose we looked at the ages of U.S. voters in the last presidential election. According to the
Census Bureau, we might get the data set shown in Table 1.3.

In Table 1.3, there were 132,948,000 votes cast in total, so we would estimate that the prob-
ability that a given voter was younger than the age of 45 is

20,539,000 + 30,756,000 51,295,000 0.38

P(Voter’s Age < 45) = = N
(Voter’s Age ) 132,448,000 132,948,000

Suppose, however, we want to estimate the probability that a voter was younger than the age
of 45, given that we know he was elder than the age of 29. To find this out, we simply filter
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Table 1.3 Age breakdown of voters in 2012 election
(all numbers in thousands)

Age group # of voters
18-29 20,539
3044 30,756
45-64 52,013

65+ 29,641
132,948

Table 1.4 Age breakdown of voters over the age of
29 in 2012 election (all numbers in thousands)

Age group # of voters
30-44 30,756
45-64 52,013

65+ 29,641
112,409

the data to form a new set (shown in Table 1.4), using only the cases where voters were older
than 29.
In this new data set, there are 112,409,000 total votes, so we would estimate that
30,756,000

P(Voter Age < 45|Voter Age > 29) = —————— = (0.27
(Voter Age < 45|Voter Age > 29) = 15200000

Conditional probabilities such as these play an important role in investigating causal questions,
as we often want to compare how the probability (or, equivalently, risk) of an outcome changes
under different filtering, or exposure, conditions. For example, how does the probability of
developing lung cancer for smokers compare to the analogous probability for nonsmokers?

Study questions
Study question 1.3.2

Consider Table 1.5 showing the relationship between gender and education level in the U.S.
adult population.

(a) Estimate P(High School).

(b) Estimate P(High School OR Female).
(c) Estimate P(High School | Female).
(d) Estimate P(Female | High School).
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Table 1.5 The proportion of males and females achieving a given education level

Gender Highest education achieved Occurrence
(in hundreds of thousands)

Male Never finished high school 112
Male High school 231
Male College 595
Male Graduate school 242
Female Never finished high school 136
Female High school 189
Female College 763
Female Graduate school 172

1.3.4  Independence

It might happen that the probability of one event remains unaltered with the observation of
another. For example, while observing your high temperature increases the probability that
you have the flu, observing that your friend Joe is 38 years old does not change the probability
at all. In cases such as this, we say that the two events are independent. Formally, events A and
B are said to be independent if

P(A|B) = P(A) (1.1

that is, the knowledge that B has occurred gives us no additional information about the prob-

ability of A occurring. If this equality does not hold, then A and B are said to be depen-

dent. Dependence and independence are symmetric relations—if A is dependent on B, then

B is dependent on A, and if A is independent of B, then B is independent of A. (Formally, if

P(A|B) = P(A), then it must be the case that P(B|A) = P(B).) This makes intuitive sense; if

“smoke” tells us something about “fire,” then “fire” must tell us something about “smoke.”
Two events A and B are conditionally independent given a third event C if

P(A|B, C) = P(A|C) (1.2)

and P(B|A, C) = P(B|C). For example, the event “smoke detector is on” is dependent on the
event “there is a fire nearby.” But these two events may become independent conditional on
the third event “there is smoke nearby”; smoke detectors respond to the presence of smoke
only, not to its cause. When dealing with data sets, or probability tables, A and B are condi-
tionally independent given C if A and B are independent in the new data set created by filtering
on C. If A and B are independent in the original unfiltered data set, they are called marginally
independent.

Variables, like events, can be dependent or independent of each other. Two variables X and
Y are considered independent if for every value x and y that X and Y can take, we have

PX=x|Y =y)=PX =x) (1.3)

(As with independence of events, independence of variables is a symmetrical relation, so it
follows that Eq. (1.3) implies P(Y = y|X = x) = P(Y = y).) If for any pair of values of X and Y,
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this equality does not hold, then X and Y are said to be dependent. In this sense, independence
of variables can be understood as a set of independencies of events. For instance, “height” and
“musical talent” are independent variables; for every height 4 and level of musical talent m,
the probability that a person is % feet high would not change upon discovering that he/she has
m amount of talent.

1.3.5 Probability Distributions

A probability distribution for a variable X is the set of probabilities assigned to each possible
value of X. For instance, if X can take three values—1, 2, and 3—a possible probability distri-
bution for X would be “P(X = 1) = 0.5, P(X = 2) = 0.25, P(X = 3) = 0.25.” The probabilities
in a probability distribution must lie between 0 and 1, and must sum to 1. An event with prob-
ability O is impossible; an event with probability 1 is certain.

Continuous variables also have probability distributions. The probability distribution of a
continuous variable X is represented by a function f, called the density function. When f is
plotted on a coordinate plane, the probability that the value of variable X lies between values
a and b is the area under the curve between a and b—or, as those who have taken calculus
will know, / b #(x)dx. The area under the entire curve—that is, =2 f(x)dx—must of course be
equal to 1.

Sets of variables can also have probability distributions, called joint distributions. The joint
distribution of a set of variables V is the set of probabilities of each possible combination
of variable values in V. For instance, if V is a set of two variables—X and Y—each of
which can take two values—1 and 2—then one possible joint distribution for V is “P(X =1,
Y=1=02,PX=1Y=2)=01,PX=2,Y=1)=05PX=2,Y =2)=0.2." Just as
with single-variable distributions, probabilities in a joint distribution must sum to 1.

1.3.6  The Law of Total Probability

There are several universal probabilistic truths that are useful to know. First, for any two mutu-
ally exclusive events A and B (i.e., A and B cannot co-occur), we have

P(A or B) = P(A) + P(B) (1.4)
It follows that, for any two events A and B, we have

P(A) = P(A,B) + P(A, “not B”) (1.5)

because the events “A and B” and “A and ‘not B” are mutually exclusive—and because if A is
true, then either “A and B” or “A and ‘not B’ must be true. For example, “Dana is a tall man”
and “Dana is a tall woman” are mutually exclusive, and if Dana is tall, then he or she must
be cither a tall man or a tall woman; therefore, P(Dana is tall) = P(“Dana is a tall man’) +
P(“Dana is a tall woman”).

More generally, for any set of events By, B,, ... , B, such that exactly one of the events must
be true (an exhaustive, mutually exclusive set, called a partition), we have

P(A) =PA,B)) +PA,By))+---+P@A,B,) (1.6)

&
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This rule, known as the law of total probability, becomes somewhat obvious as soon as we put
it in real-world terms: If we pull a random card from a standard deck, the probability that the
card is a Jack will be equal to the probability that it’s a Jack and a spade, plus the probability
that it’s a Jack and a heart, plus the probability that it’s a Jack and a club, plus the probability
that it’s a Jack and a diamond. Calculating the probability of an event A by summing up its
probabilities over all B, is called marginalizing over B, and the resulting probability P(A) is
called the marginal probability of A.

If we know the probability of B and the probability of A conditional on B, we can deduce
the probability of A and B by simple multiplication:

P(A,B) = P(A|B)P(B) (1.7

For instance, the probability that Joe is funny and smart is equal to the probability that a smart
person is funny, multiplied by the probability that Joe is smart. The division rule

P(A|B) = P(A,B)/P(B)

which is formally regarded as a definition of conditional probabilities, is justified by viewing
conditioning as a filtering operation, as we have done in Tables 1.3 and 1.4. When we condition
on B, we remove from the table all events that conflict with B. The resulting subtable, like the
original, represents a probability distribution, and like all probability distributions, it must sum
to one. Since the probabilities of the subtables rows in the original distribution summed to P(B)
(by definition), we can determine their probabilities in the new distribution by multiplying each
by 1/P(B).

Equation (1.7) implies that the notion of independence, which until now we have used
informally to mean ““giving no additional information,” has a numerical representation in the
probability distribution. In particular, for events A and B to be independent, we require that

P(A, B) = P(A)P(B)

For example, to check if the outcomes of two coins are truly independent, we should count
the frequency at which both show up tails, and make sure that it equals the product of the
frequencies at which each of the coins shows up tails.
Using (1.7) together with the symmetry P(A, B) = P(B, A), we can immediately obtain one
of the most important laws of probability, Bayes’ rule:
P(B|A)P(A
P(A|B) = PBIAPA) (1.8)
P(B)
With the help of the multiplication rule in (1.7), we can express the law of total probability
as a weighted sum of conditional probabilities:

P(A) = P(A|B,)P(By) + P(A|By)P(By) + - - - + P(A|B,)P(By) (1.9)

This is very useful, because often we will find ourselves in a situation where we cannot assess
P(A) directly, but we can through this decomposition. It is generally easier to assess conditional
probabilities such as P(A|B, ), which are tied to specific contexts, rather than P(A), which is not
attached to a context. For instance, suppose we have a stock of gadgets from two sources: 30%
of them are manufactured by factory A, in which one out of 5000 is defective, whereas 70%
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are manufactured by factory B, in which one out of 10,000 is defective. To find the probability
that a randomly chosen gadget will be defective is not a trivial mental task, but when broken
down according to Eq. (1.9) it becomes easy:

P(defective) = P(defective|A)P(A) + P(defective| B)P(B)

_ 030 070

" 5,000 10,000

= 130 00013
10,000

Or, to take a somewhat harder example, suppose we roll two dice, and we want to know
the probability that the second roll is higher than the first, P(A) = P(Roll 2 > Roll 1). There is
no obvious way to calculate this probability all at once. But if we break it down into contexts
B, ... ,Bg by conditioning on the value of the first die, it becomes easy to solve:

P(Roll2 > Roll 1) = P(Roll 2 > Roll 1|Roll 1 = 1)P(Roll 1 = 1)

+ P(Roll 2 > Roll 1|Roll 1 =2)P(Roll 1 =2)

+ -+ P(Roll2 > Roll 1|Roll 1 = 6) X P(Roll 1 = 6)

() (dxd)s o)+t s () ()
6 6 6 6 6 6 6 6 6 6 6 6

S
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The decomposition described in Eq. (1.9) is sometimes called “the law of alternatives” or
“extending the conversation”; in this book, we will refer to it as conditionalizing on B.

1.3.7 Using Bayes’ Rule

When using Bayes’ rule, we sometimes loosely refer to event A as the “hypothesis” and event
B as the “evidence.” This naming reflects the reason that Bayes’ theorem is so important: In
many cases, we know or can easily determine P(B|A) (the probability that a piece of evidence
will occur, given that our hypothesis is correct), but it’s much harder to figure out P(A|B) (the
probability of the hypothesis being correct, given that we obtain a piece of evidence). Yet the
latter is the question that we most often want to answer in the real world; generally, we want to
update our belief in some hypothesis, P(A), after some evidence B has occurred, to P(A|B). To
precisely use Bayes’ rule in this manner, we must treat each hypothesis as an event and assign
to all hypotheses for a given situation a probability distribution, called a prior.

For example, suppose you are in a casino, and you hear a dealer shout “11!” You happen
to know that the only two games played at the casino that would occasion that event are craps
and roulette and that there are exactly as many craps games as roulette games going on at any
moment. What is the probability that the dealer is working at a game of craps, given that he
shouted “117”

In this case, “craps” is our hypothesis, and “11” is our evidence. It’s difficult to figure out this
probability off-hand. But the reverse—the probability that an 11 will result in a given round of
craps—is easy to calculate; it is specified by the game. Craps is a game in which gamblers bet
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on the sum of a roll of two dice. So 11 will be the sum in 32—6 = 1—18 of cases: P(“11”| “craps”) =

%. In roulette, there are 38 equally probable outcomes, so P(“117| “roulette”) = 3—18 In this
situation, there are two possible hypotheses; “craps” and “roulette.” Since there are an equal
number of craps and roulette games, P(“craps”) = 51 , our prior belief before we hear the “11”
shout. Using the law of total probability,

P(“117) = P(“117| “craps ”)P(“craps”) + P(“117’| “roulette ”)P(“roulette”)

Ll 1T
2718 2738 171
We have now fairly easily obtained all the information we need to determine

P( “Craps ”» I “1 177):

P(“117”| “craps”) X P(“craps”) _ 1/18x1/2

P ‘“ » 6‘11” = —
(“eraps”[*117) PC1T7) 7/171

=0.679

Another informative example of Bayes’ rule in action is the Monty Hall problem, a classic
brain teaser in statistics. In the problem, you are a contestant on a game show, hosted by Monty
Hall. Monty shows you three doors—A, B, and C—behind one and only one of which is a new
car. (The other two doors have goats.) If you guess correctly, the car is yours; otherwise, you
get a goat. You guess A at random. Monty, who is forbidden from revealing where the car is,
then opens Door C, which, of course, has a goat behind it. He tells you that you can now switch
to Door B, or stick with Door A. Whichever you pick, you’ll get what’s behind it.

Are you better off opening Door A, or switching to Door B?

Many people, when they first encounter the problem, reason that, since the location of the
car is independent of the door you first choose, switching doors neither gains nor loses you
anything; the probability that the car is behind Door A is equal to the probability that it is
behind Door B.

But the correct answer, as decades of statistics students have found to their consternation, is
that you are twice as likely to win the car if you switch to Door B as you are if you stay with
Door A. The reasoning often given for this counterintuitive solution is that, when you originally
chose a door, you had a % probability of picking the door with the car. Since Monty always
opens a door with a goat, no matter whether you initially chose the car or not, you have received
no new information since then. Therefore, there is still a % probability that the door you picked

hides the car, and the remaining % probability must lie with the only other closed door left.

We can prove this surprising fact using Bayes’ rule. Here we have three variables: X,
the door chosen by the player; Y, the door behind which the car is hidden; and Z, the door
which the host opens. X, Y, and Z can all take the values A, B, or C. We want to prove that
PY=B|X=A,Z=C)> P(Y =A|X =A,Z = C). Our hypothesis is that the car lies behind
Door A; our evidence is that Monty opened Door C. We will leave the proof to the reader—see
Study question 1.3.5. To further develop your intuition, you might generalize the game to
having 100 doors (which contain 1 hidden car and 99 hidden goats). The contestant still
chooses one door, but now Monty opens 98 doors—all revealing goats deliberately—before
offering the contestant the chance to switch before the final doors are opened. Now, the choice
to switch should be obvious.

Why does Monty opening Door C constitute evidence about the location of the car? It didn’t,
after all, provide any evidence for whether your initial choice of door was correct. And, surely,
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when he was about to open a door, be it B or C, you knew in advance that you won’t find a
car behind it. The answer is that there was no way for Monty to open Door A after you chose
it—but he could have opened Door B. The fact that he didn’t makes it more likely that he
opened Door C because he was forced to; it provides evidence that the car lies behind Door B.
This is a general theme of Bayesian analysis: Any hypothesis that has withstood some test of
refutation becomes more likely. Door B was vulnerable to refutation (i.e., Monty could have
opened it), but Door A was not. Therefore, Door B becomes a more likely location, whereas
Door A does not.

The reader may find it instructive to note that the explanation above is laden with counter-
factual terminology; for example, “He could have opened,” “because he was forced,” “He was
about to open.” Indeed, what makes the Monty Hall example unique among probability puz-
zles is its critical dependence on the process that generated the data. It shows that our beliefs
should depend not merely on the facts observed but also on the process that led to those facts.
In particular, the information that the car is not behind Door C, in itself, is not sufficient to
describe the problem; to figure out the probabilities involved, we must also know what options
were available to the host before opening Door C. In Chapter 4 of this book we will formu-
late a theory of counterfactuals that will enable us to describe such processes and alternative
options, so as to form the correct beliefs about choices.

There is some controversy attached to Bayes’ rule. Often, when we are trying to ascertain
the probability of a hypothesis given some evidence, we have no way to calculate the prior
probability of the hypothesis, P(A), in terms of fractions or frequencies of cases. Consider:
If we did not know the proportion of roulette tables to craps tables in the casino, how on
Earth could we determine the prior probability P(“craps’)? We might be tempted to postulate
PA) = % as a way of expressing our ignorance. But what if we have a hunch that roulette
tables are less common in this casino, or the tone of the voice of the caller reminds us of a craps
dealer we heard yesterday? In cases such as this, in order to use Bayes’ rule, we substitute, in
place of P(A), our subjective belief in the relative truth of the hypothesis compared to other
possibilities. The controversy stems from the subjective nature of that belief—how are we to
know whether the assigned P(A) accurately summarizes the information we have about the
hypothesis? Should we insist on distilling all of our pro and con arguments down to a single
number? And even if we do, why should we update our subjective beliefs about hypotheses
the same way that we update objective frequencies? Some behavioral experiments suggest
that people do not update their beliefs in accordance with Bayes’ rule—but many believe that
they should, and that deviations from the rule represent compromises, if not deficiencies in
reasoning, and lead to suboptimal decisions. Debate over the proper use of Bayes’ theorem
continues to this day. Despite these controversies, however, Bayes’ rule is a powerful tool for
statistics, and we will use it to great effect throughout this book.

Study questions
Study question 1.3.3

Consider the casino problem described in Section 1.3.6

(a) Compute P(“craps”|“11”) assuming that there are twice as many roulette tables as craps
games at the casino.
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(b) Compute P(“roulette”|“10”) assuming that there are twice as many craps games as
roulette tables at the casino.

Study question 1.3.4

Suppose we have three cards. Card I has two black faces, one on each side; Card 2 has two
white faces; and Card 3 has one white face and one black face. You select a card at random
and place it on the table. You find that it is black on the face-up side. What is the probability
that the face-down side of the card is also black?

(a) Use your intuition to argue that the probability that the face-down side of the card is also
black is % Why might it be greater than % ?

(b) Express the probabilities and conditional probabilities that you find easy to estimate (for
example, P(Cp, = Black)), in terms of the following variables:

I = Identity of the card selected (Card 1, Card 2, or Card 3)
Cp = Color of the face-down side (Black, White)
Cy, = Color of the face-up side (Black, White)

Find the probability that the face-down side of the selected card is black, using your esti-
mates above.

(c) Use Bayes’ theorem to find the correct probability of a randomly selected card’s back
being black if you observe that its front is black?

Study question 1.3.5 (Monty Hall)

Prove, using Bayes’ theorem, that switching doors improves your chances of winning the car
in the Monty Hall problem.

1.3.8 Expected Values

In statistics, one often deals with data sets and probability distributions that are too large to
effectively examine each possible combination of values. Instead, we use statistical measures
to represent, with some loss of information, meaningful features of the distribution. One such
measure is the expected value, also called the mean, which can be used when variables take on
numerical values. The expected value of a variable X, denoted E(X), is found by multiplying
each possible value of the variable by the probability that the variable will take that value, then
summing the products:

EX) = ZxP(X:x) (1.10)
For instance, a variable X representing the outcome of one roll of a fair six-sided die has the fol-
lowing probability distribution: P(1) = é PQ) = é P3) = % P(4) = é P(5) = é P(6) = é
The expected value of X is given by:

E(X):<1xé)+(2xé)+<3xé)+(4xé)+(5xé)+(6x%)=3.5
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Similarly, the expected value of any function of X—say, g(X)—is obtained by summing
g(x)P(X = x) over all values of X.

E[gX)] = ) g@)P(x) (1.11)

For example, if after rolling a die, I receive a cash prize equal to the square of the result, we
have g(X) = X2, and the expected prize is

E[¢(X)] = (12 x %) n (22 x %) + (32>< é) + (42>< é) + (52>< é) ¥ (62 x 1) —15.17
(1.12)

We can also calculate the expected value of ¥ conditional on X, E(Y|X = x), by multiplying
each possible value y of Y by P(Y = y|X = x), and summing the products.

E(Y|X=x)= ) yP(Y = y|X =x) (1.13)
S

E(X)is one way to make a “best guess” of X’s value. Specifically, out of all the guesses g that
we can make, the choice “g = E(X)” minimizes the expected square error E(g — X)?. Similarly,
E(Y|X = x) represents a best guess of Y, given that we observe X = x. If g = E(Y|X = x), then
g minimizes the expected square error E[(g — Y)*|X = x].

For example, the expected age of a 2012 voter, as demonstrated by Table 1.3, is

E(Voter’s Age) =23.5x0.16 437 x0.23 +54.5x0.394+ 70 x 0.22 = 48.9

(For this calculation, we have assumed that every age within each category is equally
likely, e.g., a voter is as likely to be 18 as 25, and as likely to be 30 as 44. We have also
assumed that the oldest age of any voter is 75.) This means that if we were asked to guess
the age of a randomly chosen voter, with the understanding that if we were off by e years,
we would lose €2 dollars, we would lose the least money, on average, if we guessed 48.9.
Similarly, if we were asked to guess the age of a random voter younger than the age of 45,
our best bet would be

E[Voter’s Age | Voter’s Age < 45] = 23.5x0.40 + 37 x 0.60 = 31.6 (1.14)

The use of expectations as a basis for predictions or “best guesses’ hinges to a great extent
on an implicit assumption regarding the distribution of X or Y|X = x, namely that such distri-
butions are approximately symmetric. If, however, the distribution of interest is highly skewed,
other methods of prediction may be better. In such cases, for example, we might use the median
of the distribution of X as our “best guess”; this estimate minimizes the expected absolute error
E(|g — X|). We will not pursue such alternative measures further here.

1.3.9  Variance and Covariance

The variance of a variable X, denoted Var(X) or 62, is a measure of roughly how “spread out”
the values of X in a data set or population are from their mean. If the values of X all hover close
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to one value, the variance will be relatively small; if they cover a large range, the variance will
be comparatively large. Mathematically, we define the variance of a variable as the average
square difference of that variable from its mean. It can be computed by first finding its mean,
u, and then calculating

Var(X) = E(X — u)%) (1.15)

The standard deviation oy of a random variable X is the square root of its variance. Unlike the
variance, oy is expressed in the same units as X. For example, the variance of under-45 voters’
age distribution, according to Table 1.3, can easily be calculated to be (Eq. (1.15)):

Var(X) = ((23.5 = 31.5)? x 0.41) + ((37 = 31.5)> X 0.59)
= (64 % 0.41) + (30.25 X .59)
=26.24 4+ 17.85 = 43.09 years®

while the standard deviation is

oy = \/(43.09) = 6.56 years

This means that, choosing a voter at random, chances are high that his/her age will fall less
than 6.56 years away from the average 31.5. This kind of interpretation can be quantified.
For example, for a normally distributed random variable X, approximately two-thirds of the
population values of X fall within one standard deviation of the expectation, or mean. Further,
about 95% fall within two standard deviations from the mean.

Of special importance is the expectation of the product (X — E(X))(Y — E(Y)), which is
known as the covariance of X and Y,

oxy = E[(X — EX))(Y — E(Y))] (1.16)

It measures the degree to which X and Y covary, that is, the degree to which the two variables
vary together, or are “associated.” This measure of association actually reflects a specific way
in which X and Y covary; it measures the extent to which X and Y linearly covary. You can
think of this as plotting ¥ versus X and considering the extent to which a straight line captures
the way in which Y varies as X changes.

The covariance oyy is often normalized to yield the correlation coefficient

Oxy
— 1.17
Pxy v ( )

which is a dimensionless number ranging from —1 to 1, which represents the slope of the
best-fit line after we normalize both X and Y by their respective standard deviations. pyy is
one if and only if one variable can predict the other in a linear fashion, and it is zero whenever
such a linear prediction is no better than a random guess. The significance of oyy and pyy
will be discussed in the next section. At this point, it is sufficient to note that these degrees of
covariation can be readily computed from the joint distribution P(x,y), using Egs. (1.16) and
(1.17). Moreover, both oy, and pyy vanish when X and Y are independent. Note that nonlinear
relationships between Y and X cannot naturally be captured by a simple numerical summary;
they require a full specification of the conditional probability P(Y = y|X = x).
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Study questions
Study question 1.3.6

(a) Prove that, in general, both oyy and pyy vanish when X and Y are independent. [Hint:
Use Egs. (1.16) and (1.17).]

(b) Give an example of two variables that are highly dependent and, yet, their correlation
coefficient vanishes.

Study question 1.3.7

Two fair coins are flipped simultaneously to determine the payoffs of two players in the town’s
casino. Player 1 wins a dollar if and only if at least one coin lands on head. Player 2 receives
a dollar if and only if the two coins land on the same face. Let X stand for the payoff of Player
1 and Y for the payoff of Player 2.

(a) Find and describe the probability distributions
P(x), P(y), P(x, y), P(y|x) and P(x|y)
(b) Using the descriptions in (a), compute the following measures:

E[X], E[Y], E[Y|X = x], E[X|Y = y]
Var(X), Var(Y), Cov(X,Y), pxy

(c) Given that Player 2 won a dollar, what is your best guess of Player 1’s payoff?
(d) Given that Player 1 won a dollar, what is your best guess of Player 2’s payoff?
(e) Are there two events, X = x and Y =y, that are mutually independent?

Study question 1.3.8

Compute the following theoretical measures of the outcome of a single game of craps (one roll
of two independent dice), where X stands for the outcome of Die 1, Z for the outcome of Die 2,
and Y for their sum.

(a)
E[X],E[Y],E[Y|X = x|, E[X|Y = y], for each value of x and y, and
Var(X), Var(Y), Cov(X,Y), pxy, Cov(X,Z)

Table 1.6 describes the outcomes of 12 craps games.

(b) Find the sample estimates of the measures computed in (a), based on the data from
Table 1.6. [Hint: Many software packages are available for doing this computation for
you.]

(c) Use the results in (a) to determine the best estimate of the sum, Y, given that we measured
X =3
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Table 1.6 Results of 12 rolls of two fair dice

X Z Y
Die 1 Die 2 Sum

Roll 1 6 3 9
Roll 2 3 4 7
Roll 3 4 6 10
Roll 4 6 2 8
Roll 5 6 4 10
Roll 6 5 3 8
Roll 7 1 5 6
Roll 8 3 5 8
Roll 9 6 5 11
Roll 10 3 5 8
Roll 11 5 3 8
Roll 12 4 5 9

(d) What is the best estimate of X, given that we measured Y = 4?
(e) What is the best estimate of X, given that we measured Y = 4 and Z = 1? Explain why it
is not the same as in (d).

1.3.10 Regression

Often, in statistics, we wish to predict the value of one variable, Y, based on the value of
another variable, X. For example, we may want to predict a student’s height based on his
age. We noted earlier that the best prediction of Y based on X is given by the conditional
expectation E[Y|X = x], at least in terms of mean-squared error. But this assumes that we
know the conditional expectation, or can compute it, from the joint distribution P(y, x). With
regression, we make our prediction directly from the data. We try to find a formula, usually a
linear function, that takes observed values of X as input and gives values of Y as output, such
that the square error between the predicted and actual values of Y is minimized, on average.

We start with a scatter plot that takes every case in our data set and charts them on a coor-
dinate plane, as shown in Figure 1.2. Our predictor, or input, variable goes on the x-axis, and
the variable whose value we are predicting goes on the y-axis.

The least squares regression line is the line for which the sum of the squared vertical dis-
tances of the points on the scatter plot from the line is minimized. That is, if there are n data
points (x, y) on our scatter plot, and for any data point (x;, y;), the value y; represents the value
of the line y = & + fx at x;, then the least squares regression line is the one that minimizes the
value

Z(y,.—y;)2 = Z(yi—a—ﬂxl-)z (1.18)

To see how the slope f relates to the probability distribution P(x,y), suppose we play 12
successive rounds of craps, and get the results shown in Table 1.6. If we wanted to predict
the sum Y of the die rolls based on the value of X = Die 1 alone, using the data in Table 1.6,
we would use the scatter plot shown in Figure 1.3. For our craps example, the least squares
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Figure 1.3  Scatter plot of the results in Table 1.6, with the value of Die 1 on the x-axis and the sum of
the two dice rolls on the y-axis
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Figure 1.4 Scatter plot of the results in Table 1.6, with the value of Die 1 on the x-axis and the sum of
the two dice rolls on the y-axis. The dotted line represents the line of best fit based on the data. The solid
line represents the line of best fit we would expect in the population

regression line is shown in Figure 1.4. Note that the regression line for the sample that we
used is not necessarily the same as the regression line for the population. The population is
what we get when we allow our sample size to increase to infinity. The solid line in Figure 1.4
represents the theoretical least-square line, which is given by

y=3.5+1.0x (1.19)

The dashed line represents the sample least-square line, which, due to sampling variations,
differs from the theoretical both in slope and in intercept.

In Figure 1.4, we know the equation of the regression line for the population because we
know the expected value of the sum of two dice rolls, given that the first die lands on x. The
computation is simple:

E[Y|X =x] = E[Die2+ X|X =x] = E[Die 2] + x=3.5+ 1.0x
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This result is not surprising, since Y (the sum of the two dice) can be written as
Y=X+Z

where Z is the outcome of Die 2, and it stands to reason that if X increases by one unit, say
from X = 3 to X = 4, then E[Y] will, likewise, increase by one unit. The reader might be a bit
surprised, however, to find out that the reverse is not the case; the regression of X on Y does
not have a slope of 1.0. To see why, we write

E[X|Y =y] = E[Y - Z|Y = y] = 1.0y — E[Z|Y = y] (1.20)

and realize that the added term, E[Z|Y = y], since it depends (linearly) on y, makes the slope
less than unity. We can in fact compute the exact value of E[X|Y = y] by appealing to symmetry
and write

E[X|Y =y] = E[Z|Y =]
which gives, after substituting in Eq. (1.20),
E[X|Y =y] =0.5y

The reason for this reduction is that, when we increase Y by one unit, each of X and Z con-
tributes equally to this increase on average. This matches intuition; observing that the sum of
the two dice is Y = 10, our best estimate of eachis X = 5and Z = 5.

In general, if we write the regression equation for ¥ on X as

y=a+bx (1.21)

the slope b is denoted by Ryy, and it can be written in terms of the covariate oy as follows:
(o3
b=Ryy = % (1.22)
X
From this equation, we see clearly that the slope of ¥ on X may differ from the slope
of X on Y—that is, in most cases, Ryy # Ryy. (Ryy = Ryy only when the variance of X is
equal to the variance of Y.) The slope of the regression line can be positive, negative, or zero.
If it is positive, X and Y are said to have a positive correlation, meaning that as the value of
X gets higher, the value of Y gets higher; if it is negative, X and Y are said to have a negative
correlation, meaning that as the value of X gets higher, the value of Y gets lower; if it is zero
(a horizontal line), X and Y have no linear correlation, and knowing the value of X does not
assist us in predicting the value of Y, at least linearly. If two variables are correlated, whether
positively or negatively (or in some other way), they are dependent.

1.3.11 Multiple Regression

It is also possible to regress a variable on several variables, using multiple linear regression.
For instance, if we wanted to predict the value of a variable Y using the values of the variables
X and Z, we could perform multiple linear regression of Y on {X, Z}, and estimate a regression
relationship

y=ry+rx+rnz (1.23)
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which represents an inclined plane through the three-dimensional coordinate system.

We can create a three-dimensional scatter plot, with values of Y on the y-axis, X on the
x-axis, and Z on the z-axis. Then, we can cut the scatter plot into slices along the Z-axis. Each
slice will constitute a two-dimensional scatter plot of the kind shown in Figure 1.4. Each of
those 2-D scatter plots will have a regression line with a slope ry. Slicing along the X-axis will
give the slope r,.

The slope of ¥ on X when we hold Z constant is called the partial regression coefficient and
is denoted by Ryy.,. Note that it is possible for Ryy to be positive, whereas Ryy.,, is negative
as shown in Figure 1.1. This is a manifestation of Simpson’s Paradox: positive association
between Y and X overall, that becomes negative when we condition on the third variable Z.

The computation of partial regression coefficients (e.g., r; and r, in (1.23)) is greatly facil-
itated by a theorem that is one of the most fundamental results in regression analysis. It states
that if we write Y as a linear combination of variables X, X,, ... , X, plus a noise term ¢,

Y=r0+r1X1+r2X2+"'+rka+€ (124)

then, regardless of the underlying distribution of ¥, X, X,, ... , X}, the best least-square coef-
ficients are obtained when € is uncorrelated with each of the regressors X, X,, ... , X;. That s,

Cov(e,X;))=0 for i=1.2,...,k

To see how this orthogonality principle is used to our advantage, assume we wish to compute
the best estimate of X = Die I given the sum

Y = Die I + Die 2

Writing
X=a+pY+e (1.25a)

our goal is to find @ and f in terms of estimable statistical measures. Assuming without loss
of generality E[e] = 0, and taking expectation on both sides of the equation, we obtain

E[X] = a+ PE[Y] (1.25b)
Further multiplying both sides of (1.25a) by Y and taking the expectation gives
E[XY] = aE[Y] + PE[Y?] + E[Ye] (1.26)

The orthogonality principle dictates E[Ye] = 0, and (1.25b) and (1.26) yield two equations
with two unknowns, a and f. Solving for @ and f, we obtain

a=EX) - E(Y)U—XZY
Oy
= Oxy

2
Oy

which completes the derivation. The slope f could have been obtained from Eq. (1.22), by sim-
ply reversing X and Y, but the derivation above demonstrates a general method of computing
slopes, in two or more dimensions.
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Consider for example the problem of finding the best estimate of Z given two observations,
X =xand Y =y. As before, we write the regression equation

But now, to obtain three equations for a, fy, and fy, we also multiply both sides by ¥ and X
and take expectations. Imposing the orthogonality conditions E[eY] = E[eX] = 0 and solving
the resulting equations gives

2
0x0zy — OzxOxy
By =Rzyx = R 3 2 (1.27)

OyOx ~ Oyx

2
0yOzx — OzyOyx
Px =Rzx.y = R 2 5 2 (1.28)

Oy%x ~ Oyx

Equations (1.27) and (1.28) are generic; they give the linear regression coefficients R,y
and R,y.y for any three variables in terms of their variances and covariances, and as such, they
allow us to see how sensitive these slopes are to other model parameters. In practice, however,
regression slopes are estimated from sampled data by efficient “least-square” algorithms, and
rarely require memorization of mathematical equations. An exception is the task of predicting
whether any of these slopes is zero, prior to obtaining any data. Such predictions are impor-
tant when we contemplate choosing a set of regressors for one purpose or another, and as we
shall see in Section 3.8, this task will be handled quite efficiently through the use of causal
graphs.

Study question 1.3.9

(a) Prove Eq. (1.22) using the orthogonality principle. [Hint: Follow the treatment of
Egq. (1.26).]

(b) Find all partial regression coefficients

Ryx.z: Rxy.z: Ryz.x- Rzy.x: Rxz.y, and Rzx.y

for the craps game described in Study question 1.3.8. [Hint: Apply Eq. (1.27) and use the
variances and covariances computed for part (a) of Study question 1.3.8.]

1.4 Graphs

We learned from Simpson’s Paradox that certain decisions cannot be made on the basis of
data alone, but instead depend on the story behind the data. In this section, we layout a math-
ematical language, graph theory, in which these stories can be conveyed. Graph theory is not
generally taught in high school mathematics, but it provides a useful mathematical language
that allows us to address problems of causality with simple operations similar to those used to
solve arithmetic problems.

Although the word graph is used colloquially to refer to a whole range of visual aids—more
or less interchangeably with the word chart—in mathematics, a graph is a formally defined



Preliminaries: Statistical and Causal Models 25

object. A mathematical graph is a collection of vertices (or, as we will call them, nodes) and
edges. The nodes in a graph are connected (or not) by the edges. Figure 1.5 illustrates a simple
graph. X, Y, and Z (the dots) are nodes, and A and B (the lines) are edges.

X Y Zz

Figure 1.5 An undirected graph in which nodes X and Y are adjacent and nodes Y and Z are adjacent
but not X and Z

Two nodes are adjacent if there is an edge between them. In Figure 1.5, X and Y are adjacent,
and Y and Z are adjacent. A graph is said to be a complete graph if there is an edge between
every pair of nodes in the graph.

A path between two nodes X and Y is a sequence of nodes beginning with X and ending
with Y, in which each node is connected to the next by an edge. For instance, in Figure 1.5,
there is a path from X to Z, because X is connected to Y, and Y is connected to Z.

Edges in a graph can be directed or undirected. Both of the edges in Figure 1.5 are
undirected, because they have no designated “in” and “out” ends. A directed edge, on the
other hand, goes out of one node and into another, with the direction indicated by an arrow
head. A graph in which all of the edges are directed is a directed graph. Figure 1.6 illustrates
a directed graph. In Figure 1.6, A is a directed edge from X to Y and B is a directed edge from
YtoZ.

X Y zZ

Figure 1.6 A directed graph in which node X is a parent of ¥ and Y is a parent of Z

The node that a directed edge starts from is called the parent of the node that the edge goes
into; conversely, the node that the edge goes into is the child of the node it comes from. In
Figure 1.6, X is the parent of Y, and Y is the parent of Z; accordingly, Y is the child of X,
and Z is the child of Y. A path between two nodes is a directed path if it can be traced along
the arrows, that is, if no node on the path has two edges on the path directed into it, or two
edges directed out of it. If two nodes are connected by a directed path, then the first node is the
ancestor of every node on the path, and every node on the path is the descendant of the first
node. (Think of this as an analogy to parent nodes and child nodes: parents are the ancestors of
their children, and of their children’s children, and of their children’s children’s children, etc.)
For instance, in Figure 1.6, X is the ancestor of both Y and Z, and both Y and Z are descendants
of X.

When a directed path exists from a node to itself, the path (and graph) is called cyclic. A
directed graph with no cycles is acyclic. For example, in Figure 1.7(a) the graph is acyclic;
however, the graph in Figure 1.7(b) is cyclic. Note that in 1.7(a) there is no directed path from
any node to itself, whereas in 1.7(b) there are directed paths from X back to X, for example.
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Y zZ Y z
() (b)

Figure 1.7 (a) Showing acyclic graph and (b) cyclic graph

Study questions

Study question 1.4.1
Consider the graph shown in Figure 1.8:

T

Figure 1.8 A directed graph used in Study question 1.4.1

(a) Name all of the parents of Z.

(b) Name all the ancestors of Z.

(c¢) Name all the children of W.

(d) Name all the descendants of W.

(e) Draw all (simple) paths between X and T (i.e., no node should appear more than once).
(f) Draw all the directed paths between X and T.

1.5 Structural Causal Models
1.5.1 Modeling Causal Assumptions

In order to deal rigorously with questions of causality, we must have a way of formally setting
down our assumptions about the causal story behind a data set. To do so, we introduce the
concept of the structural causal model, or SCM, which is a way of describing the relevant
features of the world and how they interact with each other. Specifically, a structural causal
model describes how nature assigns values to variables of interest.

Formally, a structural causal model consists of two sets of variables U and V, and a set of
functions f that assigns each variable in V a value based on the values of the other variables
in the model. Here, as promised, we expand on our definition of causation: A variable X is a
direct cause of a variable Y if X appears in the function that assigns Y’s value. X is a cause of
Y if it is a direct cause of Y, or of any cause of Y.



Preliminaries: Statistical and Causal Models 27

The variables in U are called exogenous variables, meaning, roughly, that they are external to
the model; we choose, for whatever reason, not to explain how they are caused. The variables
in V are endogenous. Every endogenous variable in a model is a descendant of at least one
exogenous variable. Exogenous variables cannot be descendants of any other variables, and in
particular, cannot be a descendant of an endogenous variable; they have no ancestors and are
represented as root nodes in graphs. If we know the value of every exogenous variable, then
using the functions in f, we can determine with perfect certainty the value of every endogenous
variable.

For example, suppose we are interested in studying the causal relationships between a treat-
ment X and lung function Y for individuals who suffer from asthma. We might assume that ¥
also depends on, or is “caused by,” air pollution levels as captured by a variable Z. In this case,
we would refer to X and Y as endogenous and Z as exogenous. This is because we assume
that air pollution is an external factor, that is, it cannot be caused by an individual’s selected
treatment or their lung function.

Every SCM is associated with a graphical causal model, referred to informally as a “graph-
ical model” or simply “graph.” Graphical models consist of a set of nodes representing the
variables in U and V, and a set of edges between the nodes representing the functions in f. The
graphical model G for an SCM M contains one node for each variable in M. If, in M, the func-
tion fy for a variable X contains within it the variable Y (i.e., if X depends on Y for its value),
then, in G, there will be a directed edge from Y to X. We will deal primarily with SCMs for
which the graphical models are directed acyclic graphs (DAGs). Because of the relationship
between SCMs and graphical models, we can give a graphical definition of causation: If, in a
graphical model, a variable X is the child of another variable Y, then Y is a direct cause of X;
if X is a descendant of Y, then Y is a potential cause of X (there are rare intransitive cases in
which Y will not be a cause of X, which we will discuss in Part Two).

In this way, causal models and graphs encode causal assumptions. For instance, consider
the following simple SCM:

SCM 1.5.1 (Salary Based on Education and Experience)
U={X7Y}’ V={Z}7 F={fZ}
f7 1 Z=2X+3Y

This model represents the salary (Z) that an employer pays an individual with X years of
schooling and Y years in the profession. X and Y both appear in f,, so X and Y are both direct
causes of Z. If X and Y had any ancestors, those ancestors would be potential causes of Z.

The graphical model associated with SCM 1.5.1 is illustrated in Figure 1.9.

X Y

V4

Figure 1.9 The graphical model of SCM 1.5.1, with X indicating years of schooling, Y indicating years
of employment, and Z indicating salary
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Because there are edges connecting Z to X and Y, we can conclude just by looking at the
graphical model that there is some function f, in the model that assigns Z a value based on X
and Y, and therefore that X and Y are causes of Z. However, without the fuller specification of
an SCM, we can’t tell from the graph what the function is that defines Z—or, in other words,
how X and Y cause Z.

If graphical models contain less information than SCMs, why do we use them at all? There
are several reasons. First, usually the knowledge that we have about causal relationships is not
quantitative, as demanded by an SCM, but qualitative, as represented in a graphical model.
We know off-hand that sex is a cause of height and that height is a cause of performance in
basketball, but we would hesitate to give numerical values to these relationships. We could,
instead of drawing a graph, simply create a partially specified version of the SCM:

SCM 1.5.2 (Basketball Performance Based on Height and Sex)
V = {Height, Sex, Performance}, U ={U,;,U,,U;}, F ={f1, f2}
Sex = U,
Height = f|(Sex, U,)
Performance = f,(Height, Sex, Us)

Here, U = {U,, U,, U5} represents unmeasured factors that we do not care to name, but that
affect the variables in V that we can measure. The U factors are sometimes called “error terms”
or “omitted factors.” These represent additional unknown and/or random exogenous causes of
what we observe.

But graphical models provide a more intuitive understanding of causality than do such par-
tially specified SCMs. Consider the SCM and its associated graphical model introduced above;
while the SCM and its graphical model contain the same information, that is, that X causes
Z and Y causes Z, that information is more quickly and easily ascertained by looking at the
graphical model.

Study questions
Study question 1.5.1

Suppose we have the following SCM. Assume all exogenous variables are independent and
that the expected value of each is 0.

SCM 1.5.3

V={X7Y72}’ U={UX’UY’UZ}’ F={.fX’fY’fZ}

Jx 1 X=Uy

Y
Z=—+U
Iz 16+ z
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(a) Draw the graph that complies with the model.

(b) Determine the best guess of the value (expected value) of Z, given that we observe Y = 3.
(c) Determine the best guess of the value of Z, given that we observe X = 3.

(d) Determine the best guess of the value of Z, given that we observe X = 1 and Y = 3.

(e) Assume that all exogenous variables are normally distributed with zero means and unit

variance, that is, o = 1.

(i) Determine the best guess of X, given that we observed Y = 2.

(ii) (Advanced) Determine the best guess of Y, given that we observed X = 1 and Z = 3.
[Hint: You may wish to use the technique of multiple regression, together with the
fact that, for every three normally distributed variables, say X, Y, and Z, we have
ElY|X =x,Z =z] = Ryy.zx + Ry, x2.]

1.5.2  Product Decomposition

Another advantage of graphical models is that they allow us to express joint distributions very
efficiently. So far, we have presented joint distributions in two ways. First, we have used tables,
in which we assigned a probability to every possible combination of values. This is intuitively
easy to parse, but in models with many variables, it can take up a prohibitive amount of space;
10 binary variables would require a table with 1024 rows!

Second, in a fully specified SCM, we can represent the joint distributions of n variables
with greater efficiency: We need only to specify the n functions that govern the relationships
between the variables, and then from the probabilities of the error terms, we can discover all
the probabilities that govern the joint distribution. But we are not always in a position to fully
specify a model; we may know that one variable is a cause of another but not the form of the
equation relating them, or we may not know the distributions of the error terms. Even if we
know these objects, writing them down may be easier said than done, especially when the
variables are discrete and the functions do not have familiar algebraic expressions.

Fortunately, we can use graphical models to help overcome both of these barriers through
the following rule.

Rule of product decomposition

For any model whose graph is acyclic, the joint distribution of the variables in the model is
given by the product of the conditional distributions P(child|parents) over all the “families” in
the graph. Formally, we write this rule as

P(x), %, ... ox,) = [ [ Pxlpay) (1.29)

where pa; stands for the values of the parents of variable X;, and the product []; runs over all
i, from 1 to n. The relationship (1.29) follows from certain universally true independencies
among the variables, which will be discussed in the next chapter in more detail.

For example, in a simple chain graph X — Y — Z, we can write directly:

PX=x,Y=y,Z=2)=PX=x)P(Y =y|X=x)P(Z=z|Y =Y)
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This knowledge allows us to save an enormous amount of space when laying out a joint
distribution. We need not create a probability table that lists a value for every possible triple
(x,y,2). It will suffice to create three much smaller tables for X, (Y|X), and (Z|Y), and multiply
the values as necessary.

To estimate the joint distribution from a data set generated by the above model, we need
not count the frequency of every triple; we can instead count the frequencies of each x, (y|x),
and (z|y) and multiply. This saves us a great deal of processing time in large models. It
also increases substantially the accuracy of frequency counting. Thus, the assumptions
underlying the graph allow us to exchange a “high-dimensional” estimation problem for a
few “low-dimensional” probability distribution challenges. The graph therefore simplifies an
estimation problem and, simultaneously, provides more precise estimators. If we do not know
the graphical structure of an SCM, estimation becomes impossible with large number of
variables and small, or moderately sized, data sets—the so-called “curse of dimensionality.”

Graphical models let us do all of this without always needing to know the functions relating
the variables, their parameters, or the distributions of their error terms.

Here’s an evocative, if unrigorous, demonstration of the time and space saved by this
strategy: Consider the chain X - Y - Z — W, where X stands for clouds/no clouds, Y
stands for rain/no rain, Z stands for wet pavement/dry pavement, and W stands for slippery
pavement/unslippery pavement.

Using your own judgment, based on your experience of the world, how plausible is it that
P(clouds, no-rain, dry pavement, slippery pavement) = 0.23?

This is quite a difficult question to answer straight out. But using the product rule, we can
break it into pieces:

P(clouds)P(no rain|clouds)P(dry pavement|no rain)P(slippery pavement|dry pavement)

Our general sense of the world tells us that P(clouds) should be relatively high, perhaps
0.5 (lower, of course, for those of us living in the strange, weatherless city of Los Angeles).
Similarly, P(no rain|clouds) is fairly high—say, 0.75. And P(dry pavement|no rain) would
be higher still, perhaps 0.9. But the P(slippery pavement|dry pavement) should be quite low,
somewhere in the range of 0.05. So putting it all together, we come to a ballpark estimate of
0.5%0.75 % 0.9 x0.05 = 0.0169.

We will use this product rule often in this book in cases when we need to reason with numer-
ical probabilities, but wish to avoid writing out large probability tables.

The importance of the product decomposition rule can be particularly appreciated when
we deal with estimation. In fact, much of the role of statistics focuses on effective sampling
designs, and estimation strategies, that allow us to exploit an appropriate data set to estimate
probabilities as precisely as we might need. Consider again the problem of estimating the
probability P(X, Y,Z, W) for the chain X — Y — Z — W. This time, however, we attempt to
estimate the probability from data, rather than our own judgment. The number of (x,y, z, w)
combinations that need to be assigned probabilities is 16 — 1 = 15. Assume that we have 45
random observations, each consisting of a vector (x,y, z, w). On the average, each (x,y,z,w)
cell would receive about three samples; some will receive one or two samples, and some
remain empty. It is very unlikely that we would obtain a sufficient number of samples in each
cell to assess the proportion in the population at large (i.e., when the sample size goes to
infinity).
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If we use our product decomposition rule, however, the 45 samples are separated
into much larger categories. In order to determine P(x), every (x,y,z,w) sample falls
into one of only two cells: (X=1) and (X =0). Clearly, the probability of leaving
either of them empty is much lower, and the accuracy of estimating population frequen-
cies is much higher. The same is true of the divisions we need to make to determine
Polx) : Y=1,X=1,Y=0,X=1),¥Y=1,X=0), and (Y =0,X =0). And to deter-
mine P(zly) : (Y =1,Z=1),Y=0,Z=1),(Yy=1,Z=0), and (Y =0,Z=0). And to
determine P(wlz) : W=1,Z=1),(W=0,Z=1),(W=1,Z=0), and (W=0,Z=0).
Each of these divisions will give us much more accurate frequencies than our original division
into 15 cells. Here we explicitly see the simpler estimation problems allowed by assuming
the graphical structure of an SCM and the resulting improved accuracy of our frequency
estimates.

This is not the only use to which we can put the qualitative knowledge that a graph provides.
As we will see in the next section, graphical models reveal much more information than is
obvious at first glance; we can learn a lot about, and infer a lot from, a data set using only the
graphical model of its causal story.

Study questions
Study question 1.5.2

Assume that a population of patients contains a fraction r of individuals who suffer from
a certain fatal syndrome Z, which simultaneously makes it uncomfortable for them to take
a life-prolonging drug X (Figure 1.10). Let Z = z; and Z = z;, represent, respectively, the
presence and absence of the syndrome, Y =y, and Y =Yy, represent death and survival,
respectively, and X = x; and X = x, represent taking and not taking the drug. Assume that
patients not carrying the syndrome, Z = z,, die with probability p, if they take the drug
and with probability p, if they don’t. Patients carrying the syndrome, Z = z,, on the other
hand, die with probability p; if they do not take the drug and with probability p, if they do
take the drug. Further, patients having the syndrome are more likely to avoid the drug, with
probabilities g, = P(x,1zy) and q, = P(x; |z;).

(a) Based on this model, compute the joint distributions P(x,y, z), P(x,y), P(x, z), and P(y, z)
Sfor all values of x,y, and z, in terms of the parameters (r,py, P2, D3, P4, 41> 42)- [Hint: Use
the product decomposition of Section 1.5.2.]

(b) Calculate the difference P(y,|x;) — P(y,|x,) for three populations: (1) those carrying the
syndrome, (2) those not carrying the syndrome, and (3) the population as a whole.

Z (Syndrome)

(Treatment) X Y (Outcome)

Figure 1.10 Model showing an unobserved syndrome, Z, affecting both treatment (X) and outcome (Y)
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(c) Using your results for (b), find a combination of parameters that exhibits Simpson’s
reversal.

Study question 1.5.3

Consider a graph X, — X, — X3 — X, of binary random variables, and assume that the con-
ditional probabilities between any two consecutive variables are given by

PX,=1|X,_,,=D=p
PX,=1X;_,,=0)=¢
PX;=1)=py
Compute the following probabilities
PX,=1,X=0X;=1,X,=0)
PX,=1|X,=1)
PX, =11X,=1)

Study question 1.5.4

Define the structural model that corresponds to the Monty Hall problem, and use it to describe
the joint distribution of all variables.

Bibliographical Notes for Chapter 1

An extensive account of the history of Simpson’s paradox is given in Pearl (2009,
pp. 174-182), including many attempts by statisticians to resolve it without invoking
causation. A more recent account, geared for statistics instructors is given in (Pearl 2014b).
Among the many texts that provide basic introductions to probability theory, Lindley (2014)
and Pearl (1988, Chapters 1 and 2) are the closest in spirit to the Bayesian perspective used
in Chapter 1. The textbooks by Selvin (2004) and Moore et al. (2014) provide excellent
introductions to classical methods of statistics, including parameter estimation, hypothesis
testing and regression analysis.

The Monty Hall problem, discussed in Section 1.3, appears in many introductory books
on probability theory (e.g., Grinstead and Snell 1998, p. 136; Lindley 2014, p. 201) and
is mathematically equivalent to the “Three Prisoners Dilemma” discussed in (Pearl 1988,
pp. 58-62). Friendly introductions to graphical models are given in Elwert (2013), Glymour
and Greenland (2008), and the more advanced texts of Pearl (1988, Chapter 3), Lauritzen
(1996) and Koller and Friedman (2009). The product decomposition rule of Section 1.5.2
was used in Howard and Matheson (1981) and Kiiveri et al. (1984) and became the semantic



Preliminaries: Statistical and Causal Models 33

basis of Bayesian Networks (Pearl 1985)—directed acyclic graphs that represent probabilistic
knowledge, not necessarily causal. For inference and applications of Bayesian networks, see
Darwiche (2009) and Fenton and Neil (2013), and Conrady and Jouffe (2015). The validity
of the product decomposition rule for structural causal models was shown in Pearl and Verma
(1991).






2

Graphical Models and Their
Applications

2.1 Connecting Models to Data

In Chapter 1, we treated probabilities, graphs, and structural equations as isolated mathematical
objects with little to connect them. But the three are, in fact, closely linked. In this chapter, we
show that the concept of independence, which in the language of probability is defined by alge-
braic equalities, can be expressed visually using directed acyclic graphs (DAGs). Further, this
graphical representation will allow us to capture the probabilistic information that is embedded
in a structural equation model.

The net result is that a researcher who has scientific knowledge in the form of a structural
equation model is able to predict patterns of independencies in the data, based solely on the
structure of the model’s graph, without relying on any quantitative information carried by the
equations or by the distributions of the errors. Conversely, it means that observing patterns of
independencies in the data enables us to say something about whether a hypothesized model
is correct. Ultimately, as we will see in Chapter 3, the structure of the graph, when combined
with data, will enable us to predict quantitatively the results of interventions without actually
performing them.

2.2 Chains and Forks

We have so far referred to causal models as representations of the “causal story” underlying
data. Another way to think of this is that causal models represent the mechanism by which data
were generated. Causal models are a sort of blueprint of the relevant part of the universe, and we
can use them to simulate data from this universe. Given a truly complete causal model for, say,
math test scores in high school juniors, and given a complete list of values for every exogenous
variable in that model, we could theoretically generate a data point (i.e., a test score) for any
individual. Of course, this would necessitate specifying all factors that may have an effect on a
student’s test score, an unrealistic task. In most cases, we will not have such precise knowledge
about a model. We might instead have a probability distribution characterizing the exogenous

Causal Inference in Statistics: A Primer, First Edition. Judea Pearl, Madelyn Glymour, and Nicholas P. Jewell.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
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variables, which would allow us to generate a distribution of test scores approximating that of
the entire student population and relevant subgroups of students.

Suppose, however, that we do not have even a probabilistically specified causal model, but
only a graphical structure of the model. We know which variables are caused by which other
variables, but we don’t know the strength or nature of the relationships. Even with such lim-
ited information, we can discern a great deal about the data set generated by the model. From
an unspecified graphical causal model—that is, one in which we know which variables are
functions of which others, but not the specific nature of the functions that connect them—we
can learn which variables in the data set are independent of each other and which are indepen-
dent of each other conditional on other variables. These independencies will be true of every
data set generated by a causal model with that graphical structure, regardless of the specific
functions attached to the SCM.

Consider, for instance, the following three hypothetical SCMs, all of which share the same
graphical model. The first SCM represents the causal relationships among a high school’s
funding in dollars (X)), its average SAT score (Y), and its college acceptance rate (Z) for a given
year. The second SCM represents the causal relationships among the state of a light switch (X),
the state of an associated electrical circuit (Y), and the state of a light bulb (Z). The third SCM
concerns the participants in a foot race. It represents causal relationships among the hours that
participants work at their jobs each week (X), the hours the participants put into training each
week (Y), and the completion time, in minutes, the participants achieve in the race (Z). In
all three models, the exogenous variables (Uy, Uy, U,) stand in for any unknown or random
effects that may alter the relationship between the endogenous variables. Specifically, in SCMs
2.2.1and 2.2.3, Uy and U, are additive factors that account for variations among individuals.
In SCM 2.2.2, Uy and U, take the value 1 if there is some unobserved abnormality, and O if
there is none.

SCM 2.2.1 (School Funding, SAT Scores, and College Acceptance)
V = {X, Y3Z}’ U = {UX1 UY3 UZ},F = {szfY’fZ}
Jx 1 X=Uy
fy . Y = ;—C + UY

y
1 Z=—+U
Iz 16T Yz

SCM 2.2.2 (Switch, Circuit, and Light Bulb)
V = {X7 Y’Z}7 U = {UX7 UY’ UZ}7F = {fX?fY’fZ}
Jx X =Uy

fiye {ClosedIF(X:UpAND Uy = 0) OR (X = Down AND Uy = 1)
y - I =

Open otherwise

£ 7= On IF (Y = Closed AND U, = 0) OR (Y = Open AND U, = 1)
2777\ Off otherwise
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SCM 2.2.3 (Work Hours, Training, and Race Time)

V={X,Y,Z},U={Uy, Uy, U}, F = {fx.fy.f7}

Jx X =Uy
fy Y=84—x+U,
100

fZ:Z=T+UZ

SCMs 2.2.1-2.2.3 share the graphical model shown in Figure 2.1.

SCMs 2.2.1 and 2.2.3 deal with continuous variables; SCM 2.2.2 deals with categorical
variables. The relationships between the variables in 2.2.1 are all positive (i.e., the higher the
value of the parent variable, the higher the value of the child variable); the correlations between
the variables in 2.2.3 are all negative (i.e., the higher the value of the parent variable, the lower
the value of the child variable); the correlations between the variables in 2.2.2 are not linear at
all, but logical. No two of the SCMs share any functions in common. But because they share
a common graphical structure, the data sets generated by all three SCMs must share certain
independencies—and we can predict those independencies simply by examining the graphical
model in Figure 2.1. The independencies shared by data sets generated by these three SCMs,
and the dependencies that are likely shared by all such SCMs, are these:

1. Z and Y are likely dependent
For some z,y, P(Z = z|Y = y) # P(Z = z)
2. Y and X are likely dependent
For some y,x, P(Y = y|X =x) # P(Y =)
3. Z and X are likely dependent
For some z,x, P(Z =z|X =x) #P(Z =72)
4. Z and X are independent, conditional on Y
Forall x,y,z,P(Z =z X =x,Y =y)=P(Z =z|]Y =)

To understand why these independencies and dependencies hold, let’s examine the graphical
model. First, we will verify that any two variables with an edge between them are likely depen-
dent. Remember that an arrow from one variable to another indicates that the first variable
causes the second—that is, the value of the first variable is part of the function that determines
the value of the second. Therefore, the second variable depends on the first for its value; there

Ux

4

Figure 2.1 The graphical model of SCMs 2.2.1-2.2.3
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is some case in which changing the value of the first variable changes the value of the second.
That makes it likely that when we examine those variables in the data set, the proba-
bility that one variable takes a given value will change, given that we know the value of the
other variable. So in a typical causal model, regardless of the specific functions, two variables
connected by an edge are dependent. By this reasoning, we can see that in SCMs 2.2.1-2.2.3,
Z and Y are likely dependent, and Y and X are likely dependent.!

From these two facts, we can conclude that Z and X are likely dependent. If Z depends on Y
for its value, and Y depends on X for its value, then Z likely depends on X for its value. There
are pathological cases in which this is not true. Consider, for example, the following SCM,
which also has the graph in Figure 2.1.

SCM 2.2.4 (Pathological Case of Intransitive Dependence)

V={X,Y,Z},U = {UX’ UYs Uz}sF= {fx»fy»fz}

Jx 1 X=Uy
a IFX=1ANDU, =1
fy:Y=3b IFX=2AND Uy, =1
c IFU, =2
foz=di IFY=cORU, =1
277\ IFU,=2

In this case, no matter what value Uy and U, take, X will have no effect on the value that
Z takes; changes in X account for variation in Y between a and b, but Y doesn’t affect Z unless
it takes the value c. Therefore, X and Z vary independently in this model. We will call cases
such as these intransitive cases.

However, intransitive cases form only a small number of the cases we will encounter. In
most cases, the values of X and Z vary together just as X and Y do, and Y and Z. Therefore,
they are likely dependent in the data set.

Now, let’s consider point 4: Z and X are independent conditional on Y. Remember that when
we condition on Y, we filter the data into groups based on the value of Y. So we compare all
the cases where Y = q, all the cases where Y = b, and so on. Let’s assume that we’re looking
at the cases where Y = a. We want to know whether, in these cases only, the value of Z is
independent of the value of X. Previously, we determined that X and Z are likely dependent,
because when the value of X changes, the value of Y likely changes, and when the value of Y
changes, the value of Z is likely to change. Now, however, examining only the cases where
Y = a, when we select cases with different values of X, the value of Uy changes so as to keep
Y atY = a, butsince Z depends only on Y and U, not on Uy, the value of Z remains unaltered.
So selecting a different value of X doesn’t change the value of Z. So, in the case where ¥ = q,
X is independent of Z. This is of course true no matter which specific value of ¥ we condition
on. So X is independent of Z, conditional on Y.

This configuration of variables—three nodes and two edges, with one edge directed into and
one edge directed out of the middle variable—is called a chain. Analogous reasoning to the
above tells us that in any graphical model, given any two variables X and Y, if the only path
between X and Y is composed entirely of chains, then X and Y are independent conditional

' This occurs for example when X and Uy are fair coins and Y =1 if and only X = Uy. In this case P(Y =1
[X=1)=P(Y =1|X=0)=PY =1)=1/2. Such pathological cases require precise numerical probabilities to
achieve independence (P(X = 1) = P(Uy) = 1/2); they are rare, and can be ignored for all practical purposes.

P
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on any intermediate variable on that path. This independence relation holds regardless of the
functions that connect the variables. This gives us a rule:

Rule 1 (Conditional Independence in Chains) Two variables, X and Y, are conditionally
independent given Z, if there is only one unidirectional path between X and Y and Z is any set
of variables that intercepts that path.

An important note: Rule 1 only holds when we assume that the error terms Uy, Uy, and U,
are independent of each other. If, for instance, Uy were a cause of Uy, then conditioning on
Y would not necessarily make X and Z independent—because variations in X could still be
associated with variations in Y, through their error terms.

Now, consider the graphical model in Figure 2.2. This structure might represent, for
example, the causal mechanism that connects a day’s temperature in a city in degrees
Fahrenheit (X), the number of sales at a local ice cream shop on that day (Y), and the number
of violent crimes in the city on that day (Z). Possible functional relationships between these
variables are given in SCM 2.2.5. Or the structure might represent, as in SCM 2.2.6, the causal
mechanism that connects the state (up or down) of a switch (X), the state (on or off) of one light
bulb (Y), and the state (on or off) of a second light bulb (Z). The exogenous variables Uy, Uy,
and U, represent other, possibly random, factors that influence the operation of these devices.

SCM 2.2.5 (Temperature, Ice Cream Sales, and Crime)
V={X,Y,Z},U ={Ux, Uy, Uy}, F = {fx.[y-/7}
Jx 1 X =Ux

x
ZL=—+U
Iz 10"‘ z

SCM 2.2.6 (Switch and Two Light Bulbs)

V = {X, Y’Z}aU: {UX3 UY’ UZ}9F: {.fXastfZ}
fx 1 X=Uy

Foiy= On IF (X = Up AND Uy =0) OR (X = Down AND Uy =1)
v ) Off otherwise

£ 7= OnIF (X =Up AND U, =0) OR (X =Down AND U, = 1)
z-= Off otherwise

Ux

\x

Uy Uz
z

Figure 2.2 The graphical model of SCMs 2.2.5 and 2.2.6

Y

P
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If we assume that the error terms Uy, Uy, and U, are independent, then by examining the
graphical model in Figure 2.2, we can determine that SCMs 2.2.5 and 2.2.6 share the following
dependencies and independencies:

1. X and Y are likely dependent.
For some x,y, P(X = x|Y =y) # P(X = x)
2. X and Z are likely dependent.
For some x,z, PX = x|Z =27) # P(X = Xx)
3. Zand'Y are likely dependent.
For some z,y,P(Z =z|Y =y) # P(Z =2)
4. Y and Z are independent, conditional on X.
Forallx,y,z,PY =y|Z=2z,X=x)=P(Y =y|X =x)

Points 1 and 2 follow, once again, from the fact that ¥ and Z are both directly connected
to X by an arrow, so when the value of X changes, the values of both Y and Z likely change.
This tells us something further, however: If Y changes when X changes, and Z changes when
X changes, then it is likely (though not certain) that ¥ changes together with Z, and vice versa.
Therefore, since a change in the value of Y gives us information about an associated change
in the value of Z, Y and Z are likely dependent variables.

Why, then, are Y and Z independent conditional on X? Well, what happens when we condi-
tion on X? We filter the data based on the value of X. So now, we’re only comparing cases where
the value of X is constant. Since X does not change, the values of ¥ and Z do not change in
accordance with it—they change only in response to Uy and U, which we have assumed to be
independent. Therefore, any additional changes in the values of ¥ and Z must be independent
of each other.

This configuration of variables—three nodes, with two arrows emanating from the middle
variable—is called a fork. The middle variable in a fork is the common cause of the other two
variables, and of any of their descendants. If two variables share a common cause, and if that
common cause is part of the only path between them, then analogous reasoning to the above
tells us that these dependencies and conditional independencies are true of those variables.
Therefore, we come by another rule:

Rule 2 (Conditional Independence in Forks) Ifavariable X is a common cause of variables
Y and Z, and there is only one path between Y and Z, then Y and Z are independent conditional
on X.

2.3 Colliders

So far we have looked at two simple configurations of edges and nodes that can occur on a path
between two variables: chains and forks. There is a third such configuration that we speak of
separately, because it carries with it unique considerations and challenges. The third config-
uration contains a collider node, and it occurs when one node receives edges from two other
nodes. The simplest graphical causal model containing a collider is illustrated in Figure 2.3,
representing a common effect, Z, of two causes X and Y.

As is the case with every graphical causal model, all SCMs that have Figure 2.3 as their
graph share a set of dependencies and independencies that we can determine from the graphical
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Figure 2.3 A simple collider

model alone. In the case of the model in Figure 2.3, assuming independence of Uy, Uy, and
U,, these independencies are as follows:

1. X and Z are likely dependent.
For some x,z, P(X = x|Z =2) # P(X = x)
2. Y and Z are likely dependent.
For some y,z, P(Y = y|Z=2) # P(Y =)
3. XandY are independent.
For all x,y,P(X = x|Y =y) = P(X = x)
4. X and Y are likely dependent conditional on Z.
For some x,y, 7, PX =x|Y =y, Z=2) # PX =x|Z=2)

The truth of the first two points was established in Section 2.2. Point 3 is self-evident; neither
X nor Y is a descendant or an ancestor of the other, nor do they depend for their value on the
same variable. They respond only to Uy and Uy, which are assumed independent, so there is no
causal mechanism by which variations in the value of X should be associated with variations
in the value of Y. This independence also reflects our understanding of how causation operates
in time; events that are independent in the present do not become dependent merely because
they may have common effects in the future.

Why, then, does point 4 hold? Why would two independent variables suddenly become
dependent when we condition on their common effect? To answer this question, we return
again to the definition of conditioning as filtering by the value of the conditioning variable.
When we condition on Z, we limit our comparisons to cases in which Z takes the same value.
But remember that Z depends, for its value, on X and Y. So, when comparing cases where
Z takes some value, any change in value of X must be compensated for by a change in the
value of Y—otherwise, the value of Z would change as well.

The reasoning behind this attribute of colliders—that conditioning on a collision node pro-
duces a dependence between the node’s parents—can be difficult to grasp at first. In the most
basic situation where Z = X + Y, and X and Y are independent variables, we have the follow-
ing logic: If I tell you that X = 3, you learn nothing about the potential value of Y, because
the two numbers are independent. On the other hand, if I start by telling you that Z = 10, then
telling you that X = 3 immediately tells you that ¥ must be 7. Thus, X and Y are dependent,
given that Z = 10.

This phenomenon can be further clarified through a real-life example. For instance, suppose
a certain college gives scholarships to two types of students: those with unusual musical talents
and those with extraordinary grade point averages. Ordinarily, musical talent and scholastic
achievement are independent traits, so, in the population at large, finding a person with musical
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talent tells us nothing about that person’s grades. However, discovering that a person is on a
scholarship changes things; knowing that the person lacks musical talent then tells us immedi-
ately that he is likely to have high grade point average. Thus, two variables that are marginally
independent become dependent upon learning the value of a third variable (scholarship) that
is a common effect of the first two.

Let’s examine a numerical example. Consider a simultaneous (independent) toss of two
fair coins and a bell that rings whenever at least one of the coins lands on heads. Let the
outcomes of the two coins be denoted X and Y, respectively, and let Z stand for the state of
the bell, with Z = 1 representing ringing, and Z = 0 representing silence. This mechanism can
be represented as a collider as in Figure 2.3, in which the outcomes of the two coins are the
parent nodes, and the state of the bell is the collision node.

If we know that Coin 1 landed on heads, it tells us nothing about the outcome of Coin 2, due
to their independence. But suppose that we hear the bell ring and then we learn that Coin 1
landed on tails. We now know that Coin 2 must have landed on heads. Similarly, if we assume
that we’ve heard the bell ring, the probability that Coin 1 landed on heads changes if we learn
that Coin 2 also landed on heads. This particular change in probability is somewhat subtler
than the first case.

To see the latter calculation, consider the initial probabilities as shown in Table 2.1.

We see that

P(X = “Heads”|Y = “Heads”) = P(X = “Tails”|Y = “Tails”) = %

That is, X and Y are independent. Now, let’s condition on Z = 1 and Z = 0 (the bell ringing
and not ringing). The resulting data subsets are shown in Table 2.2.
By calculating the probabilities in these tables, we obtain
12

1
P(X = “Heads”|Z=1)==-+-==
( eads” | ) 3t3=3

If we further filter the Z = 1 subtable to examine only those cases where Y = “Heads”, we get
P(X = “Heads”|Y = “Heads”, Z = 1) = %

We see that, given Z = 1, the probability of X = “Heads” changes from % to % upon learn-
ing that Y = “Heads.” So, clearly, X and Y are dependent given Z = 1. A more pronounced
dependence occurs, of course, when the bell does not ring (Z = 0), because then we know that
both coins must have landed on tails.

Table 2.1 Probability distribution for two flips of a fair coin, with X
representing flip one, Y representing flip two, and Z representing a bell
that rings if either flip results in heads

X Y V4 P(X,Y.,Z)
Heads Heads 1 0.25
Heads Tails 1 0.25
Tails Heads 1 0.25
Tails Tails 0 0.25
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Table 2.2 Conditional probability distributions for the distribution
in Table 2.1. (Top: Distribution conditional on Z = 1. Bottom:
Distribution conditional on Z = 0)

X Y PX,Y|Z=1)
Heads Heads 0.333
Heads Tails 0.333
Tails Heads 0.333
Tails Tails 0

X Y Pr(X,Y|Z = 0)
Heads Heads 0
Heads Tails 0

Tails Heads 0

Tails Tails 1

Another example of colliders in action—one that may serve to further illuminate the diffi-
culty that such configurations can present to statisticians—is the Monty Hall Problem, which
we first encountered in Section 1.3. At its heart, the Monty Hall Problem reflects the presence
of a collider. Your initial choice of door is one parent node; the door behind which the car is
placed is the other parent node; and the door Monty opens to reveal a goat is the collision node,
causally affected by both the other two variables. The causation here is clear: If you choose
Door A, and if Door A has a goat behind it, Monty is forced to open whichever of the remaining
doors that has a goat behind it.

Your initial choice and the location of the car are independent; that’s why you initially have
a L chance of choosing the door with the car behind it. However, as with the two independent
coins, conditional on Monty’s choice of door, your initial choice and the placement of the
prizes are dependent. Though the car may only be behind Door B in % of cases, it will be

behind Door B in 2 of cases in which you choose Door A and Monty opened Door C.

Just as conditioning on a collider makes previously independent variables dependent, so too
does conditioning on any descendant of a collider. To see why this is true, let’s return to our
example of two independent coins and a bell. Suppose we do not hear the bell directly, but
instead rely on a witness who is somewhat unreliable; whenever the bell does not ring, there
is 50% chance that our witness will falsely report that it did. Letting W stand for the witness’s
report, the causal structure is shown in Figure 2.4, and the probabilities for all combinations
of X, Y, and W are shown in Table 2.3.

The reader can easily verify that, based on this table, we have

P(X = “Heads”|Y = “Heads”) = P(X = “Heads”) = %

and
P(X = “Heads”|W = 1) = (0.25 4+ 0.25) + (0.25 4+ 0.25 + 0.25 + 0.125) = %
and
P(X = “Heads"|Y = “Heads", W = 1) = 025 + 025 +0.25) = 0.5 < 5 2>
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Figure 2.4 A simple collider, Z, with one child, W, representing the scenario from Table 2.3, with X
representing one coin flip, ¥ representing the second coin flip, Z representing a bell that rings if either X
or Y is heads, and W representing an unreliable witness who reports on whether or not the bell has rung

Table 2.3  Probability distribution for two flips of a fair coin and a bell
that rings if either flip results in heads, with X representing flip one,

Y representing flip two, and W representing a witness who, with variable
reliability, reports whether or not the bell has rung

X Y w PX,Y,W)
Heads Heads 1 0.25
Heads Tails 1 0.25
Tails Heads 1 0.25
Tails Tails 1 0.125
Tails Tails 0 0.125

Thus, X and Y are independent before reading the witness report, but become dependent
thereafter.

These considerations lead us to a third rule, in addition to the two we established in
Section 2.2.

Rule 3 (Conditional Independence in Colliders) If a variable Z is the collision node
between two variables X and Y, and there is only one path between X and Y, then X and Y are
unconditionally independent but are dependent conditional on Z and any descendants of Z.

Rule 3 is extremely important to the study of causality. In the coming chapters, we will see
that it allows us to test whether a causal model could have generated a data set, to discover
models from data, and to fully resolve Simpson’s Paradox by determining which variables to
measure and how to estimate causal effects under confounding.

Remark Inquisitive students may wonder why it is that dependencies associated with con-
ditioning on a collider are so surprising to most people—as in, for example, the Monty Hall
example. The reason is that humans tend to associate dependence with causation. Accordingly,
they assume (wrongly) that statistical dependence between two variables can only exist if there
is a causal mechanism that generates such dependence; that is, either one of the variables causes
the other or a third variable causes both. In the case of a collider, they are surprised to find a
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X—>R—>»S—»T<U=—V—>Y

Figure 2.5 A directed graph for demonstrating conditional independence (error terms are not shown
explicitly)

X—>R—>»S—>»T=U=—V—>Y

'

P

Figure 2.6 A directed graph in which P is a descendant of a collider

dependence that is created in a third way, thus violating the assumption of “no correlation
without causation.”

Study questions

Study question 2.3.1

(a) List all pairs of variables in Figure 2.5 that are independent conditional on the set
Z={R,V}.

(b) For each pair of nonadjacent variables in Figure 2.5, give a set of variables that, when
conditioned on, renders that pair independent.

(c) List all pairs of variables in Figure 2.6 that are independent conditional on the set
Z = {R, P}.

(d) For each pair of nonadjacent variables in Figure 2.6, give a set of variables that, when
conditioned on, renders that pair independent.

(e) Suppose we generate data by the model described in Figure 2.5, and we fit them with the
linear equation Y = a + bX + cZ. Which of the variables in the model may be chosen for Z
so as to guarantee that the slope b would be equal to zero? [Hint: Recall, a non zero slope
implies that Y and X are dependent given Z.]

(f) Continuing question (e), but now in reference to Figure 2.6, suppose we fit the data with
the equation:

Y=a+bX+cR+dS+eT+ [P

which of the coefficients would be zero?

2.4 d-separation

Causal models are generally not as simple as the cases we have examined so far. Specifically,
it is rare for a graphical model to consist of a single path between variables. In most graphical
models, pairs of variables will have multiple possible paths connecting them, and each path
will traverse a variety of chains, forks, and colliders. The question remains whether there is
a criterion or process that can be applied to a graphical causal model of any complexity in
order to predict dependencies that are shared by all data sets generated by that graph.
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There is, indeed, such a process: d-separation, which is built upon the rules established in
the previous section. d-separation (the d stands for “directional”) allows us to determine, for
any pair of nodes, whether the nodes are d-connected, meaning there exists a connecting path
between them, or d-separated, meaning there exists no such path. When we say that a pair of
nodes are d-separated, we mean that the variables they represent are definitely independent;
when we say that a pair of nodes are d-connected, we mean that they are possibly, or most
likely, dependent.?

Two nodes X and Y are d-separated if every path between them (should any exist) is blocked.
If even one path between X and Y is unblocked, X and Y are d-connected. The paths between
variables can be thought of as pipes, and dependence as the water that flows through them; if
even one pipe is unblocked, some water can pass from one place to another, and if a single path
is clear, the variables at either end will be dependent. However, a pipe need only be blocked
in one place to stop the flow of water through it, and similarly, it takes only one node to block
the passage of dependence in an entire path.

There are certain kinds of nodes that can block a path, depending on whether we are perform-
ing unconditional or conditional d-separation. If we are not conditioning on any variable, then
only colliders can block a path. The reasoning for this is fairly straightforward: as we saw in
Section 2.3, unconditional dependence can’t pass through a collider. So if every path between
two nodes X and Y has a collider in it, then X and Y cannot be unconditionally dependent; they
must be marginally independent.

If, however, we are conditioning on a set of nodes Z, then the following kinds of nodes can
block a path:

e A collider that is not conditioned on (i.e., not in Z), and that has no descendants in Z.
e A chain or fork whose middle node is in Z.

The reasoning behind these points goes back to what we learned in Sections 2.2 and 2.3.
A collider does not allow dependence to flow between its parents, thus blocking the path.
But Rule 3 tells us that when we condition on a collider or its descendants, the parent nodes
may become dependent. So a collider whose collision node is not in the conditioning set Z
would block dependence from passing through a path, but one whose collision node, or its
descendants, is in the conditioning set would not. Conversely, dependence can pass through
noncolliders—chains and forks—but Rules 1 and 2 tell us that when we condition on them,
the variables on either end of those paths become independent (when we consider one path at
a time). So any noncollision node in the conditioning set would block dependence, whereas
one that is not in the conditioning set would allow dependence through.

We are now prepared to give a general definition of d-separation:

Definition 2.4.1 (d-separation) A path p is blocked by a set of nodes Z if and only if

1. p contains a chain of nodes A - B — C or afork A < B — C such that the middle node B
isin Z (i.e., B is conditioned on), or

2. p contains a collider A — B < C such that the collision node B is not in Z, and no descen-
dant of B is in Z.

2 The d-connected variables will be dependent for almost all sets of functions assigned to arrows in the graph, the
exception being the sorts of intransitive cases discussed in Section 2.2.



Graphical Models and Their Applications 47

Figure 2.7 A graphical model containing a collider with child and a fork

If Z blocks every path between two nodes X and Y, then X and Y are d-separated, conditional
on Z, and thus are independent conditional on Z.

Armed with the tool of d-separation, we can now look at some more complex graph-
ical models and determine which variables in them are independent and dependent, both
marginally and conditional on other variables. Let’s take, for example, the graphical model in
Figure 2.7. This graph might be associated with any number of causal models. The variables
might be discrete, continuous, or a mixture of the two; the relationships between them might
be linear, exponential, or any of an infinite number of other relations. No matter the model,
however, d-separation will always provide the same set of independencies in the data the
model generates.

In particular, let’s look at the relationship between Z and Y. Using an empty conditioning
set, they are d-separated, which tells us that Z and Y are unconditionally independent. Why?
Because there is no unblocked path between them. There is only one path between Z and Y,
and that path is blocked by a collider (Z - W « X).

But suppose we condition on W. d-separation tells us that Z and Y are d-connected, con-
ditional on W. The reason is that our conditioning set is now { W}, and since the only path
between Z and Y contains a fork (X) that is not in that set, and the only collider (W) on the path
is in that set, that path is not blocked. (Remember that conditioning on colliders “unblocks”
them.) The same is true if we condition on U, because U is a descendant of a collider along
the path between Z and Y.

On the other hand, if we condition on the set { W, X}, Z and Y remain independent. This time,
the path between Z and Y is blocked by the first criterion, rather than the second: There is now a
noncollider node (X) on the path that is in the conditioning set. Though W has been unblocked
by conditioning, one blocked node is sufficient to block the entire path. Since the only path
between Z and Y is blocked by this conditioning set, Z and Y are d-separated conditional on
{W,X}.

Now, consider what happens when we add another path between Z and Y, as in
Figure 2.8. Z and Y are now unconditionally dependent. Why? Because there is a path
between them (Z « T — Y) that contains no colliders. If we condition on 7, however,
that path is blocked, and Z and Y become independent again. Conditioning on {7, W},
on the other hand, makes them d-connected again (conditioning on 7 blocks the path
Z <~ T — Y, but conditioning on W unblocks the path Z - W < X — Y). And if we
add X to the conditioning set, making it {7, W,X},Z, and Y become independent yet
again! In this graph, Z and Y are d-connected (and therefore likely dependent) conditional
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Figure 2.8 The model from Figure 2.7 with an additional forked path between Z and Y

on W, U AW,U},{W,T},{U, T},{W,U,T},{W,X},{U,X}, and {W,U,X}. They are
d-separated (and therefore independent) conditional on 7, {X, T}, {W,X,T},{U,X, T}, and
{W,U,X,T}. Note that T is in every conditioning set that d-separates Z and Y; that’s because
T is the only node in a path that unconditionally d-connects Z and Y, so unless it is conditioned
on, Z and Y will always be d-connected.

Study questions
Study question 2.4.1

Figure 2.9 below represents a causal graph from which the error terms have been deleted.
Assume that all those errors are mutually independent.

(a) For each pair of nonadjacent nodes in this graph, find a set of variables that d-separates
that pair. What does this list tell us about independencies in the data?

(b) Repeat question (a) assuming that only variables in the set {Z;,W,X,Z,} can be
measured.

(c) For each pair of nonadjacent nodes in the graph, determine whether they are independent
conditional on all other variables.

(d) For every variable V in the graph, find a minimal set of nodes that renders V independent
of all other variables in the graph.

(e) Suppose we wish to estimate the value of Y from measurements taken on all other variables
in the model. Find the smallest set of variables that would yield as good an estimate of Y
as when we measured all variables.

(f) Repeat question (e) assuming that we wish to estimate the value of Z,.

(g) Suppose we wish to predict the value of Z, from measurements of Zs. Would the quality of
our prediction improve if we add measurement of W? Explain.

2.5 Model Testing and Causal Search

The preceding sections demonstrate that causal models have festable implications in the data
sets they generate. For instance, if we have a graph G that we believe might have generated
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Figure 2.9 A causal graph used in study question 2.4.1, all U terms (not shown) are assumed
independent

a data set S, d-separation will tell us which variables in G must be independent conditional
on which other variables. Conditional independence is something we can test for using a data
set. Suppose we list the d-separation conditions in G, and note that variables A and B must
be independent conditional on C. Then, suppose we estimate the probabilities based on S, and
discover that the data suggests that A and B are not independent conditional on C. We can then
reject G as a possible causal model for S.

We can demonstrate it on the causal model of Figure 2.9. Among the many conditional
independencies advertised by the model, we find that W and Z,; are independent given X,
because X d-separates W from Z,. Now suppose we regress W on X and Z,. Namely, we find
the line

W =ryX+ 1z

that best fits our data. If it turns out that r| is not equal to zero, we know that W depends on
Z, given X and, consequently, that the model is wrong. [Recall, conditional correlation implies
conditional dependence.] Notonly do we know that the model is wrong,but we also know
where it is wrong; the true model must have a path between W and Z, that is not d-separated
by X. Finally, this is a theoretical result that holds for all acyclic models with independent
errors (Verma and Pearl 1990), and we also know that if every d-separation condition in the
model matches a conditional independence in the data, then no further test can refute the
model. This means that, for any data set whatsoever, one can always find a set of functions
F for the model and an assignment of probabilities to the U terms, so as to generate the data
precisely.

There are other methods for testing the fitness of a model. The standard way of evaluating
fitness involves a statistical hypothesis test over the entire model, that is, we evaluate how
likely it is for the observed samples to have been generated by the hypothesized model, as
opposed to sheer chance. However, since the model is not fully specified, we need to first
estimate its parameters before evaluating that likelihood. This can be done (approximately)
when we assume a linear and Gaussian model (i.e., all functions in the model are linear and all
error terms are normally distributed), because, under such assumptions, the joint distribution
(also Gaussian) can be expressed succinctly in terms of the model’s parameters, and we can
then evaluate the likelihood that the observed samples have been generated by the fully
parameterized model (Bollen 1989).

There are, however, a number of issues with this procedure. First, if any parameter cannot
be estimated, then the joint distribution cannot be estimated, and the model cannot be tested.
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As we shall see in Section 3.8.3, this can occur when some of the error terms are correlated or,
equivalently, when some of the variables are unobserved. Second, this procedure tests models
globally. If we discover that the model is not a good fit to the data, there is no way for us to
determine why that is—which edges should be removed or added to improve the fit. Third,
when we test a model globally, the number of variables involved may be large, and if there is
measurement noise and/or sampling variation associated with each variable, the test will not
be reliable.

d-separation presents several advantages over this global testing method. First, it is nonpara-
metric, meaning that it doesn’t rely on the specific functions that connect variables; instead,
it uses only the graph of the model in question. Second, it tests models locally, rather than
globally. This allows us to identify specific areas, where our hypothesized model is flawed,
and to repair them, rather than starting from scratch on a whole new model. It also means that
if, for whatever reason, we can’t identify the coefficient in one area of the model, we can still
get some incomplete information about the rest of the model. (As opposed to the first method,
in which if we could not estimate one coefficient, we could not test any part of the model.)

If we had a computer, we could test and reject many possible models in this way, even-
tually whittling down the set of possible models to only a few whose testable implications
do not contradict the dependencies present in the data set. It is a set of models, rather than a
single model, because some graphs have indistinguishable implications. A set of graphs with
indistinguishable implications is called an equivalence class. Two graphs G, and G, are in
the same equivalence class if they share a common skeleton—that is, the same edges, regard-
less of the direction of those edges—and if they share common v-structures, that is, colliders
whose parents are not adjacent. Any two graphs that satisfy this criterion have identical sets of
d-separation conditions and, therefore, identical sets of testable implications (Verma and Pearl
1990).

The importance of this result is that it allows us to search a data set for the causal models
that could have generated it. Thus, not only can we start with a causal model and generate
a data set—but we can also start with a data set, and reason back to a causal model. This is
enormously useful, since the object of most data-driven research is exactly to find a model that
explains the data.

There are other methods of causal search—including some that rely on the kind of global
model testing with which we began the section—but a full investigation of them is beyond
the scope of this book. Those interested in learning more about search should refer to (Pearl
2000; Pearl and Verma 1991; Rebane and Pearl 1987; Spirtes and Glymour 1991; Spirtes et al.
1993).

Study questions
Study question 2.5.1

(a) Which of the arrows in Figure 2.9 can be reversed without being detected by any statistical
test? [Hint: Use the criterion for equivalence class.]

(b) List all graphs that are observationally equivalent to the one in Figure 2.9.

(c) Listthe arrows in Figure 2.9 whose directionality can be determined from nonexperimental
data.
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(d) Write down a regression equation for Y such that, if a certain coefficient in that equation
is nonzero, the model of Figure 2.9 is wrong.

(e) Repeat question (d) for variable Z5.

(f) Repeat question (e) assuming the X is not measured.

(g) How many regression equations of the type described in (d) and (e) are needed to ensure
that the model is fully tested, namely, that if it passes all these tests, it cannot be refuted
byadditional tests of these kind. [Hint: Ensure that you test every vanishing partial
reg-ression coefficient that is implied by the product decomposition (1.29).]

Bibliographical Notes for Chapter 2
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ers came to be associated with “Selection bias” or “Berkson paradox” (Berkson 1946) while
in artificial intelligence it came to be known as the “explaining away effect” (Kim and Pearl
1983). The rule of d-separation for determining conditional independence by graphs (Defini-
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Chen and Pearl (2014). Recent applications of d-separation include extrapolation across pop-
ulations (Pearl and Bareinboim 2014), recovering from sampling selection bias (Bareinboim
et al. 2014), and handling missing data (Mohan et al. 2013).
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The Effects of Interventions

3.1 Interventions

The ultimate aim of many statistical studies is to predict the effects of interventions. When
we collect data on factors associated with wildfires in the west, we are actually searching for
something we can intervene upon in order to decrease wildfire frequency. When we perform a
study on a new cancer drug, we are trying to identify how a patient’s illness responds when we
intervene upon it by medicating the patient. When we research the correlation between violent
television and acts of aggression in children, we are trying to determine whether intervening
to reduce children’s access to violent television will reduce their aggressiveness.

As you have undoubtedly heard many times in statistics classes, “correlation is not
causation.” A mere association between two variables does not necessarily or even usually
mean that one of those variables causes the other. (The famous example of this property
is that an increase in ice cream sales is correlated with an increase in violent crime—not
because ice cream causes crime, but because both ice cream sales and violent crime are more
common in hot weather.) For this reason, the randomized controlled experiment is considered
the golden standard of statistics. In a properly randomized controlled experiment, all factors
that influence the outcome variable are either static, or vary at random, except for one—so
any change in the outcome variable must be due to that one input variable.

Unfortunately, many questions do not lend themselves to randomized controlled experi-
ments. We cannot control the weather, so we can’t randomize the variables that affect wildfires.
We could conceivably randomize the participants in a study about violent television, but it
would be difficult to effectively control how much television each child watches, and nearly
impossible to know whether we were controlling them effectively or not. Even randomized
drug trials can run into problems when participants drop out, fail to take their medication, or
misreport their usage.

In cases where randomized controlled experiments are not practical, researchers instead
perform observational studies, in which they merely record data, rather than controlling it.
The problem of such studies is that it is difficult to untangle the causal from the merely
correlative. Our common sense tells us that intervening on ice cream sales is unlikely to have
any effect on crime, but the facts are not always so clear. Consider, for instance, a recent
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University of Winnipeg study that showed that heavy text messaging in teens was correlated
with “shallowness.” Media outlets jumped on this as proof that texting makes teenagers more
shallow. (Or, to use the language of intervention, that intervening to make teens text less
would make them less shallow.) The study, however, proved nothing of the sort. It might be
the case that shallowness makes teens more drawn to texting. It might be that both shallowness
and heavy texting are caused by a common factor—a gene, perhaps—and that intervening on
that variable, if possible, would decrease both.

The difference between intervening on a variable and conditioning on that variable should,
hopefully, be obvious. When we intervene on a variable in a model, we fix its value. We change
the system, and the values of other variables often change as a result. When we condition on a
variable, we change nothing; we merely narrow our focus to the subset of cases in which the
variable takes the value we are interested in. What changes, then, is our perception about the
world, not the world itself.

Uz

z
UX UY
X Y

Figure 3.1 A graphical model representing the relationship between temperature (Z), ice cream sales
(X), and crime rates (Y)

Consider, for instance, Figure 3.1 that shows a graphical model of our ice cream sales
example, with X as ice cream sales, Y as crime rates, and Z as temperature. When we inter-
vene to fix the value of a variable, we curtail the natural tendency of that variable to vary
in response to other variables in nature. This amounts to performing a kind of surgery on
the graphical model, removing all edges directed into that variable. If we were to intervene
to make ice cream sales low (say, by shutting down all ice cream shops), we would have
the graphical model shown in Figure 3.2. When we examine correlations in this new graph,
we find that crime rates are, of course, totally independent of (i.e., uncorrelated with) ice
cream sales since the latter is no longer associated with temperature (Z). In other words, even
if we vary the level at which we hold X constant, that variation will not be transmitted to
variable Y (crime rates). We see that intervening on a variable results in a totally different
pattern of dependencies than conditioning on a variable. Moreover, the latter can be obtained

Uz
Z
Uy
Y

Figure 3.2 A graphical model representing an intervention on the model in Figure 3.1 that lowers ice
cream sales

X
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directly from the data set, using the procedures described in Part One, while the former varies
depending on the structure of the causal graph. It is the graph that instructs us which arrow
should be removed for any given intervention.

In notation, we distinguish between cases where a variable X takes a value x naturally and
cases where we fix X = x by denoting the latter do(X = x). So P(Y = y|X = x) is the probabil-
ity that ¥ = y conditional on finding X = x, while P(Y = y|do(X = x)) is the probability that
Y =y when we intervene to make X = x. In the distributional terminology, P(Y = y|X = x)
reflects the population distribution of ¥ among individuals whose X value is x. On the other
hand, P(Y = y|do(X = x)) represents the population distribution of Y if everyone in the popu-
lation had their X value fixed at x. We similarly write P(Y = y|do(X = x), Z = z) to denote the
conditional probability of ¥ =y, given Z = z, in the distribution created by the intervention
do(X = x).

Using do-expressions and graph surgery, we can begin to untangle the causal relationships
from the correlative. In the rest of this chapter, we learn methods that can, astoundingly, tease
out causal information from purely observational data, assuming of course that the graph
constitutes a valid representation of reality. It is worth noting here that we are making a
tacit assumption that the intervention has no “side effects,” that is, that assigning the value x
for the variable X for an individual does not alter subsequent variables in a direct way. For
example, being “assigned” a drug might have a different effect on recovery than being forced
to take the drug against one’s religious objections. When side effects are present, they need to
be specified explicitly in the model.

3.2 The Adjustment Formula

The ice cream example represents an extreme case in which the correlation between X and
Y was totally spurious from a causal perspective, because there was no causal path from X
to Y. Most real-life situations are not so clear-cut. To explore a more realistic situation, let us
examine Figure 3.3, in which Y responds to both Z and X. Such a model could represent, for
example, the first story we encountered for Simpson’s paradox, where X stands for drug usage,
Y stands for recovery, and Z stands for gender. To find out how effective the drug is in the pop-
ulation, we imagine a hypothetical intervention by which we administer the drug uniformly
to the entire population and compare the recovery rate to what would obtain under the com-
plementary intervention, where we prevent everyone from using the drug. Denoting the first
intervention by do(X = 1) and the second by do(X = 0), our task is to estimate the difference

P(Y = 1|do(X = 1)) — P(Y = 1|do(X = 0)) (3.1)
Uz
Z
UX UY
X Y

Figure 3.3 A graphical model representing the effects of a new drug, with Z representing gender, X
standing for drug usage, and Y standing for recovery
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which is known as the “causal effect difference,” or “average causal effect” (ACE). In general,
however, if X and Y can each take on more than one value, we would wish to predict the
general causal effect P(Y = y|do(X = x)), where x and y are any two values that X and Y can
take on. For example, x may be the dosage of the drug and y the patient’s blood pressure.

We know from first principles that causal effects cannot be estimated from the data set
itself without a causal story. That was the lesson of Simpson’s paradox: The data itself was
not sufficient even for determining whether the effect of the drug was positive or negative. But
with the aid of the graph in Figure 3.3, we can compute the magnitude of the causal effect from
the data. To do so, we simulate the intervention in the form of a graph surgery (Figure 3.4)
just as we did in the ice cream example. The causal effect P(Y = y|do(X = x)) is equal to the
conditional probability P, (Y = y|X = x) that prevails in the manipulated model of Figure 3.4.
(This, of course, also resolves the question of whether the correct answer lies in the aggregated
or the Z-specific table—when we determine the answer through an intervention, there’s only
one table to contend with.)

Uy

X lZ Uy
LN

X=x

Figure 3.4 A modified graphical model representing an intervention on the model in Figure 3.3 that
sets drug usage in the population, and results in the manipulated probability P,

The key to computing the causal effect lies in the observation that P,,, the manipulated
probability, shares two essential properties with P (the original probability function that pre-
vails in the preintervention model of Figure 3.3). First, the marginal probability P(Z = z) is
invariant under the intervention, because the process determining Z is not affected by remov-
ing the arrow from Z to X. In our example, this means that the proportions of males and
females remain the same, before and after the intervention. Second, the conditional proba-
bility P(Y = y|Z = z, X = x) is invariant, because the process by which Y responds to X and
Z,Y = f(x,z,uy), remains the same, regardless of whether X changes spontaneously or by
deliberate manipulation. We can therefore write two equations of invariance:

P,Y=y|Z=2X=x)=PY=y|Z=2zX=x) and P,(Z=7)=P(Z=2)

We can also use the fact that Z and X are d-separated in the modified model and are, there-
fore, independent under the intervention distribution. This tells us that P,,(Z =z|X =x) =
P, (Z =z) = P(Z = 7), the last equality following from above. Putting these considerations
together, we have

P(Y = y|do(X = x))
=P, Y =y|X=x (by definition) (3.2)
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=Y P,(Y=yX=xZ=2)P,(Z=2X=1x) (3.3)

z
=Y P,(Y=ylX=xZ=2)P,(Z=2) (3.4)

Zz

Equation (3.3) is obtained using the Law of Total Probability by conditioning on and sum-
ming over all values of Z = z (as in Eq. (1.9)) while Eq. (3.4) makes use of the independence
of Z and X in the modified model.

Finally, using the invariance relations, we obtain a formula for the causal effect, in terms of
preintervention probabilities:

P(Y =yldo(X =x)) = ) P(Y =y|X =x,Z = ))P(Z = 2) (3.5)

Equation (3.5) is called the adjustment formula, and as you can see, it computes the associ-
ation between X and Y for each value z of Z, then averages over those values. This procedure
is referred to as “adjusting for Z” or “controlling for Z.”

This final expression—the right-hand side of Eq. (3.5)—can be estimated directly from the
data, since it consists only of conditional probabilities, each of which can be computed by the
filtering procedure described in Chapter 1. Note also that no adjustment is needed in a random-
ized controlled experiment since, in such a setting, the data are generated by a model which
already possesses the structure of Figure 3.4, hence, P,, = P regardless of any factors Z that
affect Y. Our derivation of the adjustment formula (3.5) constitutes therefore a formal proof
that randomization gives us the quantity we seek to estimate, namely P(Y = y|do(X = x)). In
practice, investigators use adjustments in randomized experiments as well, for the purpose of
minimizing sampling variations (Cox 1958).

To demonstrate the working of the adjustment formula, let us apply it numerically to
Simpson’s story, with X = 1 standing for the patient taking the drug, Z = 1 standing for the
patient being male, and ¥ = 1 standing for the patient recovering. We have

PY=1lldoX=1)=PY=11X=1,Z=1D)PZ=1)+PY =1X=1,Z=0PZ =0)
Substituting the figures given in Table 1.1 we obtain
0.93(87 +270) N 0.73(263 + 80)

P(Y = 1|do(X = 1)) = =0.832
(= lldo(X = 1)) 700 700 083
while, similarly,
0.87(87 +270)  0.69(263 + 80
P(Y = 1]do(X = 0)) = 237B7+270) | 0.69Q63 +80) _ ) 7¢1¢

700 700

Thus, comparing the effect of drug-taking (X = 1) to the effect of nontaking (X = 0), we
obtain

ACE = P(Y = 1|do(X = 1)) = P(Y = 1|do(X = 0)) = 0.832 — 0.7818 = 0.0502

giving a clear positive advantage to drug-taking. A more informal interpretation of ACE here is
that it is simply the difference in the fraction of the population that would recover if everyone
took the drug compared to when no one takes the drug.

We see that the adjustment formula instructs us to condition on gender, find the benefit of
the drug separately for males and females, and only then average the result using the percent-
age of males and females in the population. It also thus instructs us to ignore the aggregated
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population data P(Y = 1|X = 1) and P(Y = 1|X = 0), from which we might (falsely) conclude
that the drug has a negative effect overall.

These simple examples might give readers the impression that whenever we face the
dilemma of whether to condition on a third variable Z, the adjustment formula prefers the
Z-specific analysis over the nonspecific analysis. But we know this is not so, recalling
the blood pressure example of Simpson’s paradox given in Table 1.2. There we argued that
the more sensible method would be not to condition on blood pressure, but to examine the
unconditional population table directly. How would the adjustment formula cope with
situations like that?

X Y

Figure 3.5 A graphical model representing the effects of a new drug, with X representing drug usage, ¥
representing recovery, and Z representing blood pressure (measured at the end of the study). Exogenous
variables are not shown in the graph, implying that they are mutually independent

The graph in Figure 3.5 represents the causal story in the blood pressure example. It is the
same as Figure 3.4, but with the arrow between X and Z reversed, reflecting the fact that the
treatment has an effect on blood pressure and not the other way around. Let us try now to
evaluate the causal effect P(Y = 1|do(X = 1)) associated with this model as we did with the
gender example. First, we simulate an intervention and then examine the adjustment formula
that emanates from the simulated intervention. In graphical models, an intervention is simu-
lated by severing all arrows that enter the manipulated variable X. In our case, however, the
graph of Figure 3.5 shows no arrow entering X, since X has no parents. This means that no
surgery is required; the conditions under which data were obtained were such that treatment
was assigned “as if randomized.” If there was a factor that would make subjects prefer or reject
treatment, such a factor should show up in the model; the absence of such a factor gives us the
license to treat X as a randomized treatment.

Under such conditions, the intervention graph is equal to the original graph—no arrow need
be removed—and the adjustment formula reduces to

P(Y = yldo(X = x)) = P(Y = y|X =X),

which can be obtained from our adjustment formula by letting the empty set be the element
adjusted for. Obviously, if we were to adjust for blood pressure, we would obtain an incorrect
assessment—one corresponding to a model in which blood pressure causes people to seek
treatment.

3.2.1 To Adjust or not to Adjust?

We are now in a position to understand what variable, or set of variables, Z can legitimately be
included in the adjustment formula. The intervention procedure, which led to the adjustment
formula, dictates that Z should coincide with the parents of X, because it is the influence of
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these parents that we neutralize when we fix X by external manipulation. Denoting the parents
of X by PA(X), we can therefore write a general adjustment formula and summarize it in a rule:

Rule 1 (The Causal Effect Rule) Given a graph G in which a set of variables PA are desig-
nated as the parents of X, the causal effect of X on Y is given by

P(Y = yldo(X = x)) = ) P(Y = y|X = x, PA = ))P(PA = ) (3.6)

where z ranges over all the combinations of values that the variables in PA can take.

If we multiply and divide the summand in (3.6) by the probability P(X = x|PA = z), we get
a more convenient form:

PX=x,Y=y,PA=7)

POWo0) = Y =5 =5 (3.7)

which explicitly displays the role played by the parents of X in predicting the results of inter-
ventions. The factor P(X = x|PA = z) is known as the “propensity score” and the advantages
of expressing P(y|do(x)) in this form will be discussed in Section 3.5.

We can appreciate now what role the causal graph plays in resolving Simpson’s paradox,
and, more generally, what aspects of the graph allow us to predict causal effects from purely
statistical data. We need the graph in order to determine the identity of X’s parents—the set of
factors that, under nonexperimental conditions, would be sufficient for determining the value
of X, or the probability of that value.

This result alone is astounding; using graphs and their underlying assumptions, we were
able to identify causal relationships in purely observational data. But, from this discussion,
readers may be tempted to conclude that the role of graphs is fairly limited; once we identify
the parents of X, the rest of the graph can be discarded, and the causal effect can be evaluated
mechanically from the adjustment formula. The next section shows that things may not be
so simple. In most practical cases, the set of X’s parents will contain unobserved variables
that would prevent us from calculating the conditional probabilities in the adjustment formula.
Luckily, as we will see in future sections, we can adjust for other variables in the model to
substitute for the unmeasured elements of PA(X).

Study questions

Study questions 3.2.1

Referring to Study question 1.5.2 (Figure 1.10) and the parameters listed therein,

(a) Compute P(y|do(x)) for all values of x and y, by simulating the intervention do(x) on the
model.

(b) Compute P(y|do(x)) for all values of x and y, using the adjustment formula (3.5)
(c) Compute the ACE

ACE = P(y,|do(x))) — P(y,|do(x))
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and compare it to the Risk Difference
RD = P(y,|x;) — P(y;1xo)

What is the difference between ACE and the RD? What values of the parameters would
minimize the difference?

(d) Find a combination of parameters that exhibit Simpson’s reversal (as in Study question
1.5.2(c)) and show explicitly that the overall causal effect of the drug is obtained from the
desegregated data.

3.2.2  Multiple Interventions and the Truncated Product Rule

In deriving the adjustment formula, we assumed an intervention on a single variable, X, whose
parents were disconnected, so as to simulate the absence of their influence after intervention.
However, social and medical policies occasionally involve multiple interventions, such as those
that dictate the value of several variables simultaneously, or those that control a variable over
time. To represent multiple interventions, it is convenient to resort to the product decompo-
sition that a graphical model imposes on joint distributions, as we have discussed in Section
1.5.2. According to the Rule of Product Decomposition, the preintervention distribution in the
model of Figure 3.3 is given by the product

P(x,y,2) = P()P(x|[2)P(y|x, 2) (3-8)

whereas the postintervention distribution, governed by the model of Figure 3.4 is given by the
product

P(z,y|do(x)) = P, ()P, (y|x.z) = P(2)P(y|x,2) (3.9

with the factor P(x|z) purged from the product, since X becomes parentless as it is fixed at
X = x. This coincides with the adjustment formula, because to evaluate P(y|do(x)) we need to

marginalize (or sum) over z, which gives

P(yldo(x)) = )" PQP(Ix,2)

in agreement with (3.5).
This consideration also allows us to generalize the adjustment formula to multiple interven-

tions, that is, interventions that fix the values of a set of variables X to constants. We simply
write down the product decomposition of the preintervention distribution, and strike out all
factors that correspond to variables in the intervention set X. Formally, we write

P(x;. %y, ... . x,|do(x)) = HP(x,-|pai) for all i with X, not in X.
i
This came to be known as the truncated product formula or g-formula. To illustrate, assume

that we intervene on the model of Figure 2.9 and set X to x and Z; to z3. The postintervention
distribution of the other variables in the model will be

P(zy, 25, wyyldo(X = x, Z3 = z3)) = P(2))P(2) PW[X)P(y|w, 23, 2,)

where we have deleted the factors P(x|z;, z3) and P(z3]z;, z,) from the product.
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It is interesting to note that combining (3.8) and (3.9), we get a simple relation between the
pre- and postintervention distributions:

P(x,y,z2)

P(z,y|do(x)) = m

(3.10)
It tells us that the conditional probability P(x|z) is all we need to know in order to predict

the effect of an intervention do(x) from nonexperimental data governed by the distribution
P(x,y,2).

3.3 The Backdoor Criterion

In the previous section, we came to the conclusion that we should adjust for a variable’s parents,
when trying to determine its effect on another variable. But often, we know, or believe, that the
variables have unmeasured parents that, though represented in the graph, may be inaccessible
for measurement. In those cases, we need to find an alternative set of variables to adjust for.

This dilemma unlocks a deeper statistical question: Under what conditions does a causal
story permit us to compute the causal effect of one variable on another, from data obtained by
passive observations, with no interventions? Since we have decided to represent causal stories
with graphs, the question becomes a graph-theoretical problem: Under what conditions is the
structure of the causal graph sufficient for computing a causal effect from a given data set?

The answer to that question is long enough—and important enough—that we will spend
the rest of the chapter addressing it. But one of the most important tools we use to determine
whether we can compute a causal effect is a simple test called the backdoor criterion. Using
it, we can determine, for any two variables X and Y in a causal model represented by a DAG,
which set of variables Z in that model should be conditioned on when searching for the
causal relationship between X and Y.

Definition 3.3.1 (The Backdoor Criterion) Given an ordered pair of variables (X,Y) in a
directed acyclic graph G, a set of variables Z satisfies the backdoor criterion relative to (X, Y)
if no node in Z is a descendant of X, and Z blocks every path between X and Y that contains
an arrow into X.

If a set of variables Z satisfies the backdoor criterion for X and Y, then the causal effect of
X on Y is given by the formula

P(Y =yldo(X =x)) = ) P(Y =y|X =x,Z = ))P(Z = 2)

just as when we adjust for PA(X). (Note that PA(X) always satisfies the backdoor criterion.)
The logic behind the backdoor criterion is fairly straightforward. In general, we would like
to condition on a set of nodes Z such that

1. We block all spurious paths between X and Y.
2. We leave all directed paths from X to ¥ unperturbed.
3. We create no new spurious paths.
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When trying to find the causal effect of X on Y, we want the nodes we condition on to block
any “backdoor” path in which one end has an arrow into X, because such paths may make
X and Y dependent, but are obviously not transmitting causal influences from X, and if we do
not block them, they will confound the effect that X has on Y. We condition on backdoor paths
so as to fulfill our first requirement. However, we don’t want to condition on any nodes that
are descendants of X. Descendants of X would be affected by an intervention on X and might
themselves affect Y; conditioning on them would block those pathways. Therefore, we don’t
condition on descendants of X so as to fulfill our second requirement. Finally, to comply with
the third requirement, we should refrain from conditioning on any collider that would unblock
a new path between X and Y. The requirement of excluding descendants of X also protects us
from conditioning on children of intermediate nodes between X and Y (e.g., the collision node
W in Figure 2.4.) Such conditioning would distort the passage of causal association between
X and Y, similar to the way conditioning on their parents would.

To see what this means in practice, let’s look at a concrete example, shown in Figure 3.6.

-
'
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Figure 3.6 A graphical model representing the relationship between a new drug (X), recovery (Y),
weight (W), and an unmeasured variable Z (socioeconomic status)

Here we are trying to gauge the effect of a drug (X) on recovery (Y). We have also measured
weight (W), which has an effect on recovery. Further, we know that socioeconomic status (Z)
affects both weight and the choice to receive treatment—but the study we are consulting did
not record socioeconomic status.

Instead, we search for an observed variable that fits the backdoor criterion from X to Y.
A brief examination of the graph shows that W, which is not a descendant of X, also blocks
the backdoor path X « Z — W — Y. Therefore, W meets the backdoor criterion. So long as
the causal story conforms to the graph in Figure 3.6, adjusting for W will give us the causal
effect of X on Y. Using the adjustment formula, we find

P(Y =yldo(X =x)) = ). P(Y =y|X = x, W = w)P(W = w)

This sum can be estimated from our observational data, so long as W is observed.

With the help of the backdoor criterion, you can easily and algorithmically come to a con-
clusion about a pressing policy concern, even in complicated graphs. Consider the model in
Figure 2.8, and assume again that we wish to evaluate the effect of X on Y. What variables
should we condition on to obtain the correct effect? The question boils down to finding a set
of variables that satisfy the backdoor criterion, but since there are no backdoor paths from X
to Y, the answer is trivial: The empty set satisfies the criterion, hence no adjustment is needed.

The answer is
P(y|do(x)) = P(y|x)

Suppose, however, that we were to adjust for W. Would we get the correct result for the
effect of X on Y? Since W is a collider, conditioning on W would open the pathX — W « Z «
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T — Y. This path is spurious since it lies outside the causal pathway from X to Y. Opening this
path will create bias and yield an erroneous answer. This means that computing the association
between X and Y for each value of W separately will not yield the correct effect of X on Y, and
it might even give the wrong effect for each value of W.

How then do we compute the causal effect of X on Y for a specific value w of W?
In Figure 2.8, W may represent, for example, the level of posttreatment pain of a patient, and
we might be interested in assessing the effect of X on Y for only those patients who did not
suffer any pain. Specifying the value of W amounts to conditioning on W = w, and this, as
we have realized, opens a spurious path from X to Y by virtue of the fact that W is a collider.

The answer is that we still have the option of blocking that path using other variables. For
example, if we condition on T, we would block the spurious path X - W « Z « T — 7,
even if W is part of the conditioning set. Thus to compute the w-specific causal effect, written
P(y|do(x),w), we adjust for T, and obtain

P(Y =yldo(X =x), W=w) =ZP(Y=y|X=x, W=w,T=0HP(T =t|X=x,W=w) (3.11)
!

Computing such W-specific causal effects is an essential step in examining effect modifi-
cation or moderation, that is, the degree to which the causal effect of X on Y is modified
by different values of W. Consider, again, the model in Figure 3.6, and suppose we wish to
test whether the causal effect for units at level W = w is the same as for units at level W = w/
(W may represent any pretreatment variable, such as age, sex, or ethnicity). This question calls
for comparing two causal effects,

P(Y =y|doX =x),W=w) and P =yldoX=x),W=w)

In the specific example of Figure 3.6, the answer is simple, because W satisfies the backdoor
criterion. So, all we need to compare are the conditional probabilities P(Y = y|X = x, W = w)
and P(Y = y|X = x, W = w'); no summation is required. In the more general case, where W
alone does not satisfy the backdoor criterion, yet a larger set, T U W, does, we need to adjust
for members of 7', which yields Eq. (3.11). We will return to this topic in Section 3.5.

From the examples seen thus far, readers may get the impression that one should refrain
from adjusting for colliders. Such adjustment is sometimes unavoidable, as seen in Figure 3.7.
Here, there are four backdoor paths from X to Y, all traversing variable Z, which is a collider on
the path X « E — Z « A — Y. Conditioning on Z will unblock this path and will violate the
backdoor criterion. To block all backdoor paths, we need to condition on one of the following
sets: {E,Z},{A,Z},or {E,Z,A}. Each of these contains Z. We see, therefore, that Z, a collider,
must be adjusted for in any set that yields an unbiased estimate of the effect of X on Y.

E A

X Y

Figure 3.7 A graphical model in which the backdoor criterion requires that we condition on a collider
(Z) in order to ascertain the effect of X on Y
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The backdoor criterion has some further possible benefits. Consider the fact that
P(Y = y|do(X = x)) is an empirical fact of nature, not a byproduct of our analysis. That
means that any suitable variable or set of variables that we adjust on—whether it be PA(X)
or any other set that conforms to the backdoor criterion—must return the same result for
P(Y = y|do(X = x)). In the case we looked at in Figure 3.6, this means that

ZP(Y=y|X=x,W=w)P(W=w)= ZP(Y=y|X=x,Z=z)P(Z=Z)

This equality is useful in two ways. First, in the cases where we have multiple observed sets
of variables suitable for adjustment (e.g., in Figure 3.6, if both W and Z had been observed), it
provides us with a choice of which variables to adjust for. This could be useful for any number
of practical reasons—perhaps one set of variables is more expensive to measure than the other,
or more prone to human error, or simply has more variables and is therefore more difficult to
calculate.

Second, the equality constitutes a testable constraint on the data when all the adjustment
variables are observed, much like the rules of d-separation. If we are attempting to fit a model
that leads to such an equality on a data set that violates it, we can discard that model.

Study questions

Study question 3.3.1
Consider the graph in Figure 3.8:

B C
A D
Z
X w Y

Figure 3.8 Causal graph used to illustrate the backdoor criterion in the following study questions

(a) List all of the sets of variables that satisfy the backdoor criterion to determine the causal
effectof XonY.

(b) List all of the minimal sets of variables that satisfy the backdoor criterion to determine
the causal effect of X on Y (i.e., any set of variables such that, if you removed any one of
the variables from the set, it would no longer meet the criterion).

(c) List all minimal sets of variables that need be measured in order to identify the effect of D
on Y. Repeat, for the effect of {W,D} on'Y.
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Study question 3.3.2 (Lord’s paradox)

At the beginning of the year, a boarding school offers its students a choice between two meal
plans for the year: Plan A and Plan B. The students’ weights are recorded at the beginning and
the end of the year. To determine how each plan affects students’ weight gain, the school hired
two statisticians who, oddly, reached different conclusions. The first statistician calculated the
difference between each student’s weight in June (W) and in September (W;) and found that
the average weight gain in each plan was zero.

The second statistician divided the students into several subgroups, one for each initial
weight, W,. He finds that for each initial weight, the final weight for Plan B is higher than the
final weight for Plan A.

So, the first statistician concluded that there was no effect of diet on weight gain and the
second concluded there was.

Figure 3.9 illustrates data sets that can cause the two statisticians to reach conflicting
conclusions. Statistician-1 examined the weight gain W — W, which, for each student, is rep-
resented by the shortest distance to the 45° line. Indeed, the average gain for each diet plan is
zero; the two groups are each situated symmetrically relative to the zero-gain line, W = W,.
Statistician-2, on the other hand, compared the final weights of plan A students to those of
plan B students who entered school with the same initial weight W, and, as the vertical line
in the figure indicates, plan B students are situated above plan A students along this vertical
line. The same will be the case for any other vertical line, regardless of W,,.

(a) Draw a causal graph representing the situation.
(b) Determine which statistician is correct.
(c) How is this example related to Simpson’s paradox?

Wi Wep=W,
| 7

Figure 3.9 Scatter plot with students’ initial weights on the x-axis and final weights on the y-axis. The
vertical line indicates students whose initial weights are the same, and whose final weights are higher
(on average) for plan B compared with plan A

Study questions 3.3.3

Revisit the lollipop story of Study question 1.2.4 and answer the following questions:

(a) Draw a graph that captures the story.
(b) Determine which variables must be adjusted for by applying the backdoor criterion.
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(c) Write the adjustment formula for the effect of the drug on recovery.
(d) Repeat questions (a)—(c) assuming that the nurse gave lollipops a day after the study, still
preferring patients who received treatment over those who received placebo.

3.4 The Front-Door Criterion

The backdoor criterion provides us with a simple method of identifying sets of covariates that
should be adjusted for when we seek to estimate causal effects from nonexperimental data. It
does not, however, exhaust all ways of estimating such effects. The do-operator can be applied
to graphical patterns that do not satisfy the backdoor criterion to identify effects that on first
sight seem to be beyond one’s reach. One such pattern, called front-door, is discussed in this
section.

Consider the century-old debate on the relation between smoking and lung cancer. In the
years preceding 1970, the tobacco industry managed to prevent antismoking legislation by
promoting the theory that the observed correlation between smoking and lung cancer could
be explained by some sort of carcinogenic genotype that also induces an inborn craving for

nicotine.
U U
Genotype Genotype
Y V4 Y
X X

Smoking Lung Smoking Tar ~|  Lung
cancer deposits cancer

(a) (b)

Figure 3.10 A graphical model representing the relationships between smoking (X) and lung cancer
(Y), with unobserved confounder (U) and a mediating variable Z

A graph depicting this example is shown in Figure 3.10(a) This graph does not satisfy the
backdoor condition because the variable U is unobserved and hence cannot be used to block
the backdoor path from X to Y. The causal effect of smoking on lung cancer is not identifiable
in this model; one can never ascertain which portion of the observed correlation between X and
Y is spurious, attributable to their common effect, U, and what portion is genuinely causative.
(We note, however, that even in these circumstances, much compelling work has been done to
quantify how strong the (unobserved) associates between both U and X, and U and Y, must be
in order to entirely explain the observed association between X and Y.)

However, we can go much further by considering the model in Figure 3.10(b), where an
additional measurement is available: the amount of tar deposits in patients’ lungs. This model
does not satisfy the backdoor criterion, because there is still no variable capable of blocking
the spurious path X « U — Y. We see, however, that the causal effect P(Y = y|do(X = x)) is
nevertheless identifiable in this model, through two consecutive applications of the backdoor
criterion.

How can the intermediate variable Z help us to assess the effect of X on Y? The answer is
not at all trivial: as the following quantitative example shows, it may lead to heated debate.
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Assume that a careful study was undertaken, in which the following factors were measured
simultaneously on a randomly selected sample of 800,000 subjects considered to be at very
high risk of cancer (because of environmental exposures such as smoking, asbestos, radon,
and the like).

1. Whether the subject smoked
2. Amount of tar in the subject’s lungs
3. Whether lung cancer has been detected in the patient.

The data from this study are presented in Table 3.1, where, for simplicity, all three variables
are assumed to be binary. All numbers are given in thousands.

Table 3.1 A hypothetical data set of randomly selected samples showing the percentage of
cancer cases for smokers and nonsmokers in each tar category (numbers in thousands)

Tar No tar All subjects
400 400 800
Smokers Nonsmokers | Smokers Nonsmokers | Smokers Nonsmokers
380 20 20 380 400 400
No cancer 323 1 18 38 341 39
(85%) (5%) (90%) (10%) (85%) (9.75%)
Cancer 57 19 2 342 59 361
(15%) (95%) (10%) (90%) (15%) (90.25%)

Two opposing interpretations can be offered for these data. The tobacco industry argues
that the table proves the beneficial effect of smoking. They point to the fact that only 15% of
the smokers have developed lung cancer, compared to 90.25% of the nonsmokers. Moreover,
within each of two subgroups, tar and no tar, smokers show a much lower percentage of cancer
than nonsmokers. (These numbers are obviously contrary to empirical observations but well
illustrate our point that observations are not to be trusted.)

However, the antismoking lobbyists argue that the table tells an entirely different story—that
smoking would actually increase, not decrease, one’s risk of lung cancer. Their argument goes
as follows: If you choose to smoke, then your chances of building up tar deposits are 95%,
compared to 5% if you choose not to smoke (380/400 vs 20/400). To evaluate the effect of tar
deposits, we look separately at two groups, smokers and nonsmokers, as done in Table 3.2. All
numbers are given in thousands.

Table 3.2 Reorganization of the data set of Table 3.1 showing the percentage
of cancer cases in each smoking-tar category (numbers in thousands)

Smokers Nonsmokers All subjects
400 400 800

Tar No tar Tar No tar Tar No tar

380 20 20 380 400 400

No cancer 323 18 1 38 324 56
(85%) (90%) (5%) (10%) (81%) (19%)

Cancer 57 2 19 342 76 344
(15%) (10%) (95%) (90%) (19%) (81%)
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It appears that tar deposits have a harmful effect in both groups; in smokers it increases
cancer rates from 10% to 15%, and in nonsmokers it increases cancer rates from 90% to 95%.
Thus, regardless of whether I have a natural craving for nicotine, I should avoid the harmful
effect of tar deposits, and no-smoking offers very effective means of avoiding them.

The graph of Figure 3.10(b) enables us to decide between these two groups of statisticians.
First, we note that the effect of X on Z is identifiable, since there is no backdoor path from X
to Z. Thus, we can immediately write

P(Z =zldo(X =x)) =P(Z =z|X =Xx) (3.12)

Next we note that the effect of Z on Y is also identifiable, since the backdoor path from Z to
Y, namely Z < X <« U — Y, can be blocked by conditioning on X. Thus, we can write

P(Y =)|do(Z =2)) = ¥ P(Y =y|Z = 2. X = 0)P(X = x) (3.13)

Both (3.12) and (3.13) are obtained through the adjustment formula, the first by conditioning
on the null set, and the second by adjusting for X.

We are now going to chain together the two partial effects to obtain the overall effect of
X on Y. The reasoning goes as follows: If nature chooses to assign Z the value z, then the
probability of ¥ would be P(Y = y|do(Z = z)). But the probability that nature would choose
to do that, given that we choose to set X at x, is P(Z = z|do(X = x)). Therefore, summing over
all states z of Z, we have

P(Y = yldo(X = x)) = 3 P(Y = y|do(Z = 2))P(Z = z|do(X = x)) (3.14)

The terms on the right-hand side of (3.14) were evaluated in (3.12) and (3.13), and we can
substitute them to obtain a do-free expression for P(Y = y|do(X = x)). We also distinguish
between the x that appears in (3.12) and the one that appears in (3.13), the latter of which is
merely an index of summation and might as well be denoted x’. The final expression we have is

P(Y = y|ldo(X = x)) =
DD P(Y =y|Z=2X=x)PX =x)P(Z=z|X =x) (3.15)

z

Equation (3.15) is known as the front-door formula.

Applying this formula to the data in Table 3.1, we see that the tobacco industry was wrong;
tar deposits have a harmful effect in that they make lung cancer more likely and smoking, by
increasing tar deposits, increases the chances of causing this harm.

The data in Table 3.1 are obviously unrealistic and were deliberately crafted so as to surprise
readers with counterintuitive conclusions that may emerge from naive analysis of observational
data. In reality, we would expect observational studies to show positive correlation between
smoking and lung cancer. The estimand of (3.15) could then be used for confirming and quan-
tifying the harmful effect of smoking on cancer.

The preceding analysis can be generalized to structures where multiple paths lead from X
to Y.
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Definition 3.4.1 (Front-Door) A set of variables Z is said to satisfy the front-door criterion
relative to an ordered pair of variables (X, Y) if

1. Z intercepts all directed paths from X to Y.
2. There is no backdoor path from X to Z.
3. All backdoor paths from Z to Y are blocked by X.

Theorem 3.4.1 (Front-Door Adjustment) If Z satisfies the front-door criterion relative to
(X, Y) and if P(x,z) > O, then the causal effect of X on Y is identifiable and is given by the
formula

P(yldo(x)) = Y P(zlx) ) PGrIx', )P (3.16)

The conditions stated in Definition 3.4.1 are overly conservative; some of the paths excluded
by conditions (2) and (3) can actually be allowed provided they are blocked by some variables.
There is a powerful symbolic machinery, called the do-calculus, that allows analysis of such
intricate structures. In fact, the do-calculus uncovers all causal effects that can be identified
from a given graph. Unfortunately, it is beyond the scope of this book (see Tian and Pearl
2002, Shpitser and Pearl 2008, Pearl 2009, and Bareinboim and Pearl 2012 for details). But
the combination of the adjustment formula, the backdoor criterion, and the front-door criterion
covers numerous scenarios. It proves the enormous, even revelatory, power that causal graphs
have in not merely representing, but actually discovering causal information.

Study questions
Study question 3.4.1

Assume that in Figure 3.8, only X,Y, and one additional variable can be measured. Which
variable would allow the identification of the effect of X on Y ? What would that effect be?

Study question 3.4.2

I went to a pharmacy to buy a certain drug, and I found that it was available in two different
bottles: one priced at $1, the other at $10. I asked the druggist, “What’s the difference?” and
he told me, “The $10 bottle is fresh, whereas the $1 bottle one has been on the shelf for 3 years.
But, you know, data shows that the percentage of recovery is much higher among those who
bought the cheap stuff. Amazing isn’t it?” I asked if the aged drug was ever tested. He said,
“Yes, and this is even more amazing, 95% of the aged drug and only 5% of the fresh drug
has lost the active ingredient, yet the percentage of recovery among those who got bad bottles,
with none of the active ingredient, is still much higher than among those who got good bottles,
with the active ingredient.”

Before ordering a cheap bottle, it occurred to me to have a good look at the data. The data
were, for each previous customer, the type of bottle purchased (aged or fresh), the concentra-
tion of the active ingredient in the bottle (high or low), and whether the customer recovered
from the illness. The data perfectly confirmed the druggist’s story. However, after making some
additional calculations, I decided to buy the expensive bottle after all; even without testing its
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content, I could determine that a fresh bottle would offer the average patient a greater chance
of recovery.

Based on two very reasonable assumptions, the data show clearly that the fresh drug is more
effective. The assumptions are as follows:

(i) Customers had no information about the chemical content (high or low) of the specific
bottle of the drug that they were buying; their choices were influenced by price and
shelf-age alone.

(ii) The effect of the drug on any given individual depends only on its chemical content,
not on its shelf age (fresh or aged).

(a) Determine the relevant variables for the problem, and describe this scenario in a causal
graph.

(b) Construct a data set compatible with the story and the decision to buy the expensive
bottle.

(c) Determine the effect of choosing the fresh versus the aged drug by using assumptions (i)
and (ii), and the data given in (b).

3.5 Conditional Interventions and Covariate-Specific Effects

The interventions considered thus far have been limited to actions that merely force a vari-
able or a group of variables X to take on some specified value x. In general, interventions
may involve dynamic policies in which a variable X is made to respond in a specified way
to some set Z of other variables—say, through a functional relationship x = g(z) or through a
stochastic relationship, whereby X is set to x with probability P*(x|z). For example, suppose
a doctor decides to administer a drug only to patients whose temperature Z exceeds a certain
level, Z = z. In this case, the action will be conditional upon the value of Z and can be written
do(X = g(2)), where g(Z) is equal to one when Z > z and zero otherwise (where X = O repre-
sents no drug). Since Z is a random variable, the value of X chosen by the action will similarly
be a random variable, tracking variations in Z. The result of implementing such a policy is a
probability distribution written P(Y = y|do(X = g(Z))), which depends only on the function g
and the set Z of variables that drive X.

In order to estimate the effect of such a policy, let us take a closer look at another concept, the
“z-specific effect” of X, which we encountered briefly in Section 3.3 (Eq. (3.11)). This effect,
written P(Y = y|do(X = x), Z = z), measures the distribution of Y in a subset of the population
for which Z achieves the value z after the intervention. For example, we may be interested in
how a treatment affects a specific age group, Z = z, or people with a specific feature, Z = z,
which may be measured after the treatment.

The z-specific effect can be identified by a procedure similar to the backdoor adjustment.
The reasoning goes as follows: When we aim to estimate P(Y = y|do(X = x)), an adjustment
for a set S is justified if S blocks all backdoor paths from X to Y. Now that we wish to identify
P(Y = y|do(X = x),Z = z), we need to ensure that those paths remain blocked when we add
one more variable, Z, to the conditioning set. This yields a simple criterion for the identification
of the z-specific effect:

Rule 2 The z-specific effect P(Y = y|do(X = x),Z = 7) is identified whenever we can measure
a set S of variables such that S U Z satisfies the backdoor criterion. Moreover, the z-specific
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effect is given by the following adjustment formula
P(Y =y|ldo(X =x),Z =72)
= ZP(Y =y X=x,S=5,Z=2)PS=5|Z=12)
.

This modified adjustment formula is similar to Eq. (3.5) with two exceptions. First,
the adjustment set is S U Z, not just S and, second, the summation goes only over S, not
including Z. The U symbol in the expression S U Z stands for set addition (or union), which
means that, if Z is a subset of S, we have SUZ = §, and S alone need satisfy the backdoor
criterion.

Note that the identifiability criterion for z-specific effects is somewhat stricter than that for
nonspecific effect. Adding Z to the conditioning set might create dependencies that would
prevent the blocking of all backdoor paths. A simple example occurs when Z is a collider;
conditioning on Z will create a new dependency between Z’s parents and may thus violate the
backdoor requirement.

We are now ready to tackle our original task of estimating conditional interventions.
Suppose a policy maker contemplates an age-dependent policy whereby an amount x of drug
is to be administered to patients, depending on their age Z. We write it as do(X = g(Z)).
To find out the distribution of outcome Y that results from this policy, we seek to estimate
P(Y = yldo(X = g(2))).

We now show that identifying the effect of such policies is equivalent to identifying the
expression for the z-specific effect P(Y = y|do(X = x),Z = z).

To compute P(Y = y|do(X = g(Z))), we condition on Z = z and write

P(Y = yldo(X = g(2)))
= Z P(Y = yldo(X = g(2)), Z = 2)P(Z = z|do(X = g(Z2)))

= )\ P(Y =y|do(X = g(z)),.Z = )P(Z = 2) (3.17)

The equality
P(Z =zldo(X = g(2))) = P(Z =2)

stems, of course, from the fact that Z occurs before X; hence, any control exerted on X can
have no effect on the distribution of Z. Equation (3.17) can also be written as

Z P(Y = yldo(X = x),Z = 2)| ey, PZ = 2)

which tells us that the causal effect of a conditional policy do(X = g(Z)) can be evaluated
directly from the expression of P(Y = y|do(X = x),Z = z) simply by substituting g(z) for x
and taking the expectation over Z (using the observed distribution P(Z = z)).

Study question 3.5.1

Consider the causal model of Figure 3.8.

(a) Find an expression for the c-specific effect of X on Y.
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(b) Identify a set of four variables that need to be measured in order to estimate the z-specific
effect of X on Y, and find an expression for the size of that effect.

(c) Using your answer to part (b), determine the expected value of Y under a Z-dependent
strategy, where X is set to 0 when Z is smaller or equal to 2 and X is set to I when Z is
larger than 2. (Assume Z takes on integer values from I to 5.)

3.6 Inverse Probability Weighing

By now, the astute reader may have noticed a problem with our intervention procedures. The
backdoor and front-door criteria tell us whether it is possible to predict the results of hypothet-
ical interventions from data obtained in an observational study. Moreover, they tell us that we
can make this prediction without simulating the intervention and without even thinking about
it. All we need to do is identify a set Z of covariates satisfying one of the criteria, plug this set
into the adjustment formula, and we’re done: the resulting expression is guaranteed to provide
a valid prediction of how the intervention will affect the outcome.

This is lovely in theory, but in practice, adjusting for Z may prove problematic. It entails
looking at each value or combination of values of Z separately, estimating the conditional
probability of Y given X in that stratum and then averaging the results. As the number of
strata increases, adjusting for Z will encounter both computational and estimational difficulties.
Since the set Z can be comprised of dozens of variables, each spanning dozens of discrete
values, the summation required by the adjustment formula may be formidable, and the number
of data samples falling within each Z = z cell may be too small to provide reliable estimates
of the conditional probabilities involved.

All of our work in this chapter has not been for naught, however. The adjustment procedure
is straightforward, and, therefore, easy to use in the explanation of intervention criteria. But
there is another, more subtle procedure that overcomes the practical difficulties of adjustment.

In this section, we discuss one way of circumventing this problem, provided only that we can
obtain a reliable estimate of the function g(x, z) = P(X = x|Z = z), often called the “propensity
score,” for each x and z. Such an estimate can be obtained by fitting the parameters of a flexible
function g(x, z) to the data at hand, in much the same way that we fitted the coefficients of a
linear regression function, so as to minimize the mean square error with respect to a set of
samples (Figure 1.4). The method used will depend on the nature of the random variable X,
whether it is continuous, discrete or binary, for example.

Assuming that the function P(X = x|Z = z) is available to us, we can use it to generate
artificial samples that act as though they were drawn from the postintervention probability P,,,
rather than P(x, y, z). Once we obtain such fictitious samples, we can evaluate P(Y = y|do(x))
by simply counting the frequency of the event Y = y, for each stratum X = x in the sample. In
this way, we skip the labor associated with summing over all strata Z = z; we essentially let
nature do the summation for us.

The idea of estimating probabilities using fictitious samples is not new to us; it was used all
along, though implicitly, whenever we estimated conditional probabilities from finite samples.

In Chapter 1, we characterized conditioning as a process of filtering—that is, ignoring all
cases for which the condition X = x does not hold, and normalizing the surviving cases, so
that their total probabilities would add up to one. The net result of this operation is that the
probability of each surviving case is boosted by a factor 1/P(X = x). This can be seen directly
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from Bayes’ rule, which tells us that

PY=y,Z=2X=x)

PY=y,Z=zX=x)= T

In other words, to find the probability of each row in the surviving table, we multiply the
unconditional probability, P(Y = y,Z = z, X = x) by the constant 1 /P(X = x).

Let us now examine the population created by the do(X = x) operation and ask how the
probability of each case changes as a result of this operation. The answer is given to us by the
adjustment formula, which reads

P(yldo(x)) = ) P(Y =y|X =x,Z = )P(Z =2)

Multiplying and dividing the expression inside the sum by the propensity score P(X = x|Z =
7), we get
P(Y =y|X=x,Z=2)PX =x|Z=2)P(Z=2)
P(X = le = Z)

P(yldo(x)) = Y
Z
Upon realizing the numerator is none other but the pretreatment distribution of (X, Y, Z), we

can write
PY =y, X=x2=2)

P(yldo() = ) PX =x|Z=72)

Z

and the answer becomes clear: each case (Y =y, X = x,Z = z) in the population should boost
its probability by a factor equal to 1/P(X = x|Z = 7). (Hence the name “inverse probability
weighing.”)

This provides us with a simple procedure of estimating P(Y = y|do(X = x)) when we have
finite samples. If we weigh each available sample by a factor = 1 /P(X = x|Z = z), we can then
treat the reweighted samples as if they were generated from P,,, not P, and proceed to estimate
P(Y = y|do(x)) accordingly.

This is best demonstrated in an example.

Table 3.3 returns to our Simpson’s paradox example of the drug that seems to help men and
women but to hurt the general population. We’ll use the same data we used before but presented

Table 3.3 Joint probability distribution P(X, Y, Z) for the drug-
gender-recovery story of Chapter 1 (Table 1.1)

X Y V4 % of population
Yes Yes Male 0.116
Yes Yes Female 0.274
Yes No Male 0.009
Yes No Female 0.101
No Yes Male 0.334
No Yes Female 0.079
No No Male 0.051
No No Female 0.036
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Table 3.4 Conditional probability distribution P(Y, Z|X) for drug users
(X = yes) in the population of Table 3.3

X Y Z % of population
Yes Yes Male 0.231
Yes Yes Female 0.549
Yes No Male 0.017
Yes No Female 0.203

this time as a weighted table. In this case, X represents whether or not the patient took the drug,
Y represents whether the patient recovered, and Z represents the patient’s gender.

If we condition on “X = Yes,” we get the data set shown in Table 3.4, which was formed
in two steps. First, all rows with X = No were excluded. Second, the weights given to the
remaining rows were ‘“‘renormalized,” that is, multiplied by a constant so as to make them
sum to one. This constant, according to Bayes’ rule, is 1/P(X = yes), and P(X = yes) in our
example, is the combined weight of the first four rows of Table 3.3, which amounts to

P(X =yes) =0.116 + 0.274 + 0.01 + 0.101 = 0.501

The result is the weight distribution in the four rows of Table 3.4; the weight of each row
has been boosted by a factor 1/0.501 = 2.00.

Let us now examine the population created by the do(X = yes) operation, representing a
deliberate decision to administer the drug to the same population.

To calculate the distribution of weights in this population, we need to compute the factor
P(X = yes|Z = z) for each z, which, according to Table 3.3, is given by

(0.116 + 0.01)
(0.116 + 0.01 +0.334 + 0.051)

(0.274 + 0.101)
(0.274 + 0.101 + 0.079 + 0.036)

P(X = yes|Z = Male) = = 0.247

=0.765

P(X = yes|Z = Female) =

Multiplying the gender-matching rows by 1/0.247 and 1/0.765, respectively, we obtain
Table 3.5, which represents the postintervention distribution of the population of Table 3.3.
The probability of recovery in this distribution can now be computed directly from the data,
by summing the first two rows:

P(Y = yes|do(X = yes)) = 0.476 + 0.357 = 0.833

Table 3.5 Probability distribution for the population of Table 3.3 under the
intervention do(X = Yes), determined via the inverse probability method

X Y VA % of population
Yes Yes Male 0.475
Yes Yes Female 0.358
Yes No Male 0.035
Yes No Female 0.132
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Three points are worth noting about this procedure. First, the redistribution of weight is no
longer proportional but quite discriminatory. Row #1, for instance, boosted its weight from
0.116 to 0.476, a factor of 4.1, whereas Row #2 is boosted from 0.274 to 0.357, a factor of
only 1.3. This redistribution renders X independent of Z, as in a randomized trial (Figure 3.4).

Second, an astute reader would notice that in this example no computational savings were
realized; to estimate P(Y = yes|do(X = yes)) we still needed to sum over all values of Z, males
and females. Indeed, the savings become significant when the number of Z values is in the
thousands or millions, and the sample size is in the hundreds. In such cases, the number of Z
values that the inverse probability method would encounter is equal to the number of samples
available, not to the number of possible Z values, which is prohibitive.

Finally, an important word of caution. The method of inverse probability weighing is only
valid when the set Z entering the factor 1/P(X = x|Z = z) satisfies the backdoor criterion.
Lacking this assurance, the method may actually introduce more bias than the one obtained
through naive conditioning, which produces Table 3.4 and the absurdities of Simpson’s
paradox.

Up to this point, and in the following, we focus on unbiased estimation of causal effects. In
other words, we focus on estimates that will converge to the true causal effects as the number
of samples increases indefinitely.

This is obviously important, but it is not the only issue relevant to estimation. In addition,
we must also address precision. Precision refers to the variability of our causal estimates if the
number of samples is finite, and, in particular, how much our estimate would vary from exper-
iment to experiment. Clearly, all other things being equal, we prefer estimation procedures
with high precision in addition to their possessing little or no bias. Practically, high-precision
estimates lead to shorter confidence intervals that quantify our level of certainty as to how our
sample estimates describe the causal effect of interest. Most of our discussion does not address
the “best,” or most precise, way to estimate relevant causal means and effects but focuses on
whether it is possible to estimate such quantities from observed data distributions, when the
number of samples goes to infinity.

For example, suppose we wish to estimate the causal effect of X on Y (in a causal graph as
above), where X and Y both reflect continuous variables. Suppose the effect of Z is to make
both high and low values of X most commonly observed, with values close to the middle of the
range of X much less common. Then, inverse probability weighting down-weights the extreme
values of X on both ends of its range (since these are observed most frequently due to Z) and
essentially focuses entirely on the “middle” values of X. If we then use a regression model
to estimate the causal effect of X on Y (see Section 3.8, for example) using the reweighed
observations to account for the role of Z, the resulting estimates will be very imprecise. In
such cases, we usually seek for alternative estimation strategies that are more precise. While
we do not pursue these alternatives in this book, it is important to emphasize that, in addition
to seeing that causal effects be identified from the data, we must also devise effective strategies
of using finite data to estimate effect sizes.

3.7 Mediation

Often, when one variable causes another, it does so both directly and indirectly, through a
set of mediating variables. For instance, in our blood pressure/treatment/recovery example of
Simpson’s paradox, treatment is both a direct (negative) cause of recovery, and an indirect
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(positive) cause, through the mediator of blood pressure—treatment decreases blood pressure,
which increases recovery. In many cases, it is useful to know how much of variable X’s effect
on variable Y is direct and how much is mediated. In practice, however, separating these two
avenues of causation has proved difficult.

Suppose, for example, we want to know whether and to what degree a company discrimi-
nates by gender (X) in its hiring practices (¥). Such discrimination would constitute a direct
effect of gender on hiring, which is illegal in many cases. However, gender also affects hiring
practices in other ways; often, for instance, women are more or less likely to go into a particu-
lar field than men, or to have achieved advanced degrees in that field. So gender may also have
an indirect effect on hiring through the mediating variable of qualifications (Z).

In order to find the direct effect of gender on hiring, we need to somehow hold qualifications
steady, and measure the remaining relationship between gender and hiring; with qualifications
unchanging, any change in hiring would have to be due to gender alone. Traditionally, this has
been done by conditioning on the mediating variable. So if P(Hired|Female, Highly Qualified)
is different from P(Hired|Male, Highly Qualified), the reasoning goes, then there is a direct
effect of gender on hiring.

Qualification

Gender Hiring

Figure 3.11 A graphical model representing the relationship between gender, qualifications, and hiring

In the example in Figure 3.11, this is correct. But consider what happens if there are con-
founders of the mediating variable and the outcome variable. For instance, income: People
from higher income backgrounds are more likely to have gone to college and more likely to
have connections that would help them get hired.

Now, if we condition on qualifications, we are conditioning on a collider. So if we don’t con-
dition on qualifications, indirect dependence can pass from gender to hiring through the path
Gender — Qualifications — Hiring. But if we do condition on qualifications, indirect depen-
dence can pass from gender to hiring through the path Gender — Qualifications < Income —
Hiring. (To understand the problem intuitively, note that by conditioning on qualification, we
will be comparing men and women at different levels of income, because income must change
to keep qualification constant.) No matter how you look at it, we’re not getting the true direct
effect of gender on hiring. Traditionally, therefore, statistics has had to abandon a huge class
of potential mediation problems, where the concept of “direct effect” could not be defined, let
alone estimated.

Luckily, we now have a conceptual way of holding the mediating variable steady without
conditioning on it: We can intervene on it. If, instead of conditioning, we fix the qualifications,
the arrow between gender and qualifications (and the one between income and qualifications)
disappears, and no spurious dependence can pass through it. (Of course, it would be impos-
sible for us to literally change the qualifications of applicants, but recall, this is a theoretical
intervention of the kind discussed in the previous section, accomplished by choosing a proper
adjustment.) So for any three variables X, Y, and Z, where Z is a mediator between X and Y,
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the controlled direct effect (CDE) on Y of changing the value of X from x to x is defined as
CDE = P(Y = y|do(X = x),do(Z = 7)) — P(Y = y|do(X = x'),do(Z = 7)) (3.18)

The obvious advantage of this definition over the one based on conditioning is its generality;
it captures the intent of “keeping Z constant” even in cases where the Z — Y relationship is
confounded (the same goes for the X — Z and X — Y relationships). Practically, this definition
assures us that in any case where the intervened probabilities are identifiable from the observed
probabilities, we can estimate the direct effect of X on Y. Note that the direct effect may differ
for different values of Z; for instance, it may be that hiring practices discriminate against
women in jobs with high qualification requirements, but they discriminate against men in jobs
with low qualifications. Therefore, to get the full picture of the direct effect, we’ll have to
perform the calculation for every relevant value z of Z. (In linear models, this will not be
necessary; for more information, see Section 3.8.)

Income
Qualification

Gender Hiring
Figure 3.12 A graphical model showing qualification (Z) as a mediator between gender (X) and hiring
(Y), and income (/) as a confounder between qualification and hiring.

How do we estimate the direct effect when its expression contains two do-operators? The
technique is more or less the same as the one employed in Section 3.2, where we dealt with a
single do-operator by adjustment. In our example of Figure 3.12, we first notice that there is no
backdoor path from X to Y in the model, hence we can replace do(x) with simply conditioning
on x (this essentially amounts to adjusting for all confounders). This results in

P(Y =y|X =x,do(Z = z)) — P(Y = y|X =X, do(Z = 7))

Next, we attempt to remove the do(z) term and notice that two backdoor paths exist from Z
to Y, one through X and one through /1. The first is blocked (since X is conditioned on) and the
second can be blocked if we adjust for /. This gives

Z[P(Y=y|X=x,Z=z,I= N—PY=y|X=xX,Z=z1=0)Pd =i
i

The last formula is do-free, which means it can be estimated from nonexperimental data.
In general, the CDE of X on Y, mediated by Z, is identifiable if the following two properties
hold:

1. There exists a set S; of variables that blocks all backdoor paths from Z to Y.
2. There exists a set S, of variables that blocks all backdoor paths from X to Y, after deleting
all arrows entering Z.
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If these two properties hold in a model M, then we can determine P(Y = y|do(X = x),
do(Z = 7)) from the data set by adjusting for the appropriate variables, and estimating the
conditional probabilities that ensue. Note that condition 2 is not necessary in randomized tri-
als, because randomizing X renders X parentless. The same is true in cases where X is judged
to be exogenous (i.e., “as if” randomized), as in the aforementioned gender discrimination
example.

It is even trickier to determine the indirect effect than the direct effect, because there is sim-
ply no way to condition away the direct effect of X on Y. It’s easy enough to find the total effect
and the direct effect, so some may argue that the indirect effect should just be the difference
between those two. This may be true in linear systems, but in nonlinear systems, differences
don’t mean much; the change in Y might, for instance, depend on some interaction between
X and Z—if, as we posited above, women are discriminated against in high-qualification jobs
and men in low-qualification jobs, subtracting the direct effect from the total effect would tell
us very little about the effect of gender on hiring as mediated by qualifications. Clearly, we
need a definition of indirect effect that does not depend on the total or direct effects.

We will show in Chapter 4 that these difficulties can be overcome through the use of coun-
terfactuals, a more refined type of intervention that applies at the individual level and can be
computed from structural models.

3.8 Causal Inference in Linear Systems

One of the advantages of the causal methods we have introduced in this book is that they
work regardless of the type of equations that make up the model in question. d-separation and
the backdoor criterion make no assumptions about the form of the relationship between two
variables—only that the relationship exists.

However, showcasing and explaining causal methods from a nonparametric standpoint
has limited our ability to present the full power of these methods as they play out in linear
systems—the arena where traditional causal analysis has primarily been conducted in the
social and behavioral sciences. This is unfortunate, as many statisticians work extensively in
linear systems, and nearly all statisticians are very familiar with them.

In this section, we examine in depth what causal assumptions and implications look like in
systems of linear equations and how graphical methods can help us answer causal questions
posed in those systems. This will serve as both a reinforcement of the methods we applied in
nonparametric models and as a useful aid for those hoping to apply causal inference specifi-
cally in the context of linear systems.

For instance, we might want to know the effect of birth control use on blood pressure after
adjusting for confounders; the total effect of an after-school study program on test scores; the
direct effect, unmediated by other variables, of the program on test scores; or the effect of
enrollment in an optional work training program on future earnings, when enrollment and
earnings are confounded by a common cause (e.g., motivation). Such questions, invoking
continuous variables, have traditionally been formulated as linear equation models with only
minor attention to the unique causal character of those equations; we make this character
unambiguous.

In all models used in this section, we make the strong assumption that the relationships
between variables are linear, and that all error terms have Gaussian (or “normal’) distributions
(in some cases, we only need to assume symmetric distributions). This assumption provides an
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enormous simplification of the procedure needed for causal analysis. We are all familiar with
the bell-shaped curve that characterizes the normal distribution of one variable. The reason it
is so popular in statistics is that it occurs so frequently in nature whenever a phenomenon is a
byproduct of many noisy microprocesses that add up to produce macroscopic measurements
such as height, weight, income, or mortality. Our interest in the normal distribution, however,
stems primarily from the way several normally distributed variables combine to shape their
joint distribution. The assumption of normality gives rise to four properties that are of enor-
mous use when working with linear systems:

1. Efficient representation

2. Substitutability of expectations for probabilities
3. Linearity of expectations

4. Invariance of regression coefficients.

Starting with two normal variables, X and Y, we know that their joint density forms a
three-dimensional cusp (like a mountain rising above the X-Y plane) and that the planes of
equal height on that cusp are ellipses like those shown in Figure 1.2. Each such ellipse is
characterized by five parameters: uy, iy, 0y, 0y, and pyy, as defined in Sections 1.3.8 and
1.3.9. The parameters uy and uy specify the location (or the center of gravity) of the
ellipse in the XY plane, the standard deviations oy and oy specify the spread of the ellipse
along the X and Y dimensions, respectively, and the correlation coefficient pyy specifies its
orientation. In three dimensions, the best way to depict the joint distribution is to imagine an
oval football sus-pended in the X—Y-Z space (Figure 1.2); every plane of constant Z would
then cut the football in a two-dimensional ellipse like the ones shown in Figure 1.1.

As we go to higher dimensions, and consider a set of N normally distributed variables
X, X5, ..., Xy, we need not concern ourselves with additional parameters; it is sufficient to
specify those that characterize the N(N — 1)/2 pairs of variables, (X;, Xj). In other words, the
joint density of (X|,X,, ... ,Xy) is fully specified once we specify the bivariate density of
(X;, X;), with i and j (i # /) ranging from I to N. This is an enormously useful property, as it
offers an extremely parsimonious way of specifying the N-variable joint distribution. More-
over, since the joint distribution of each pair is specified by five parameters, we conclude
that the joint distribution requires at most 5 X N(N — 1)/2 parameters (means, variances, and
covariances), each defined by expectation. In fact, the total number of parameters is even
smaller than this, namely 2N + N(N — 1)/2; the first term gives the number of mean and vari-
ance parameters, and the second the number of correlations.

This brings us to another useful feature of multivariate normal distributions: they are fully
defined by expectations, so we need not concern ourselves with probability tables as we did
when dealing with discrete variables. Conditional probabilities can be expressed as conditional
expectations, and notions such as conditional independence that define the structure of graphi-
cal models can be expressed in terms of equality relationships among conditional expectations.
For instance, to express the conditional independence of Y and X, given Z,

PY|X,Z2) = P(Y|Z)
we can write
E[Y|X,Z] = E[Y|Z)]

(where Z is a set of variables).
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This feature of normal systems gives us an incredibly useful ability: Substituting expecta-
tions for probabilities allows us to use regression (a predictive method) to determine causal
information. The next useful feature of normal distributions is their linearity: every conditional
expectation E[Y|X|, X, ... , X, ]is given by a linear combination of the conditioning variables.
Formally,

ElYIX|=x,X, =%, ... . X,=x,]=rg+rx +rnx+---+rx

n-n

where each of the slopes r,r,,....r,
Sections 1.3.10 and 1.3.11.

The magnitudes of these slopes do not depend on the values x;, x,, ... ,x, of the condition-
ing variables, called regressors; they depend only on which variables are chosen as regressors.
In other words, the sensitivity of Y to the measurement X; = x; does not depend on the measured
values of the other variables in the regression; it depends only on which variables we choose
to measure. It doesn’t matter whether X; =1, X; =2, or X; =312.3; as long as we regress
Y on X, X,,..., X,, all slopes will remain the same.

This unique and useful feature of normal distributions is illustrated in Figures 1.1 and 1.2
of Chapter 1. Figure 1.1 shows that regardless of what level of age we choose, the slope of
Y on X at that level is the same. If, however, we do not hold age constant (i.e., we do not
regress on it), the slope becomes vastly different, as is shown in Figure 1.2.

The linearity assumption also permits us to fully specify the functions in the model by anno-
tating the causal graph with a path coefficient (or structural coefficient) along each edge. The
path coefficient § along the edge X — Y quantifies the contribution of X in the function that
defines Y in the model. For instance, if the function defines ¥ = 3X + U, the path coefficient
of X — Y will be 3. The path coefficients f;, f,, ... , p, are fundamentally different from the
regression coefficients ry,r,, ... ,r, that we discussed in Section 1.3. The former are “struc-
tural” or “causal,” whereas the latter are statistical. The difference is explained in the next
section.

Many of the regression methods we discuss are far more general, applying in situations
where the variables X, ... , X} follow distribution far from multivariate Normal; for example,
when some of the X;’s are categorical or even binary. Such generalizations also therefore allow
the conditional mean E(Y|X; = x,, ... ,X; = x;) toinclude nonlinear combinations of the X;’s,
including such terms as X, X,, for example, to allow for effect modification, or interaction.
Since we are conditioning on the values of the X;’s, it is usually not necessary to enforce a dis-
tributional assumption for such variables. Nevertheless, the full multivariate Normal scenario
provides considerable insight into structural causal models.

is a partial regression coefficient as defined in

3.8.1 Structural versus Regression Coefficients

As we are now about to deal with linear models, and thus, as a matter of course, with
regression-like equations, it is of paramount importance to define the difference between
regression equations and the structural equations we have used in SCMs throughout the book.
A regression equation is descriptive; it makes no assumptions about causation. When we write
y = rix + rp,z + €, as aregression equation, we are not saying that X and Z cause Y. We merely
confess our need to know which values of r; and r, would make the equation y = rx + r,z
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the best linear approximation to the data, or, equivalently, the best linear approximation of
E(y|x, 2).

Because of this fundamental difference between structural and regression equations, some
books distinguish them by writing an arrow, instead of equality sign, in structural equations,
and some distinguish the coefficients by using a different font. We distinguish them by denot-
ing structural coefficients as a, ff, and so on, and regression coefficients as ry, r,, and so on. In
addition, we distinguish between the stochastic “error terms” that appear in these equations.
Errors in regression equations are denoted €, €,, and so on, as in Eq. (1.24), and those in
structural equations by Uy, U,, and so on, as in SCM 1.5.2. The former-denote the residual
errors in observation, after fitting the equation y = rix +r,z to data, whereas the latter
represent latent factors (sometimes called “disturbances” or “omitted variables”) that
influence Y and are not themselves affected by X. The former are human-made (due to
imperfect fitting); the latter are nature-made.

Though they are not causally binding themselves, regression equations are of significant use
in the study of causality as it pertains to linear systems. Consider: In Section 3.2, we were able
to express the effects of interventions in terms of conditional probabilities, as, for example, in
the adjustment formula of Eq. (3.5). In linear systems, the role of conditional probabilities
will be taken over by regression coefficients, since t hese c oefficients re present th e depen-
dencies induced by the model and, in addition, they are easily estimable using least square
analyses. Similarly, whereas the testable implications of nonparametric models are expressed
in the form of conditional independencies, these independencies are signified in linear models
by vanishing regression coefficients, like those discussed in Section 1.3.11. Specifically, given
the regression equation

y=r0+}"lx1+}’2x2+-~-+}”nxn+€

if r; = 0, then Y is independent of X; conditional on all the other regression variables.

3.8.2  The Causal Interpretation of Structural Coefficients

In a linear system, every path coefficient stands for the direct effect of the independent variable,
X, on the dependent variable, Y. To see why this is so, we refer to the interventional definition
of direct effect given in Section 3.7 (Eq. (3.18)), which calls for computing the change in Y as
X increases by one unit whereas all other parents of Y are held constant. When we apply this
definition to any linear system, regardless of whether the disturbances are correlated or not,
the result will be the path coefficient on the arrow X — Y.

Consider, for example, the model in Figure 3.13, and assume we wish to estimate the direct
effect of Z on Y. The structural equations in the fully specified model read:

X = Uy
Z=aX+U,
W=bX+cZ+ Uy
Y =dZ+eW+ Uy,
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Writing Eq. (3.18) in expectation form, we obtain
DE = E[Y|do(Z = z+ 1),do(W = w)] — E[Y|do(Z = z),do(W = w)]

since W is the only other parent of Y in the graph. Applying the do operators by deleting the
appropriate equations from the model, the postincrease term in DE becomes d(z + 1) + ew
and the preincrease term becomes dz + ew. As expected, the difference between the two is
d—the path coefficient between Z and Y. Note that the license to reduce the equation in this
way comes directly from the definition of the do-operator (Eq. (3.18)) making no assumption
about correlations among the U factors; the equality DE = d would be valid even if the error
term Uy were correlated with U, though this would have made d nonidentifiable. The same
goes for the other direct effects; every structural coefficient represents a direct effect, regardless
of how the error terms are distributed. Note also that variable X, as well as the coefficients a, b,
and ¢, do not enter into this computation, because the “surgeries” required by the do operators
remove them from the model.

That is all well and good for the direct effect. Suppose, however, we wish to calculate the
total effectof Zon Y.

Figure 3.13 A graphical model illustrating the relationship between path coefficients and total effects

In a linear system, the total effect of X on Y is simply the sum of the products of the coeffi-
cients of the edges on every nonbackdoor path from X to Y.

That’s a bit of a mouthful, so think of it as a process: To find the total effect of X on Y, first
find every nonbackdoor path from X to Y; then, for each path, multiply all coefficients on the
path together; then add up all the products.

The reason for this identity lies in the nature of SCMs. Consider again the graph of
Figure 3.13. Since we want to find the total effect of Z on Y, we should first intervene on Z,
removing all arrows going into Z, then express Y in terms of Z in the remaining model. This
we can do with a little algebra:

Y=dZ+eW+ Uy
=dZ+e(bX +cZ)+ Uy +eUy
=(d+ec)Z+ebX+ Uy +eUy

The final expression is in the form Y = 7Z + U, where 7 = d + ec and U contains only terms
that do not depend on Z in the modified model. An increase of a single unit in Z, therefore,
will increase Y by 7—the definition of the total effect. A quick examination will show that ¢
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is the sum of the products of the coefficients on the two nonbackdoor paths from Z to Y. This
will be the case in all linear models; algebra demands it. Moreover, the sum of product rule
will be valid regardless of the distributions of the U variables and regardless of whether they
are dependent or independent.

3.8.3 Identifying Structural Coefficients and Causal Effect

Thus far, we have expressed the total and direct effects in terms of path coefficients, assuming
that the latter are either known to us a priori or estimated from interventional experiments. We
now tackle a much harder problem; estimating total and direct effects from nonexperimental
data. This problem is known as “identifiability” and, mathematically, it amounts to expressing
the path coefficients associated with the total and direct effects in terms of the covariances oyy
or regression coefficients Ryy.,, where X and Y are any two variables in the model, and Za set
of variables in the model (Egs. (1.27) and (1.28) and Section 1.3.11).

In many cases, however, it turns out that to identify direct and total effects, we do not need
to identify each and every structural parameter in the model. Let us first demonstrate with the
total effect, . The backdoor criterion gives us the set Z of variables we need to adjust for in
order to determine the causal effect of X on Y. How, though, do we make use of the criterion to
determine effects in a linear system? In principle, once we obtain the set, Z, we can estimate
the conditional expectation of Y given X and Z and, then, averaging over Z, we can use the
resultant dependence between Y and X to measure the effect of X on Y. We need only translate
this procedure to the language of regression.

The translation is rather simple. First, we find a set of covariates Z that satisfies the backdoor
criterion from X to Y in the model. Then, we regress Y on X and Z. The coefficient of X in
the resulting equation represents the true causal effect of X on Y. The reasoning for this is
similar to the reasoning we used to justify the backdoor criterion in the first place—regressing
on Z adds those variables into the equation, blocking all backdoor paths from X and Y, thus
preventing the coefficient of X from absorbing the spurious information those paths contain.

For example, consider a linear model that complies with the graph in Figure 3.14. If we want
to find the total causal effect of X on Y, we first determine, using the backdoor criterion, that
we must adjust for 7. So we regress Y on X and 7', using the regression equation y = ryX +

UT
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X Uy Y
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w

Figure 3.14 A graphical model in which X has no direct effect on Y, but a total effect that is determined
by adjusting for 7'
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ryT + €. The coefficient ry represents the total effect of X on Y. Note that this identification
was possible without identifying any of the model parameters and without measuring variable
W; the graph structure in itself gave us the license to ignore W, regress Y on T and X only, and
identify the total effect (of X on Y) with the coefficient of X in that regression.

Suppose now that instead of the total causal effect, we want to find X’s direct effect on Y. In
a linear system, this direct effect is the structural coefficient « in the function y = ax + fz +
-+ -+ Uy that defines Y in the system. We know from the graph of Figure 3.14 that @ = 0,
because there is no direct arrow from X to Y. So, in this particular case, the answer is trivial:
the direct effect is zero. But in general, how do we find the magnitude of a from data, if the
model does not determine its value?

Figure 3.15 A graphical model in which X has direct effect « on Y

We can invoke a procedure similar to backdoor, except that now, we need to block not only
backdoor paths but also indirect paths going from X to Y. First, we remove the edge from X to
Y (if such an edge exists), and call the resulting graph G,. If, in G, there is a set of variables
Z that d-separates X and Y, then we can simply regress Y on X and Z. The coefficient of X in
the resulting equation will equal the structural coefficient a.

The procedure above, which we might as well call “The Regression Rule for Identification”
provides us with a quick way of determining whether any given parameter (say a) can be
identified by ordinary least square (OLS) regression and, if so, what variables should go into
the regression equation. For example, in the linear model of Figure 3.15, we can find the direct
effect of X on Y by this method. First, we remove the edge between X and Y and get the graph
G, shown in Figure 3.16. It’s easy to see that in this new graph, W d-separates X and Y. So we
regress Y on X and W, using the regression equation ¥ = ryX + ryy W + €. The coefficient ry
is the direct effect of X on Y.

Summarizing our observations thus far, two interesting features emerge. First, we see that, in
linear systems, regression serves as the major tool for the identification and estimation of causal
effects. To estimate a given effect, all we need to do is to write down a regression equation and
specify (1) what variables should be included in the equation and (2) which of the coefficients
in that equation represents the effect of interest. The rest is routine least square analysis on the
sampled data which, as we remarked before, is facilitated by a variety of extremely efficient
software packages. Second, we see that, as long as the U variables are independent of each
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Figure 3.16 By removing the direct edge from X to Y and finding the set of variables {W} that
d-separate them, we find the variables we need to adjust for to determine the direct effect of X on Y

other, and all variables in the graph are measured, every structural parameter can be identified
in this manner, namely, there is at least one identifying regression equation in which one of the
coefficients corresponds to the parameter we seek to estimate. One such equation is obviously
the structural equation itself, with the parents of Y serving as regressors. But there may be
several other identifying equations, with possibly better features for estimation and graphical
analysis can reveal them all (see Study question 3.8.1(c)). Moreover, when some variables
are not measured, or when some error terms are correlated, the task of finding an identifying
regression from the structural equations themselves would normally be insurmountable; the
G, procedure then becomes indispensable (see Study question 3.8.1(d)).

Remarkably, the regression rule procedure has eluded investigators for almost a century,
possibly because it is extremely difficult to articulate in algebraic, nongraphical terms.

Suppose, however, there is no set of variables that d-separates X and Y in G, . For instance,
in Figure 3.17, X and Y have an unobserved common cause represented by the dashed

Uz

Figure 3.17 A graphical model in which we cannot find the direct effect of X on Y via adjustment,
because the dashed double-arrow arc represents the presence of a backdoor path between X and Y, con-
sisting of unmeasured variables. In this case, Z is an instrument with regard to the effect of X on Y that
enables the identification of «
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double-arrowed arc. Since it hasn’t been measured, we can’t condition on it, so X and Y will
always be dependent through it. In this particular case, we may use an instrumental variable
to determine the direct effect. A variable is called an “instrument” if it is d-separated from Y
in G, and, it is d-connected to X. To see why such a variable enables us to identify structural
coefficients, we take a closer look at Figure 3.17.

InFigure 3.17, Z is an instrument with regard to the effect of X on Y because it is d-connected
to X and d-separated from Y in G,,. We regress X and Y on Z separately, yielding the regression
equations y = ryz + € and x = r,z + €, respectively. Since Z emits no backdoors, r, equals f
and r; equals the total effect of Z on Y, pa. Therefore, the ratio r,/r, provides the desired
coefficient @. This example illustrates how direct effects can be identified from total effects
but not the other way around.

Graphical models provide us with a procedure for finding all instrumental variables in a
system, though the procedure for enumerating them is beyond the scope of this book. Those
interested in learning more can (see Chen and Pearl 2014; Kyono 2010).

Study questions

Study question 3.8.1
Model 3.1
Y=aW3+bZ3+CW2+U X=th1+tzz3+U,
Z3 = a321 +b3Z2 + U3 Zl = Ul
W2 = C222 + Ué 22 = Uz
Zl P ZZ
ap a3 b3 ]
W, Iw,
Z3
t
tl 2 b (&
_ \
X G owy @ Y

Figure 3.18 Graph corresponding to Model 3.1 in Study question 3.8.1

Given the model depicted above, answer the following questions:
(All answers should be given in terms of regression coefficients in specified regression
equations.)
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(a) Identify three testable implications of this model.

(b) Identify a testable implication assuming that only X, Y, W5, and Z; are observed.

(c) For each of the parameters in the model, write a regression equation in which one of the
coefficients is equal to that parameter. Identify the parameters for which more than one
such equation exists.

(d) Suppose X, Y, and W; are the only variables observed. Which parameters can be identified
from the data? Can the total effect of X on Y be estimated?

(e) If we regress Z, on all other variables in the model, which regression coefficient will be
zero?

(f) The model in Figure 3.18 implies that certain regression coefficients will remain invariant
when an additional variable is added as a regressor. Identify five such coefficients with
their added regressors.

(g) Assume that variables Z, and W, cannot be measured. Find a way to estimate b using
regression coefficients. [Hint: Find a way to turn Z, into an instrumental variable for b.]

3.8.4 Mediation in Linear Systems

When we can assume linear relationships between variables, mediation analysis becomes
much simpler than the analysis conducted in nonlinear or nonparametric systems (Section 3.7).
Estimating the direct effect of X on Y, for instance, amounts to estimating the path coefficient
between the two variables, and this reduces to estimating correlation coefficients, using the
techniques introduced in Section 3.8.3. The indirect effect, similarly, is computed via the dif-
ference /E = v — DE, where 7, the total effect, can be estimated by regression in the manner
shown in Figure 3.14. In nonlinear systems, on the other hand, the direct effect is defined
through expressions such as (3.18), or

DE = E[Y|do(x,z)] — E[Y|do(X, z)]

where Z = z represents a specific stratum of all other parents of Y (besides X). Even when
the identification conditions are satisfied, and we are able to reduce the do() operators (by
adjustments) to ordinary conditional expectations, the result will still depend on the specific
values of x,x’, and z. Moreover, the indirect effect cannot be given a definition in terms as
do-expressions, since we cannot disable the capacity of Y to respond to X by holding variables
constant. Nor can the indirect effect be defined as the difference between the total and direct
effects, since differences do not faithfully reflect operations in nonlinear systems to X.

Such an operation will be introduced in Chapter 4 (Sections 4.4.5 and 4.5.2) using the lan-
guage of counterfactuals.
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4

Counterfactuals and Their
Applications

4.1 Counterfactuals

While driving home last night, I came to a fork in the road, where I had to make a choice: to
take the freeway (X = 1) or go on a surface street named Sepulveda Boulevard (X = 0). I took
Sepulveda, only to find out that the traffic was touch and go. As I arrived home, an hour later,
I said to myself: “Gee, I should have taken the freeway.”

What does it mean to say, “I should have taken the freeway”? Colloquially, it means, “If [ had
taken the freeway, I would have gotten home earlier.” Scientifically, it means that my mental
estimate of the expected driving time on the freeway, on that same day, under the identical
circumstances, and governed by the same idiosyncratic driving habits that I have, would have
been lower than my actual driving time.

This kind of statement—an “if” statement in which the “if” portion is untrue or
unrealized—is known as a counterfactual. The “if” portion of a counterfactual is called the
hypothetical condition, or more often, the antecedent. We use counterfactuals to emphasize
our wish to compare two outcomes (e.g., driving times) under the exact same conditions,
differing only in one aspect: the antecedent, which in our case stands for “taking the freeway”
as opposed to the surface street. The fact that we know the outcome of our actual decision is
important, because my estimated driving time on the freeway after seeing the consequences
of my actual decision (to take Sepulveda) may be totally different from my estimate prior to
seeing the consequence. The consequence (1 hour) may provide valuable evidence for the
assessment, for example, that the traffic was particularly heavy on that day, and that it might
have been due to a brush fire. My statement “I should have taken the freeway” conveys the
judgment that whatever mechanisms impeded my speed on Sepulveda would not have affected
the speed on the freeway to the same extent. My retrospective estimate is that a freeway drive
would have taken less than 1 hour, and this estimate is clearly different than my prospective
estimate was, when I made the decision prior to seeing the consequences—otherwise, I would
have taken the freeway to begin with.

Causal Inference in Statistics: A Primer, First Edition. Judea Pearl, Madelyn Glymour, and Nicholas P. Jewell.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/Pearl/Causality
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If we try to express this estimate using do-expressions, we come to an impasse. Writing
E(driving time|do(freeway), driving time = 1 hour)

leads to a clash between the driving time we wish to estimate and the actual driving time
observed. Clearly, to avoid this clash, we must distinguish symbolically between the following
two variables:

1. Actual driving time
2. Hypothetical driving time under freeway conditions when actual surface driving time is
known to be 1 hour.

Unfortunately, the do-operator is too crude to make this distinction. While the do-operator
allows us to distinguish between two probabilities, P(driving time|do(freeway)) and
P(driving time|do(Sepulveda)), it does not offer us the means of distinguishing between
the two variables themselves, one standing for the time on Sepulveda, the other for the
hypothetical time on the freeway. We need this distinction in order to let the actual driving
time (on Sepulveda) inform our assessment of the hypothetical driving time.

Fortunately, making this distinction is easy; we simply use different subscripts to label the
two outcomes. We denote the freeway driving time by Yy_, (or Y, where context permits) and
Sepulveda driving time by Yy_, (or Y;). In our case, since Y is the Y actually observed, the
quantity we wish to estimate is

EYy |1X=0Y=Y,=1) “.1)

The novice student may feel somewhat uncomfortable at the sight of the last expression,
which contains an eclectic mixture of three variables: one hypothetical and two observed,
with the hypothetical variable Yy_, predicated upon one event (X = 1) and conditioned upon
the conflicting event, X = 0, which was actually observed. We have not encountered such a
clash before. When we used the do-operator to predict the effect of interventions, we wrote
expressions such as

E[Y|do(X = x)] 4.2)

The Y in this expression is predicated upon the event X = x. With our new notation, the
expression might as well have been written E[Yy_,]. But since all variables in this expression
were measured in the same world, there is no need to abandon the do-operator and invoke
counterfactual notation.

‘We run into problems with counterfactual expressions like (4.1) because Yy_; = yand X =0
are—and must be—events occurring under different conditions, sometimes referred to as “dif-
ferent worlds.” This problem does not occur in intervention expressions, because Eq. (4.1)
seeks to estimate our total drive time in a world where we chose the freeway, given that the
actual drive time (in the world where we chose Sepulveda) was 1 hour, whereas Eq. (4.2) seeks
to estimate the expected drive time in a world where we chose the freeway, with no reference
whatsoever to another world.
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In Eq. (4.1), however, the clash prevents us from reducing the expression to a do-expression,
which means that it cannot be estimated from interventional experiments. Indeed, a random-
ized controlled experiment on the two decision options will never get us the estimate we want.
Such experiments can give us E[Y,] = E[Y|do(freeway)] and E[Y,)] = E[Y|do(Sepulveda)], but
the fact that we cannot take both the freeway and Sepulveda simultaneously prohibits us from
estimating the quantity we wish to estimate, that is, the conditional expectation E[Y,|X = 0,
Y = 1]. One might be tempted to circumvent this difficulty by measuring the freeway time at a
later time, or of another driver, but then conditions may change with time, and the other driver
may have different driving habits than I. In either case, the driving time we would be measuring
under such surrogates will only be an approximation of the one we set out to estimate, Y, and
the degree of approximation would vary with the assumptions we can make on how similar
those surrogate conditions are to my own driving time had I taken the freeway. Such approx-
imations may be appropriate for estimating the target quantity under some circumstances, but
they are not appropriate for defining it. Definitions should accurately capture what we wish to
estimate, and for this reason, we must resort to a subscript notation, Y;, with the understanding
that Y, is my “would-be” driving time, had I chosen the freeway at that very juncture of history.

Readers will be pleased to know that their discomfort with the clashing nature of Eq. (4.1)
will be short-lived. Despite the hypothetical nature of the counterfactual Y|, the structural
causal models that we have studied in Part Two of the book will prove capable not only of
computing probabilities of counterfactuals for any fully specified model, but also of estimating
those probabilities from data, when the underlying functions are not specified or when some
of the variables are unmeasured.

In the next section, we detail the methods for computing and estimating properties of
counterfactuals. Once we have done that, we’ll use those methods to solve all sorts of
complex, seemingly intractable problems. We’ll use counterfactuals to determine the efficacy
of a job training program by figuring out how many enrollees would have gotten jobs had
they not enrolled; to predict the effect of an additive intervention (adding 5 mg/1 of insulin
to a group of patients with varying insulin levels) from experimental studies that exercised
a uniform intervention (setting the group of patients’ insulin levels to the same constant
value); to ascertain the likelihood that an individual cancer patient would have had a different
outcome, had she chosen a different treatment; to prove, with a sufficient probability, whether
a company was discriminating when they passed over a job applicant; and to suss out,
via analysis of direct and indirect effects, the efficacy of gender-blind hiring practices on
rectifying gender disparities in the workforce.

All this and more, we can do with counterfactuals. But first, we have to learn how to define
them, how to compute them, and how to use them in practice.

4.2 Defining and Computing Counterfactuals

4.2.1 The Structural Interpretation of Counterfactuals

We saw in the subsection on interventions that structural causal models can be used to predict
the effect of actions and policies that have never been implemented before. The action of setting
avariable, X, to value x is simulated by replacing the structural equation for X with the equation
X = x. In this section, we show that by using the same operation in a slightly different context,
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we can use SEMs to define what counterfactuals stand for, how to read counterfactuals from a
given model, and how probabilities of counterfactuals can be estimated when portions of the
models are unknown.

We begin with a fully specified model M, for which we know both the functions {F} and
the values of all exogenous variables. In such a deterministic model, every assignment U = u
to the exogenous variables corresponds to a single member of, or “unit” in a population, or to a
“situation” in nature. The reason for this correspondence is as follows: Each assignment U = u
uniquely determines the values of all variables in V. Analogously, the characteristics of each
individual “unit” in a population have unique values, depending on that individual’s identity. If
the population is “people,” these characteristics include salary, address, education, propensity
to engage in musical activity, and all other properties we associate with that individual at any
given time. If the population is “agricultural lots,” these characteristics include soil content,
surrounding climate, and local wildlife, among others. There are so many of these defining
properties that they cannot all possibly be included in the model, but taken all together,
they uniquely distinguish each individual and determine the values of the variables we do
include in the model. It is in this sense that every assignment U = u corresponds to a single
member or “unit” in a population, or to a “situation” in nature.

For example, if U = u stands for the defining characteristics of an individual named Joe,
and X stands for a variable named “salary,” then X(u) stands for Joe’s salary. If U = u stands
for the identity of an agricultural lot and Y stands for the yield measured in a given season,
then Y(u), stands for the yield produced by lot U = u in that season.

Consider now the counterfactual sentence, “Y would be y had X been x, in situation U = u,”
denoted Y,(u)=y, where Y and X are any two variables in V. The key to interpreting such a
sentence is to treat the phrase “had X been x”” as an instruction to make a minimal modifica-
tion in the current model so as to establish the antecedent condition X = x, which is likely to
conflict with the observed value of X, X(«). Such a minimal modification amounts to replac-
ing the equation for X with a constant x, which may be thought of as an external intervention
do(X = x), not necessarily by a human experimenter. This replacement permits the constant x
to differ from the actual value of X (namely, X(u)) without rendering the system of equations
inconsistent, and in this way, it allows all variables, exogenous as well as endogenous, to serve
as antecedents to other variables.

We demonstrate this definition on a simple causal model consisting of just three variables,
X, Y, U, and defined by two equations:

X =aU 4.3)
Y=bX+U 4.4

We first compute the counterfactual Y, (), that is, what ¥ would be had X been x, in situation
U = u. Replacing the first equation with X = x gives the “modified” model M,:

X=x
Y=bX+U

Substituting U = u and solving for Y gives

Y (u)=bx+u
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Table 4.1 The values attained by X(u), Y(u), Y, (1), and Xy(u) in the linear model of Egs. (4.3)
and (4.4)

u X(u) Y(u) Y, (u) Y, (u) Y (u) X, (u) X, (u) X;5(u)
1 1 2 2 3 4 1 1 1

2 2 4 3 4 5 2

3 3 6 4 5 6 3 3 3

which is expected, since the meaning of the structural equation ¥ = bX + U is, exactly “the
value that Nature assigns to ¥ must be U plus b times the value assigned to X.” To demonstrate
a less obvious result, let us examine the counterfactual Xy(u), that is, what X would be had Y
been y in situation U = u. Here, we replace the second equation by the constant Y =y and,
solving for X, we get X, (u) = au, which means that X remains unaltered by the hypothetical
condition “had Y been y.” This should be expected, if we interpret this hypothetical condition
as emanating from an external, albeit unspecified, intervention. It is less expected if we do
not invoke the intervention metaphor but merely treat Y = y as a spontaneous, unanticipated
change. The invariance of X under such a counterfactual condition reflects the intuition that
hypothesizing future eventualities does not alter the past.

Each SCM encodes within it many such counterfactuals, corresponding to the various val-
ues that its variables can take. To illustrate additional counterfactuals generated by this model,
let us assume that U can take on three values, 1, 2, and 3, and let a = b = 1 in Eqs. (4.3) and
(4.4). Table 4.1 gives the values of X(u), Y(u), Y, (1), and X (u) for several levels of x and y.
For example, to compute Y, (u) for u = 2, we simply solve a new set of equations, with X = 2
replacing X = aU, and obtain Y,(u#) = 2 + u = 4. The computation is extremely simple, which
goes to show that, while counterfactuals are considered hypothetical, or even mystical from a
statistical view point, they emerge quite naturally from our perception of reality, as encoded
in structural models. Every structural equation model assigns a definitive value to every con-
ceivable counterfactual.

From this example, the reader may get the impression that counterfactuals are no different
than ordinary interventions, captured by the do-operator. Note, however, that, in this example
we computed not merely the probability or expected value of Y under one intervention or
another, but the actual value of ¥ under the hypothesized new condition X = x. For each sit-
uation U = u, we obtained a definite number, Y (), which stands for that hypothetical value
of Y in that situation. The do-operator, on the other hand, is only defined on probability dis-
tributions and, after deleting the factor P(x;|pa;) from the product decomposition (Eq. (1.29)),
always delivers probabilistic results such as E[Y|do(x)]. From an experimentalist perspective,
this difference reflects a profound gap between population and individual levels of analysis;
the do(x)-operator captures the behavior of a population under intervention, whereas Y,.(«)
describes the behavior of a specific individual, U = u, under such interventions. This differ-
ence has far-reaching consequences, and will enable us to define probabilities of concepts such
as credit, blame, and regret, which the do-operator is not able to capture.

4.2.2 The Fundamental Law of Counterfactuals

We are now ready to generalize the concept of counterfactuals to any structural model, M.
Consider any arbitrary two variables X and Y, not necessarily connected by a single equation.
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Let M, stand for the modified version of M, with the equation of X replaced by X = x. The
formal definition of the counterfactual Y,(«) reads

Y (u) = Yy (u) 4.5)

In words: The counterfactual Y, («) in model M is defined as the solution for Y in the “surgically
modified” submodel M. Equation (4.5) is one of the most fundamental principles of causal
inference. It allows us to take our scientific conception of reality, M, and use it to generate
answers to an enormous number of hypothetical questions of the type "What would Y be had
X been x?” The same definition is applicable when X and Y are sets of variables, if by M,
we mean a model where the equations of all members of X are replaced by constants. This
raises enormously the number of counterfactual sentences computable by a given model and
brings up an interesting question: How can a simple model, consisting of just a few equations,
assign values to so many counterfactuals? The answer is that the values that these counterfac-
tuals receive are not totally arbitrary, but must cohere with each other to be consistent with an
underlying model.

For example, if we observe X(u) = 1 and Y(u) = 0, then Yy_,(u) must be zero, because
setting X to a value it already has, X(u), should produce no change in the world. Hence, Y
should stay at its current value of Y(u) = 0.

In general, counterfactuals obey the following consistency rule:

if X=x then Y =Y 4.6)
If X is binary, then the consistency rule takes the convenient form:

which can be interpreted as follows: Y, is equal to the observed value of ¥ whenever X takes
the value one. Symmetrically, Y|, is equal to the observed value of ¥ whenever X is zero. All
these constraints are automatically satisfied if we compute counterfactuals through Eq. (4.5).

4.2.3  From Population Data to Individual Behavior—An Illustration

To illustrate the use of counterfactuals in reasoning about the behavior of an individual unit,
we refer to the model depicted in Figure 4.1, which represents an “encouragement design”:
X represents the amount of time a student spends in an after-school remedial program, H the
amount of homework a student does, and Y a student’s score on the exam. The value of each
variable is given as the number of standard deviations above the mean the student falls (i.e.,

(Encouragement) (Homework) (Exam score)
X a=0.5 H c=04 Y
[ >0 -0

Figure 4.1 A model depicting the effect of Encouragement (X) on student’s score
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the model is standardized so that all variables have mean 0 and variance 1). For example, if
Y =1, then the student scored 1 standard deviation above the mean on his or her exam. This
model represents a randomized pilot program, in which students are assigned to the remedial
sessions by the luck of the draw.

Model 4.1

X =Uy
H=a-X+Uy
Y=b-X+c-H+Uy

oy, =0 foralli,je {X,H, Y}

We assume that all U factors are independent and that we are given the values for the coeffi-
cients of Model 4.1 (these can be estimated from population data):

a=05, =07 ¢c=04

Let us consider a student named Joe, for whom we measure X =0.5,H = 1,and Y = 1.5.
Suppose we wish to answer the following query: What would Joe’s score have been had he
doubled his study time?

In a linear SEM, the value of each variable is determined by the coefficients and the U
variables; the latter account for all variation among individuals. As a result, we can use the
evidence X = 0.5,H = 1,and Y = 1.5 to determine the values of the U variables associated
with Joe. These values are invariant to hypothetical actions (or “miracles”) such as those that
might cause Joe to double his homework.

In this case, we are able to obtain the specific characteristics of Joe from the evidence:

UX = 0.5,
Uy=1-05-05=0.75, and
Uy,=15-07-05-04-1=0.75.

Next, we simulate the action of doubling Joe’s study time by replacing the structural
equation for H with the constant H = 2. The modified model is depicted in Figure 4.2. Finally,
we compute the value of Y in our modified model using the updated U values, giving

(Encouragement) (Homework) (Exam score)

Figure 4.2 Answering a counterfactual question about a specific student’s score, predicated on the
assumption that homework would have increased to H = 2
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YH=2(UX = 0.5, UH = 0.75, UY = 0.75)
=05-07+2.0-04+0.75
=1.90

We thus conclude that Joe’s score, had he doubled his homework, would have been 1.9 instead
of 1.5. This, according to our convention, would mean an increase to 1.9 standard deviations
above the mean, instead of the current 1.5.

In summary, we first applied the evidence X = 0.5, H = 1,and Y = 1.5 to update the values
for the U variables. We then simulated an external intervention to force the condition H = 2 by
replacing the structural equation H = aX + Uy with the equation H = 2. Finally, we computed
the value of Y given the structural equations and the updated U values. (In all of the above, we,
of course, assumed that the U variables are unchanged by the hypothetical intervention on H.)

4.2.4 The Three Steps in Computing Counterfactuals

The case of Joe and the after-school program illustrates the way in which the fundamental
definition of counterfactuals can be turned into a process for obtaining the value of a given
counterfactual. There is a three-step process for computing any deterministic counterfactual:

(i) Abduction: Use evidence E = e to determine the value of U.

(i) Action: Modify the model, M, by removing the structural equations for the variables
in X and replacing them with the appropriate functions X = x, to obtain the modified
model, M.

(iii) Prediction: Use the modified model, M, and the value of U to compute the value of Y,
the consequence of the counterfactual.

In temporal metaphors, Step (i) explains the past (U) in light of the current evidence e; Step
(i1) bends the course of history (minimally) to comply with the hypothetical antecedent X = x;
finally, Step (iii) predicts the future (¥) based on our new understanding of the past and our
newly established condition, X = x.

This process will solve any deterministic counterfactual, that is, counterfactuals pertaining
to a single unit of the population in which we know the value of every relevant variable. Struc-
tural equation models are able to answer counterfactual queries of this nature because each
equation represents the mechanism by which a variable obtains its values. If we know these
mechanisms, we should also be able to predict what values would be obtained had some of
these mechanisms been altered, given the alterations. As a result, it is natural to view coun-
terfactuals as derived properties of structural equations. (In some frameworks, counterfactuals
are taken as primitives (Holland 1986; Rubin 1974).)

But counterfactuals can also be probabilistic, pertaining to a class of units within the popu-
lation; for instance, in the after-school program example, we might want to know what would
have happened if all students for whom Y < 2 had doubled their homework time. These prob-
abilistic counterfactuals differ from do-operator interventions because, like their determin-
istic counterparts, they restrict the set of individuals intervened upon, which do-expressions
cannot do.

We can now advance from deterministic to probabilistic models, so we can deal with ques-
tions about probabilities and expectations of counterfactuals. For example, suppose Joe is a
student participating in the study of Figure 4.1, who scored Y =y in the exam. What is the
probability that Joe’s score would be ¥ =y’ had he had five more hours of encouragement



Counterfactuals and Their Applications 97

training? Or, what would his expected score be in such hypothetical world? Unlike in the
example of Model 4.1, we now do not have information on all three variables, {X, Y, H}, and
we cannot therefore determine uniquely the value u that pertains to Joe. Instead, Joe may
belong to a large class of units compatible with the evidence available, each having a different
value of u.

Nondeterminism enters causal models by assigning probabilities P(U = u) over the exoge-
nous variables U. These represent our uncertainty as to the identity of the subject under con-
sideration or, when the subject is known, what other characteristics that subject has that might
have bearing on our problem.

The exogenous probability P(U = u) induces a unique probability distribution on the
endogenous variables V, P(v), with the help of which we can define and compute not only
the probability of any single counterfactual, Y, =y, but also the joint distributions of all
combinations of observed and counterfactual variables. For example, we can determine
PY,=y.Z,=2X= x'), where X,Y,Z, and W are arbitrary variables in a model. Such
joint probabilities refer to the proportion of individuals « in the population for which all the
events in the parentheses are true, namely, Y, (u) =y and Z,,(«) = z and X(u) = x’, allowing,
in particular, w or x’ to conflict with x.

A typical query about these probabilities asks, “Given that we observe feature E = e for a
given individual, what would we expect the value of Y for that individual to be if X had been
x?” This expectation is denoted E[Yy_ |E = e], where we allow E = e to conflict with the
antecedent X = x. E = e after the conditioning bar represents all information (or evidence) we
might have about the individual, potentially including the values of X, Y, or any other variable,
as we have seen in Eq. (4.1). The subscript X = x represents the antecedent specified by the
counterfactual sentence.

The specifics of how these probabilities and expectations are dealt with will be examined in
the following sections, but for now, it is important to know that using them, we can generalize
our three-step process to any probabilistic nonlinear system.

Given an arbitrary counterfactual of the form, E[Yy_ |E =e], the three-step process reads:

(i) Abduction: Update P(U) by the evidence to obtain P(U|E = e).

(i) Action: Modify the model, M, by removing the structural equations for the variables
in X and replacing them with the appropriate functions X = x, to obtain the modified
model, M,.

(iii) Prediction: Use the modified model, M,, and the updated probabilities over the
U variables, P(U|E = ¢), to compute the expectation of Y, the consequence of the
counterfactual.

We shall see in Section 4.4 that the above probabilistic procedure applies not only to ret-
rospective counterfactual queries (queries of the form “What would have been the value of Y
had X been x?”) but also to certain kinds of intervention queries. In particular, it applies when
we make every individual take an action that depends on the current value of his/her X. A typ-
ical example would be “additive intervention”: for example, adding 5 mg/1 of insulin to every
patient’s regiment, regardless of their previous dosage. Since the final level of insulin varies
from patient to patient, this policy cannot be represented in do-notation.

For another example, suppose we wish to estimate, using Figure 4.1, the effect on test score
provided by a school policy that sends students who are lazy on their homework (H < H,)) to
attend the after-school program for X = 1. We can’t simply intervene on X to set it equal to 1
in cases where H is low, because in our model, X is one of the causes of H.
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Instead, we express the expected value of this quantity in counterfactual notation as
ElYy_,|H < H,] ,whichcan, in principle, be computed using the above three-step method.
Counterfactual reasoning and the above procedure are necessary for estimating the effect of
actions and policies on subsets of the population characterized by features that, in themselves,
are affected by the policy (e.g., H < H).

4.3 Nondeterministic Counterfactuals

4.3.1 Probabilities of Counterfactuals

To examine how nondeterminism is reflected in the calculation of counterfactuals, let us assign
probabilities to the values of U in the model of Egs. (4.3) and (4.4). Imagine that U = {1, 2,3}
represents three types of individuals in a population, occurring with probabilities

HU:D:%HU:D:%,am HU:%:%

All individuals within a population type have the same values of the counterfactuals, as speci-
fied by the corresponding rows in Table 4.1. With these values, we can compute the probability
that the counterfactuals will satisfy a specified condition. For instance, we can compute the
proportion of units for which ¥ would be 3 had X been 2, or Y,(«) = 3. This condition occurs
only in the first row of the table and, since it is a property of U = 1, we conclude that it will
occur with probability %, giving P(Y, =3) = % We can similarly compute the probability of
any counterfactual statement, for example, P(Y; = 4) = é,P(Y1 =3)= %,P(Y2 >3)= %, and
so on. What is remarkable, however, is that we can also compute joint probabilities of every
combination of counterfactual and observable events. For example,

Hn>1n<@:%

P(Y; <4,Y -X > 1)=%
PY <Y =1

In the first of these expressions, we find a joint probability of two events occurring in two
different worlds; the first Y, > 3 in an X = 2 world, and the second Y; < 4, in X = 1. The
probability of their conjunction evaluates to % because the two events co-occur only at U = 2,

which was assigned a probability of L. Other cross-world events appear in the second and third
expressions. Remarkably (and usefully), this clash between the worlds provides no barrier to
calculation. In fact, cross-world probabilities are as simple to derive as intra-world ones: We
simply identify the rows in which the specified combination is true and sum up the probabilities
assigned to those rows. This immediately gives us the capability of computing conditional
probabilities among counterfactuals and defining notions such as dependence and conditional
independence among counterfactuals, as we did in Chapter 1 when we dealt with observable
variables. For instance, it is easy to verify that, among individuals for which Y is greater than 2,
the probability is % that ¥ would increase if X were 3. (Because P(Y5 > Y|Y > 2) = % / % = %.)
Similarly, we can verify that the difference ¥, | — Y, is independent of x, which means that the
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causal effect of X on Y does not vary across population types, a property shared by all linear
models.

Such joint probabilities over multiple-world counterfactuals can easily be expressed using
the subscript notation, as in P(Y; =y,Y, =y,), and can be computed from any structural
model as we did in Table 4.1. They cannot however be expressed using the do(x) notation,
because the latter delivers just one probability for each intervention X = x. To see the ramifi-
cations of this limitation, let us examine a slight modification of the model in Egs. (4.3) and
(4.4), in which a third variable Z acts as mediator between X and Y. The new model’s equations
are given by

X=U, Z=aX+U,Y=0bZ 4.7)

and its structure is depicted in Figure 4.3. To cast this model in a context, let X = 1 stand for
having a college education, U, = 1 for having professional experience, Z for the level of skill
needed for a given job, and Y for salary.

Suppose our aim is to compute E[Yy_,|Z = 1], which stands for the expected salary of indi-
viduals with skill level Z = 1, had they received a college education. This quantity cannot
be captured by a do-expression, because the condition Z = 1 and the antecedent X = 1 refer
to two different worlds; the former represents current skills, whereas the latter represents a
hypothetical education in an unrealized past. An attempt to capture this hypothetical salary
using the expression E[Y|do(X = 1),Z = 1] would not reveal the desired information. The
do-expression stands for the expected salary of individuals who all finished college and have
since acquired skill level Z = 1. The salaries of these individuals, as the graph shows, depend
only on their skill, and are not affected by whether they obtained the skill through college or
through work experience. Conditioning on Z = 1, in this case, cuts off the effect of the interven-
tion that we’re interested in. In contrast, some of those who currently have Z = 1 might not have
gone to college and would have attained higher skill (and salary) had they gotten college edu-
cation. Their salaries are of great interest to us, but they are not included in the do-expression.
Thus, in general, the do-expression will not capture our counterfactual question:

E[Y|do(X = 1), Z=1]# E[Yy_,|1Z = 1] (4.8)

We can further confirm this inequality by noting that, while E[Y|do(X = 1),Z = 1] is equal
to E[Y|do(X =0),Z = 1], E[Yx_;|Z = 1] is not equal to E[Yy_o|Z = 1]; the formers treat
Z =1 as a postintervention condition that prevails for two different sets of units under the
two antecedents, whereas the latters treat it as defining one set of units in the current world
that would react differently under the two antecedents. The do(x) notation cannot capture the
latters because the events X = 1 and Z = 1 in the expression E[Yy_;|Z = 1] refer to two dif-
ferent worlds, pre- and postintervention, respectively. The expression E[Y|do(X = 1),Z = 1]

Ul U2
l—»l—».
x a gz b y

(College)  (Skill) (Salary)

Figure 4.3 A model representing Eq. (4.7), illustrating the causal relations between college education
(X), skills (Z), and salary (Y)



100 Causal Inference in Statistics

on the other hand, invokes only postintervention events, and that is why it is expressible in
do(x) notation.

A natural question to ask is whether counterfactual notation can capture the postintervention,
single-world expression E[Y|do(X = 1),Z = 1]. The answer is affirmative; being more flexi-
ble, counterfactuals can capture both single-world and cross-world probabilities. The transla-
tion of E[Y|do(X = 1), Z = 1] into counterfactual notation is simply E[Yx_, |Zx-, = 1], which
explicitly designates the event Z = 1 as postintervention. The variable Zy_, stands for the value
that Z would attain had X been 1, and this is precisely what we mean when we put Z = zin a
do-expression by Bayes’ rule:

P(Y =y,Z = zldo(X = 1))
P(Z = z|do(X = 1))

PY =yldoX=1),Z=1z)=

This shows explicitly how the dependence of Z on X should be treated. In the special case
where Z is a preintervention variable, as age was in our discussion of conditional interventions
(Section 3.5) we have Zy_, = Z, and we need not distinguish between the two. The inequality
in (4.8) then turns into an equality.

Let’s look at how this logic is reflected in the numbers. Table 4.2 depicts the counterfactuals
associated with the model of (4.7), with all subscripts denoting the state of X. It was constructed
by the same method we used in constructing Table 4.1: replacing the equation X = u with the
appropriate constant (zero or one) and solving for ¥ and Z. Using this table, we can verify
immediately that (see footnote 2)

EY,|Z=1]=(a+ b (4.9)
E[Y,|Z=1]1=b (4.10)
E[Y|do(X=1),Z=1]=b (4.11)
E[Y|do(X=0),Z=1]=b (4.12)

These equations provide numerical confirmation of the inequality in (4.8). They also demon-
strate a peculiar property of counterfactual conditioning that we have noted before: Despite
the fact that Z separates X from Y in the graph of Figure 4.3, we find that X has an effect on ¥
for those units falling under Z = 1:

E[Y,-Y)|Z=1]1=ab#0

The reason for this behavior is best explained in the context of our salary example. While the
salary of those who have acquired skill level Z = 1 depends only on their skill, not on X, the

Table 4.2 The values attained by X(u), Y(u), Z(u), Y, (u), Y, (1), Z,(u), and Z, (u) in the model of
Eq. 4.7)

X=u Z=aX+u, Y=0Z

u, u, X(u) Z(u) Y(u) Y, (u) Y, (u) Zy(u) Z,(u)
0 0 0 0 0 0 ab 0 a
0 1 0 1 b b (a+1)b 1 a+1
1 0 1 a ab 0 ab 0 a
1 1 1 a+1 (a+ Db b (a+1)b 1 a+1

*Strictly speaking, the quantity E[Y| do(X=1), Z = 1] in Eq. (4.11) is undefined because the observation Z = 1 is
not possible post-intervention of do(X = 1). However, for the purposes of the example, we can imagine that Z =1
was observed due to some error term g, — Z that accounts for the deviation. Eq. (4.11) then follows.

P
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salary of those who are currently at Z = 1 would have been different had they had a differ-
ent past. Retrospective reasoning of this sort, concerning dependence on the unrealized past,
is not shown explicitly in the graph of Figure 4.3. To facilitate such reasoning, we need to
devise means of representing counterfactual variables directly in the graph; we provide such
representations in Section 4.3.2.

Thus far, the relative magnitudes of the probabilities of P(u;) and P(u,) have not entered
into the calculations, because the condition Z = 1 occurs only for #; = 0 and u, = 1 (assuming
that @ # 0 and a # 1), and under these conditions, each of Y, Y, and Y|, has a definite value.
These probabilities play a role, however, if we assume a = 1 in the model, since Z = 1 can
now occur under two conditions: (#; = 0,u, = 1) and (#; = 1,u, = 0). The first occurs with
probability P(u; = 0)P(u, = 1) and the second with probability P(u; = 1)P(u, = 0). In such
a case, we obtain

ElYy1Z=11=b(1 Pl = 0Py = 1) 4.13

YyalZ2=11= * P(u; = 0)P(u, = 1) + P(u, = 1)P(u, = 0) (4.13)
o P, = 0)P(up = 1)

ElVyolz=11=5 <P(u1 = 0)P(uy = 1)+ P(u; = 1)P(u, = 0)> (4.14)

The fact that the first expression is larger than the second demonstrates again that the
skill-specific causal effect of education on salary is nonzero, despite the fact that salaries are
determined by skill only, not by education. This is to be expected, since a nonzero fraction of
the workers at skill level Z = 1 did not receive college education, and, had they been given
college education, their skill would have increased to Z;, = 2, and their salaries to 2b.

Study question 4.3.1

Consider the model in Figure 4.3 and assume that U, and U, are two independent Gaussian
variables, each with zero mean and unit variance.

(a) Find the expected salary of workers at skill level Z = z had they received x years of col-
lege education. [Hint: Use Theorem 4.3.2, with e : Z = z, and the fact that for any two
Gaussian variables, say X and Z, we have E[X|Z = z] = E[X] + Ry, (z — E[Z]). Use the
material in Sections 3.8.2 and 3.8.3 to express all regression coefficients in terms of struc-
tural parameters, and show that E[Y,|Z = z] = abx + bz/(1 + a®).]

(b) Based on the solution for (a), show that the skill-specific effect of education on salary is
independent of the skill level.

4.3.2  The Graphical Representation of Counterfactuals

Since counterfactuals are byproducts of structural equation models, a natural question to ask
is whether we can see them in the causal graphs associated with those models. The answer is
affirmative, as can be seen from the fundamental law of counterfactuals, Eq. (4.5). This law
tells us that if we modify model M to obtain the submodel M, then the outcome variable Y in
the modified model is the counterfactual Y, of the original model. Since modification calls for
removing all arrows entering the variable X, as illustrated in Figure 4.4, we conclude that the
node associated with the Y variable serves as a surrogate for Y, with the understanding that
the substitution is valid only under the modification.
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Figure 4.4 Illustrating the graphical reading of counterfactuals. (a) The original model. (b) The modi-
fied model M in which the node labeled Y, represents the potential outcome Y predicated on X = x

This temporary visualization of counterfactuals is sufficient to answer some fundamental
questions about the statistical properties of Y, and how those properties depend on other vari-
ables in the model, specifically when those other variables are conditioned on.

When we ask about the statistical properties of Y,, we need to examine what would cause Y,
to vary. According to its structural definition, Y, represents the value of Y under a condition
where X is held constant at X = x. Statistical variations of Y, are therefore governed by all
exogenous variables capable of influencing ¥ when X is held constant, that is, when the arrows
entering X are removed, as in Figure 4.4(b). Under such conditions, the set of variables capable
of transmitting variations to Y are the parents of Y (observed and unobserved), as well as
parents of nodes on the pathways between X and Y. In Figure 4.4(b), for example, these parents
are {Z3, W,,U;, Uy}, where Uy and Us, the error terms of Y and W3, are not shown in the
diagram. (These variables remain the same in both models.) Any set of variables that blocks
a path to these parents also blocks that path to Y,, and will result in, therefore, a conditional
independence for Y,. In particular, if we have a set Z of covariates that satisfies the backdoor
criterion in M (see Definition 3.3.1), that set also blocks all paths between X and those parents,
and consequently, it renders X and Y, independent in every stratum Z = z.

These considerations are summarized formally in Theorem 4.3.1.

Theorem 4.3.1 (Counterfactual Interpretation of Backdoor) If a set Z of variables sat-
isfies the backdoor condition relative to (X, Y), then, for all x, the counterfactual Y, is condi-
tionally independent of X given Z

P(Y,|X,Z) = P(Y,|2) (4.15)

Theorem 4.3.1 has far-reaching consequences when it comes to estimating the probabilities

of counterfactuals from observational studies. In particular, it implies that P(Y, = y)is iden-

tifiable by the adjustment formula of Eq. (3.5). To prove this, we condition on Z (as in
Eq. (1.9)) and write

P(Y,=y)= ) P(Y,=)|Z=2P(@)
= ) P(Y, =)|Z =X =0)P(2)

= ) P =)I1Z=2X = 0P() (4.16)
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The second line was licensed by Theorem 4.3.1, whereas the third line was licensed by the
consistency rule (4.6).

The fact that we obtained the familiar adjustment formula in Eq. (4.16) is not really sur-
prising, because this same formula was derived in Section 3.2 (Eq. (3.4)), for P(Y = y|do(x)),
and we know that P(Y, = y) is just another way of writing P(Y = y|do(x)). Interestingly, this
derivation invokes only algebraic steps; it makes no reference to the model once we ensure
that Z satisfies the backdoor criterion. Equation (4.15), which converts this graphical real-
ity into algebraic notation, and allows us to derive (4.16), is sometimes called “conditional
ignorability”’; Theorem 4.3.1 gives this notion a scientific interpretation and permits us to test
whether it holds in any given model.

Having a graphical representation for counterfactuals, we can resolve the dilemma we faced
in Section 4.3.1 (Figure 4.3), and explain graphically why a stronger education (X) would have
had an effect on the salary (Y) of people who are currently at skill level Z = z, despite the fact
that, according to the model, salary is determined by skill only. Formally, to determine if the
effect of education on salary (Y,) is statistically independent of the level of education, we need
to locate Y, in the graph and see if it is d-separated from X given Z. Referring to Figure 4.3,
we see that Y, can be identified with U,, the only parent of nodes on the causal path from X
to Y (and therefore, the only variable that produces variations in Y, while X is held constant).
A quick inspection of Figure 4.3 tells us that Z acts as a collider between X and U,, and,
therefore, X and U, (and similarly X and Y,) are not d-separated given Z. We conclude
therefore

E[Y|X,Z] # E[Y,|Z]

despite the fact that
E[Y|X,Z] = E[Y|Z]

In Study question 4.3.1, we evaluate these counterfactual expectations explicitly, assuming
a linear Gaussian model. The graphical representation established in this section permits us
to determine independencies among counterfactuals by graphical means, without assuming
linearity or any specific parametric form. This is one of the tools that modern causal analysis
has introduced to statistics, and, as we have seen in the analysis of the education—skill-salary
story, it takes a task that is extremely hard to solve by unaided intuition and reduces it to simple
operations on graphs. Additional methods of visualizing counterfactual dependencies, called
“twin networks,” are discussed in (Pearl 2000, pp. 213-215).

4.3.3 Counterfactuals in Experimental Settings

Having convinced ourselves that every counterfactual question can be answered from a fully
specified structural model, we next move to the experimental setting, where a model is not
available, and the experimenter must answer interventional questions on the basis of a finite
sample of observed individuals. Let us refer back to the “encouragement design” model of
Figure 4.1, in which we analyzed the behavior of an individual named Joe, and assume that
the experimenter observes a set of 10 individuals, with Joe being participant 1. Each individual
is characterized by a distinct vector U; = (Uy, Uy, Uy), as shown in the first three columns of
Table 4.3.
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Table 4.3 Potential and observed outcomes predicted by the structural model of Figure 4.1
units were selected at random, with each U, uniformly distributed over [0, 1]

Participant Observed Predicted potential
characteristics behavior outcomes
Participant U, U, U, X Y H Y, Y, H, H, Yoo --
1 05 075 075 |05 150 1.0 | 1.05 195 075 125 0.75
2 03 0.1 04 [ 03 071 025|044 134 0.1 0.6 0.4
3 05 09 02 | 05 101 1.15]| 056 146 09 1.4 0.2
4 06 05 03 [ 06 104 08 | 050 140 05 1.0 0.3
5 05 08 09 (05 167 105 | 122 212 08 1.3 0.9
6 0.7 09 03 | 07 129 125 | 066 156 09 1.4 0.3
7 02 03 08 (02 110 04 | 092 182 03 0.8 0.8
8 04 0.6 02 | 04 080 08 | 044 134 0.6 1.1 0.2
9 06 04 03 | 06 100 07 | 046 136 04 0.9 0.3
10 03 038 03 [ 03 08 095|062 152 038 1.3 0.3

Using this information, we can create a full data set that complies with the model. For
each triplet (Uy, Uy, Uy), the model of Figure 4.1 enables us to complete a full row of the
table, including Y, and Y;, which stand for the potential outcomes under treatment (X = 1)
and control (X = 0) conditions, respectively. We see that the structural model in Figure 4.1
encodes in effect a synthetic population of individuals together with their predicted behavior
under both observational and experimental conditions. The columns labeled X,Y,H predict
the results of observational studies, and those labeled Y, Y, H,,, H; predict the hypothetical
outcome under two treatment regimes, X = 0, and X = 1. Many more, in fact infinite, potential
outcomes may be predicted; for example, Yy_¢ 5 7> ¢ as computed for Joe from Figure 4.2, as
well as all combinations of subscripted variables. From this synthetic population, one can esti-
mate the probability of every counterfactual query on variables X,Y,H, assuming, of course,
that we are in possession of all entries of the table. The estimation would require us to sim-
ply count the proportion of individuals that satisfy the specified query as demonstrated in
Section 4.3.1.

Needless to say, the information conveyed by Table 4.3 is not available to us in either obser-
vational or experimental studies. This information was deduced from a parametric model such
as the one in Figure 4.2, from which we could infer the defining characteristics { Uy, Uy, Uy }
of each participant, given the observations {X,H,Y}. In general, in the absence of a paramet-
ric model, there is very little we learn about the potential outcomes Y, and Y, of individual
participants, when all we have is their observed behavior {X,H,Y}. Theoretically, the only
connection we have between the counterfactuals {Y|,Y,,} and the observables {X,H,Y} is the
consistency rule of Eq. (4.6), which informs us that ¥; must be equal to Y in case X =1 and
Y, must be equal to Y in case X = 0. But aside from this tenuous connection, most of the
counterfactuals associated with the individual participants will remain unobserved.

Fortunately, there is much we can learn about those counterfactuals at the population level,
such as estimating their probabilities or expectation. This we have witnessed already through
the adjustment formula of (4.16), where we were able to compute E(Y| — Y|;) using the graph
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alone, instead of a complete model. Much more can be obtained from experimental studies,
where even the graph becomes dispensable.

Assume that we have no information whatsoever about the underlying model. All we have
are measurements on Y taken in an experimental study in which X is randomized over two
levels, X =0and X = 1.

Table 4.4 describes the responses of the same 10 participants (Joe being participant 1)
under such experimental conditions, with participants 1,5,6,8, and 10 assigned to X =0,
and the rest to X = 1. The first two columns give the true potential outcomes (taken from
Table 4.3), while the last two columns describe the information available to the experimenter,
where a square indicates that the response was not observed. Clearly, Y, is observed only
for participants assigned to X =0 and, similarly, Y| is observed only for those assigned
to X = 1. Randomization assures us that, although half of the potential outcomes are not
observed, the difference between the observed means in the treatment and control groups
will converge to the difference of the population averages, E(Y; — Y;) = 0.9. This is because
randomization distributes the black squares at random along the two rightmost columns of
Table 4.4, independent of the actual values of ¥, and Y/, so as the number of samples increases,
the sample means converge to the population means.

This unique and important property of randomized experiments is not new to us, since
randomization, like interventions, renders X independent of any variable that may affect Y
(as in Figure 4.4(b)). Under such conditions, the adjustment formula (4.16) is applicable with
Z={}, yielding E[Y,]=E[Y|X =x], where x =1 represents treated units and x =0
untreated. Table 4.4 helps us understand what is actually computed when we take sample
averages in experimental settings and how those averages are related to the underlying
counterfactuals, Y} and Y.

Table 4.4 Potential and observed outcomes in a randomized clinical trial with X randomized
overX =0and X =1

Predicted Observed
potential outcomes outcomes
Participant Y, Y, Y, Y,
1 1.05 1.95 1.05 ]
2 0.44 1.34 ] 1.34
3 0.56 1.46 [ ] 1.46
4 0.50 1.40 ] 1.40
5 1.22 2.12 1.22 ]
6 0.66 1.56 0.66 ]
7 0.92 1.82 [ | 1.82
8 0.44 1.34 0.44 ]
9 0.46 1.36 [ | 1.36
10 0.62 1.52 0.62 ]

g

True average treatment effect: 0.90  Study average treatment effect: 0.68
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4.3.4 Counterfactuals in Linear Models

In nonparametric models, counterfactual quantities of the form E[Yy_,|Z = z] may not be iden-
tifiable, even if we have the luxury of running experiments. In fully linear models, however,
things are much easier; any counterfactual quantity is identifiable whenever the model parame-
ters are identified. This is because the parameters fully define the model’s functions, and as we
have seen earlier, once the functions are given, counterfactuals are computable using Eq. (4.5).
Since every model parameter is identifiable from interventional studies using the interven-
tional definition of direct effects, we conclude that in linear models, every counterfactual is
experimentally identifiable. The question remains whether counterfactuals can be identified in
observational studies, when some of the model parameters are not identified. It turns out that
any counterfactual of the form E[Yy_,|Z = e], with e an arbitrary set of evidence, is identified
whenever E[Y|do(X = x)] is identified (Pearl 2000, p. 389). The relation between the two is
summarized in Theorem 4.3.2, which provides a shortcut for computing counterfactuals.

Theorem 4.3.2 Let t be the slope of the total effect of X on Y,
7 = E[Y|do(x + 1)] — E[Y|do(x)]
then, for any evidence Z = e, we have

ElYy_|Z=el=E[Y|Z=e]+1(x—E[X|Z=c¢]) “4.17)

This provides an intuitive interpretation of counterfactuals in linear models: E[Yy_.|Z = e]
can be computed by first calculating the best estimate of Y conditioned on the evidence e,
E[Y|e], and then adding to it whatever change is expected in ¥ when X is shifted from its
current best estimate, E[X|Z = e], to its hypothetical value, x.

Methodologically, the importance of Theorem 4.3.2 lies in enabling researchers to answer
hypothetical questions about individuals (or sets of individuals) from population data. The ram-
ifications of this feature in legal and social contexts will be explored in the following sections.
In the situation illustrated by Figure 4.2, we computed the counterfactual Y;_, under the evi-
dence e = {X =0.5,H = 1,Y = 1}. We now demonstrate how Theorem 4.3.2 can be applied
to this model in computing the effect of treatment on the treated

ETT = E[Y, - Yy|X = 1] (4.18)
Substituting the evidence e = {X = 1} in Eq. (4.17) we get
ETT = E[Y||X = 1] - E[Y,|X = 1]
=E[Y|IX=1]-E[Y|IX=1]+7(1 -EX|X=1])—7(0 - E[X|X =1])
=7
=b+ac=09

In other words, the effect of treatment on the treated is equal to the effect of treatment on
the entire population. This is a general result in linear systems that can be seen directly from
Eq. (4.17); E[Y,,; —Y,|le] = 7, independent on the evidence of e. Things are different when a
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multiplicative (i.e., nonlinear) interaction term is added to the output equation. For example,
if the arrow X — H were reversed in Figure 4.1, and the equation for Y read

Y=bX+cH+6XH+ Uy (4.19)
7 would differ from ETT. We leave it to the reader as an exercise to show that the difference
7= — ETT then equals 1:3:;2 (see Study question 4.3.2(c)).
Study questions
Study question 4.3.2

(a) Describe how the parameters a, b, c in Figure 4.1 can be estimated from nonexperi-
mental data.

(b) In the model of Figure 4.3, find the effect of education on those students whose salary is
Y = 1. [Hint: Use Theorem 4.3.2 to compute E[Y| — Yy|Y = 1].]

(c) Estimate t and the ETT = E[Y, — Yy|X = 1] for the model described in Eq. (4.19).
[Hint: Use the basic definition of counterfactuals, Eq. (4.5) and the equality
E[Z|X =x']1 = Rxx'.]

4.4 Practical Uses of Counterfactuals

Now that we know how to compute counterfactuals, it will be instructive—and motivating—to
see counterfactuals put to real use. In this section, we examine examples of problems that seem
baffling at first, but that can be solved using the techniques we just laid out. Hopefully, the
reader will leave this chapter with both a better understanding of how counterfactuals are used
and a deeper appreciation of why we would want to use them.

4.4.1 Recruitment to a Program

Example 4.4.1 A government is funding a job training program aimed at getting jobless peo-
ple back into the workforce. A pilot randomized experiment shows that the program is effective;
a higher percentage of people were hired among those who finished the program than among
those who did not go through the program. As a result, the program is approved, and a recruit-
ment effort is launched to encourage enrollment among the unemployed, by offering the job
training program to any unemployed person who elects to enroll.

Lo and behold, enrollment is successful, and the hiring rate among the program’s graduates
turns out even higher than in the randomized pilot study. The program developers are happy
with the results and decide to request additional funding.

Oddly, critics claim that the program is a waste of taxpayers’ money and should be ter-
minated. Their reasoning is as follows: While the program was somewhat successful in the
experimental study, where people were chosen at random, there is no proof that the program
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accomplishes its mission among those who choose to enroll of their own volition. Those who
self-enroll, the critics say, are more intelligent, more resourceful, and more socially connected
than the eligible who did not enroll, and are more likely to have found a job regardless of
the training. The critics claim that what we need to estimate is the differential benefit of the
program on those enrolled: the extent to which hiring rate has increased among the enrolled,
compared to what it would have been had they not been trained.

Using our subscript notation for counterfactuals, and letting X = 1 represent training and
Y = 1 represent hiring, the quantity that needs to be evaluated is the effect of training on the
trained (ETT, better known as “effect of treatment on the treated,” Eq. (4.18)):

ETT = E[Y, — Y X = 1] (4.20)

Here the difference Y| — Y, represents the causal effect of training (X) on hiring (Y¥) for a ran-
domly chosen individual, and the condition X = 1 limits the choice to those actually choosing
the training program on their own initiative.

As in our freeway example of Section 4.1, we are witnessing a clash between the antecedent
(X = 0) of the counterfactual Y;, (hiring had training not taken place) and the event it is con-
ditioned on, X = 1. However, whereas the counterfactual analysis in the freeway example
had no tangible consequences save for a personal regret statement—*I should have taken the
freeway”’—here the consequences have serious economic implications, such as terminating
a training program, or possibly restructuring the recruitment strategy to attract people who
would benefit more from the program offered.

The expression for ETT does not appear to be estimable from either observational or exper-
imental data. The reason rests, again, in the clash between the subscript of Y|, and the event
X =1 on which it is conditioned. Indeed, E[Y,,|X = 1] stands for the expectation that a trained
person (X = 1) would find a job had he/she not been trained. This counterfactual expectation
seems to defy empirical measurement because we can never rerun history and deny training to
those who received it. However, we see in the subsequent sections of this chapter that, despite
this clash of worlds, the expectation E[Y,|X = 1] can be reduced to estimable expressions in
many, though not all, situations. One such situation occurs when a set Z of covariates satisfies
the backdoor criterion with regard to the treatment and outcome variables. In such a case, ETT
probabilities are given by a modified adjustment formula:

P(Y,=y|X =)
= ZP(Y=y|X=x,Z=z)P(Z=z|X=x’) 4.21)

This follows directly from Theorem 4.3.1, since conditioning on Z = z gives

P(Y, =ylx') = Y P(Y, = ylz. x)P@Ix)

but Theorem 4.3.1 permits us to replace x’ with x, which by virtue of (4.6) permits us to remove
the subscript x from Y., yielding (4.21).
Comparing (4.21) to the standard adjustment formula of Eq. (3.5),

P(Y = y|ldo(X = x)) = 2 P(Y=y|X=x,Z=2P(Z=12)

we see that both formulas call for conditioning on Z = z and averaging over z, except that
(4.21) calls for a different weighted average, with P(Z = z|X = x’) replacing P(Z = z).
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Using Eq. (4.21), we readily get an estimable, noncounterfactual expression for ETT
ETT = E[Y, — Y,|X = 1]
=E[Y,||X=1]1-E[Y,|X =1]
=E[Y|X=1]- Z E[YIX=0,Z=zP(Z=z]X=1)
z

where the first term in the final expression is obtained using the consistency rule of Eq. (4.6).
In other words, E[Y,|X = 1] = E[Y|X = 1] because, conditional on X = 1, the value that ¥
would get had X been 1 is simply the observed value of Y.

Another situation permitting the identification of ETT occurs for binary X whenever both
experimental and nonexperimental data are available, in the form of P(Y = y|do(X = x)) and
P(X =x,Y =), respectively. Still another occurs when an intermediate variable is available
between X and Y satisfying the front-door criterion (Figure 3.10(b)). What is common to these
situations is that an inspection of the causal graph can tell us whether ETT is estimable and, if
so, how.

Study questions
Study question 4.4.1

(a) Prove that, if X is binary, the effect of treatment on the treated can be estimated from both
observational and experimental data. Hint: Decompose E[Y ] into

E[Y,] = E[Y, |X'IP(X") + E[Y,|x]P(x)

(b) Apply the result of Question (a) to Simpson’s story with the nonexperimental data of Table
1.1, and estimate the effect of treatment on those who used the drug by choice. [Hint:
Estimate E[Y,] assuming that gender is the only confounder:]

(c) Repeat Question (b) using Theorem 4.3.1 and the fact that Z in Figure 3.3 satisfies the
backdoor criterion. Show that the answers to (b) and (c) coincide.

4.4.2 Additive Interventions

Example 4.4.2 In many experiments, the external manipulation consists of adding (or sub-
tracting) some amount from a variable X without disabling preexisting causes of X, as required
by the do(x) operator. For example, we might give 5 mg/l of insulin to a group of patients with
varying levels of insulin already in their systems. Here, the preexisting causes of the manip-
ulated variable continue to exert their influences, and a new quantity is added, allowing for
differences among units to continue. Can the effect of such interventions be predicted from
observational studies, or from experimental studies in which X was set uniformly to some
predetermined value x?

If we write our question using counterfactual variables, the answer becomes obvious.
Suppose we were to add a quantity g to a treatment variable X that is currently at level X = x'.



110 Causal Inference in Statistics

The resulting outcome would be Y, ,, and the average value of this outcome over all units

currently at level X = x’ would be E[Y,|x'], with x = x’ + ¢. Here, we meet again the ETT
expression E[Y,|x'], to which we can apply the results described in the previous example.
In particular, we can conclude immediately that, whenever a set Z in our model satisfies
the backdoor criterion, the effect of an additive intervention is estimable using the ETT
adjustment formula of Eq. (4.21). Substituting x = x’ + ¢ in (4.21) and taking expectations
gives the effect of this intervention, which we call add(q):

E[Yadd(q)) - E[Y]
= Z E[Yy,,|IX =x1P(X = x') — E[Y]

= Z Z ElYIX=x +¢,Z=2P(Z =z|X =X)P(X =x') — E[Y] (4.22)

Xz

In our example, Z may include variables such as age, weight, or genetic disposition; we require
only that each of those variables be measured and that they satisfy the backdoor condition.

Similarly, estimability is assured for all other cases in which ETT is identifiable.

This example demonstrates the use of counterfactuals to estimate the effect of practical
interventions, which cannot always be described as do-expressions, but may nevertheless be
estimated under certain circumstances. A question naturally arises: Why do we need to resort
to counterfactuals to predict the effect of a rather common intervention, one that could be
estimated by a straightforward clinical trial at the population level? We simply split a randomly
chosen group of subjects into two parts, subject half of them to an add(q) type of intervention
and compare the expected value of Y in this group to that obtained in the add(0) group. What is
it about additive interventions that force us to seek the advice of a convoluted oracle, in the form
of counterfactuals and ETT, when the answer can be obtained by a simple randomized trial?

The answer is that we need to resort to counterfactuals only because our target quantity,
E[Y|add(q)], could not be reduced to do-expressions, and it is through do-expressions that
scientists report their experimental findings. This does not mean that the desired quantity
E[Y|add(q)] cannot be obtained from a specially designed experiment; it means only that save
for conducting such a special experiment, the desired quantity cannot be inferred from sci-
entific knowledge or from a standard experiment in which X is set to X = x uniformly over
the population. The reason we seek to base policies on such ideal standard experiments is that
they capture scientific knowledge. Scientists are interested in quantifying the effect of increas-
ing insulin concentration in the blood from a given level X = x to a another level X = x + ¢,
and this increase is captured by the do-expression: E[Y|do(X = x + q)] — E[Y|do(X = x)]. We
label it “scientific” because it is biologically meaningful, namely its implications are invariant
across populations (indeed laboratory blood tests report patients’ concentration levels, X = x,
which are tracked over time). In contrast, the policy question in the case of additive interven-
tions does not have this invariance feature; it asks for the average effect of adding an increment
q to everyone, regardless of the current x level of each individual in this particular population.
It is not immediately transportable, because it is highly sensitive to the probability P(X = x)
in the population under study. This creates a mismatch between what science tells us and what
policy makers ask us to estimate. It is no wonder, therefore, that we need to resort to a unit-level
analysis (i.e., counterfactuals) in order to translate from one language into another.
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The reader may also wonder why E[Y|add(g)] is not equal to the average causal effect

Z[E[Y|do(X =x+q)] — E[Y|do(X = x)]] P(X = x)

After all, if we know that adding ¢ to an individual at level X = x would increase its expected
Y by E[Y|do(X = x+ q)] — E[Y|do(X = x)], then averaging this increase over X should give
us the answer to the policy question E[Y|add(q)]. Unfortunately, this average does not capture
the policy question. This average represents an experiment in which subjects are chosen at
random from the population, a fraction P(X = x) are given an additional dose ¢, and the rest
are left alone. But things are different in the policy question at hand, since P(X = x) represents
the proportion of subjects who entered level X = x by free choice, and we cannot rule out the
possibility that subjects who attain X = x by free choice would react to add(q) differently from
subjects who “receive” X = x by experimental decree. For example, it is quite possible that sub-
jects who are highly sensitive to add(q) would attempt to lower their X level, given the choice.
We translate into counterfactual analysis and write the inequality:

E[Y|add(g)] = Y B[V IXIP(X =) # 3 E[Y; JP(X = )

Equality holds only when Y, is independent of X, a condition that amounts to nonconfounding
(see Theorem 4.3.1). Absent this condition, the estimation of E[Y|add(g)] can be accomplished
either by g-specific intervention or through stronger assumptions that enable the translation of
ETT to do-expressions, as in Eq. (4.21).

Study question 4.4.2

Joe has never smoked before but, as a result of peer pressure and other personal factors, he
decided to start smoking. He buys a pack of cigarettes, comes home, and asks himself: “I am
about to start smoking, should I?”

(a) Formulate Joe’s question mathematically, in terms of ETT, assuming that the outcome of
interest is lung cancer.

(b) What type of data would enable Joe to estimate his chances of getting cancer given that
he goes ahead with the decision to smoke, versus refraining from smoking.

(¢) Use the data in Table 3.1 to estimate the chances associated with the decision in (b).

4.4.3  Personal Decision Making

Example 4.4.3 Ms Jones, a cancer patient, is facing a tough decision between two possible
treatments: (i) lumpectomy alone or (ii) lumpectomy plus irradiation. In consultation with
her oncologist, she decides on (ii). Ten years later, Ms Jones is alive, and the tumor has not
recurred. She speculates: Do [ owe my life to irradiation?

Mrs Smith, on the other hand, had a lumpectomy alone, and her tumor recurred after a year.
And she is regretting: I should have gone through irradiation.

Can these speculations ever be substantiated from statistical data? Moreover, what good
would it do to confirm Ms Jones’s triumph or Mrs Smith’s regret?
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The overall effectiveness of irradiation can, of course, be determined by randomized exper-
iments. Indeed, on October 17, 2002, the New England Journal of Medicine published a paper
by Fisher et al. describing a 20-year follow-up of a randomized trial comparing
lumpectomy alone and lumpectomy plus irradiation. The addition of irradiation to lumpectomy
was shown to cause substantially fewer recurrences of breast cancer (14% vs 39%).

These, however, were population results. Can we infer from them the specific cases of Ms
Jones and Mrs Smith? And what would we gain if we do, aside from supporting Ms Jones’s
satisfaction with her decision or intensifying Mrs Smith’s sense of failure?

To answer the first question, we must first cast the concerns of Ms Jones and Mrs Smith in
mathematical form, using counterfactuals. If we designate remission by ¥ = 1 and the decision
to undergo irradiation by X = 1, then the probability that determines whether Ms Jones is
justified in attributing her remission to the irradiation (X = 1) is

PN=PY,=0X=1Y=1) (4.23)

It reads: the probability that remission would not have occurred (¥ = 0) had Ms Jones not gone
through irradiation, given that she did in fact go through irradiation (X = 1), and remission did
occur (Y = 1). The label PN stands for “probability of necessity” that measures the degree to
which Ms Jones’s decision was necessary for her positive outcome.

Similarly, the probability that Ms Smith’s regret is justified is given by

PS=PY,=1]X=0,Y =0) (4.24)

It reads: the probability that remission would have occurred had Mrs Smith gone through
irradiation (Y; = 1), given that she did not in fact go through irradiation (X = 0), and remission
did not occur (Y =0). PS stands for the “probability of sufficiency,” measuring the degree to
which the action X =1, which was not taken.

We see that these expressions have almost the same form (save for interchanging ones with
zeros) and, moreover, both are similar to Eq. (4.1), save for the fact that Y in the freeway
example was a continuous variable, so its expected value was the quantity of interest.

These two probabilities (sometimes referred to as “probabilities of causation”) play a major
role in all questions of “attribution,” ranging from legal liability to personal decision making.
They are not, in general, estimable from either observational or experimental data, but as we
shall see below, they are estimable under certain conditions, when both observational and
experimental data are available.

But before commencing a quantitative analysis, let us address our second question: What is
gained by assessing these retrospective counterfactual parameters? One answer is that notions
such as regret and success, being right or being wrong, have more than just emotional value;
they play important roles in cognitive development and adaptive learning. Confirmation of Ms
Jones’s triumph reinforces her confidence in her decision-making strategy, which may include
her sources of medical information, her attitude toward risks, and her sense of priority, as well
as the strategies she has been using to put all these considerations together. The same applies
to regret; it drives us to identify sources of weakness in our strategies and to think of some kind
of change that would improve them. It is through counterfactual reinforcement that we learn
to improve our own decision-making processes and achieve higher performance. As Kathryn
Schultz says in her delightful book Being Wrong, “However disorienting, difficult, or humbling
our mistakes might be, it is ultimately wrongness, not rightness, that can teach us who we are.”
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Estimating the probabilities of being right or wrong also has tangible and profound impact
on critical decision making. Imagine a third lady, Ms Daily, facing the same decision as Ms
Jones did, and telling herself: If my tumor is the type that would not recur under lumpectomy
alone, why should I go through the hardships of irradiation? Similarly, if my tumor is the type
that would recur regardless of whether I go through irradiation or not, I would rather not go
through it. The only reason for me to go through this is if the tumor is the type that would
remiss under treatment and recur under no treatment.

Formally, Ms Daily’s dilemma is to quantify the probability that irradiation is both necessary
and sufficient for eliminating her tumor, or

PNS=P(Y,=1,Y,=0) (4.25)

where Y| and Y, stand for remission under treatment (Y, ) and nontreatment (Y|)), respectively.
Knowing this probability would help Ms Daily’s assessment of how likely she is to belong to
the group of individuals for whom Y; =1 and Y, = 0.

This probability cannot, of course, be assessed from experimental studies, because we can
never tell from experimental data whether an outcome would have been different had the person
been assigned to a different treatment. However, casting Ms Daily’s question in mathematical
form enables us to investigate algebraically what assumptions are needed for estimating PNS
and from what type of data. In the next section (Section 4.5.1, Eq. (4.42)), we see that indeed,
PNS can be estimated if we assume monotonicity, namely, that irradiation cannot cause the
recurrence of a tumor that was about to remit. Moreover, under monotonicity, experimental
data are sufficient to conclude

PNS = P(Y = 1|do(X = 1)) = P(Y = 1|do(X = 0)) (4.26)

For example, if we rely on the experimental data of Fisher et al. (2002), this formula permits
us to conclude that Ms Daily’s PNS is

PNS =0.86 —0.61 =0.25

This gives her a 25% chance that her tumor is the type that responds to treatment—specifically,
that it will remit under lumpectomy plus irradiation but will recur under lumpectomy alone.
Such quantification of individual risks is extremely important in personal decision making,
and estimates of such risks from population data can only be inferred through counterfactual
analysis and appropriate assumptions.

4.4.4  Discrimination in Hiring

Example 4.4.4 Mary files a law suit against the New York-based XYZ International, alleging
discriminatory hiring practices. According to her, she has applied for a job with XYZ Interna-
tional, and she has all the credentials for the job, yet she was not hired, allegedly because she
mentioned, during the course of her interview, that she is gay. Moreover, she claims, the hiring
record of XYZ International shows consistent preferences for straight employees. Does she
have a case? Can hiring records prove whether XYZ International was discriminating when
declining her job application?
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At the time of writing, U.S. law doesn’t specifically prohibit employment discrimination
on the basis of sexual orientation, but New York law does. And New York defines discrim-
ination in much the same way as federal law. U.S. courts have issued clear directives as to
what constitutes employment discrimination. According to law makers, “The central question
in any employment-discrimination case is whether the employer would have taken the same
action had the employee been of a different race (age, sex, religion, national origin, etc.) and
everything else had been the same.” (In Carson vs Bethlehem Steel Corp., 70 FEP Cases 921,
7th Cir. (1996).)

The first thing to note in this directive is that it is not a population-based criterion, but
one that appeals to the individual case of the plaintiff. The second thing to note is that it is
formulated in counterfactual terminology, using idioms such as “would have taken,” “had the
employee been,” and “had been the same.” What do they mean? Can one ever prove how an
employer would have acted had Mary been straight? Certainly, this is not a variable that we
can intervene upon in an experimental setting. Can data from an observational study prove an
employer discriminating?

It turns out that Mary’s case, though superficially different from Example 4.4.3, has a lot
in common with the problem Ms Smith faced over her unsuccessful cancer treatment. The
probability that Mary’s nonhiring is due to her sexual orientation can, similarly to Ms Smith’s
cancer treatment, be expressed using the probability of sufficiency:

PS=PY,=1]X=0,Y=0)

In this case, Y stands for Mary’s hiring, and X stands for the interviewer’s perception of
Mary’s sexual orientation. The expression reads: “the probability that Mary would have been
hired had the interviewer perceived her as straight, given that the interviewer perceived her as
gay, and she was not hired.” (Note that the variable in question is the interviewer’s perception
of Mary’s sexual orientation, not the orientation itself, because an intervention on perception
is quite simple in this case—we need only to imagine that Mary never mentioned that she is
gay; hypothesizing a change in Mary’s actual orientation, although formally acceptable, brings
with it an aura of awkwardness.)

We show in 4.5.2 that, although discrimination cannot be proved in individual cases, the
probability that such discrimination took place can be determined, and this probability may
sometimes reach a level approaching certitude. The next example examines how the problem
of discrimination—in this case on gender, not sexual orientation may appear to a policy maker,
rather than a juror.

4.4.5 Mediation and Path-disabling Interventions

Example 4.4.5 A policy maker wishes to assess the extent to which gender disparity in hir-
ing can be reduced by making hiring decisions gender-blind, rather than eliminating gender
inequality in education or job training. The former concerns the “direct effect” of gender
on hiring, whereas the latter concerns the “indirect effect,” or the effect mediated via job
qualification.
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In this example, fighting employers’ prejudices and launching educational reforms are two
contending policy options that involve costly investments and different implementation
strategies. Knowing in advance which of the two, if successful, would have a greater impact
on reducing hiring disparity is essential for planning, and depends critically on mediation
analysis for resolution. For example, knowing that current hiring disparities are due primarily
to employers’ prejudices would render educational reforms superfluous, a fact that may save
substantial resources. Note, however, that the policy decisions in this example concern the
enabling and disabling of processes rather than lowering or raising values of specific vari-
ables. The educational reform program calls for disabling current educational practices and
replacing them with a new program in which women obtain the same educational opportuni-
ties as men. The hiring-based proposal calls for disabling the current hiring process and
replacing it with one in which gender plays no role in hiring decisions.

Because we are dealing with disabling processes rather than changing levels of variables,
there is no way we can express the effect of such interventions using a do-operator, as we
did in the mediation analysis of Section 3.7. We can express it, however, in a counterfactual
language, using the desired end result as an antecedent. For example, if we wish to assess the
hiring disparity after successfully implementing gender-blind hiring procedures, we impose
the condition that all female applicants be treated like males as an antecedent and proceed to
estimate the hiring rate under such a counterfactual condition.

The analysis proceeds as follows: the hiring status (¥) of a female applicant with qualifi-
cation Q = ¢, given that the employer treats her as though she is a male is captured by the
counterfactual Yy_; ,_,, where X = 1 refers to being a male. But since the value g would vary
among applicants, we need to average this quantity according to the distribution of female
qualification, giving JE [Yx=1,0=4]P(Q = q|X = 0). Male applicants would have a similar
chance at hiring except that the average is governed by the distribution of male qualification,
giving

D ElVyoy 0= IPQ =qlX = 1)
q

If we subtract the two quantities, we get

D El¥yoy 0= IIP(Q = q|X = 0) = P(Q = g|X = 1)]
q

which is the indirect effect of gender on hiring, mediated by qualification. We call this effect
the natural indirect effect (NIE), because we allow the qualification Q to vary naturally from
applicant to applicant, as opposed to the controlled direct effect in Chapter 3, where we held
the mediator at a constant level for the entire population. Here we merely disable the capacity
of Y to respond to X but leave its response to Q unaltered.

The next question to ask is whether such a counterfactual expression can be identified from
data. It can be shown (Pearl 2001) that, in the absence of confounding the NIE can be estimated
by conditional probabilities, giving

NIE = ZE[YIX =1,0=4l[P(Q=¢qlX=0)-P(Q=¢q|X=1)]
q
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This expression is known as the mediation formula. It measures the extent to which the effect
of X on Y is explained by its effect on the mediator Q. Counterfactual analysis permits us to
define and assess NIE by “freezing” the direct effect of X on Y, and allowing the mediator (Q)
of each unit to react to X in a natural way, as if no freezing took place.

The mathematical tools necessary for estimating the various nuances of mediation are sum-
marized in Section 4.5.

4.5 Mathematical Tool Kits for Attribution and Mediation

As we examined the practical applications of counterfactual analysis in Section 4.4, we noted
several recurring patterns that shared mathematical expressions as well as methods of solu-
tion. The first was the effect of treatment on the treated, ETT, whose syntactic signature
was the counterfactual expression E[Y,|X = x'], with x and X" two distinct values of X. We
showed that problems as varied as recruitment to a program (Section 4.4.1) and additive
interventions (Example 4.4.2) rely on the estimation of this expression, and we have listed
conditions under which estimation is feasible, as well as the resulting estimand (Eqgs. (4.21)
and (4.8)).

Another recurring pattern appeared in problems of attribution, such as personal decision
problems (Example 4.4.3) and possible cases of discrimination (Example 4.4.4). Here, the
pattern was the expression for the probability of necessity:

PN=PY,=0|X=1,Y=1)

The probability of necessity also pops up in problems of legal liability, where it reads: “The
probability that the damage would not have occurred had the action not been taken (¥, = 0),
given that, in fact, the damage did occur (¥ = 1) and the action was taken (X = 1).” Section
4.5.1 summarizes mathematical results that will enable readers to estimate (or bound) PN using
a combination of observational and experimental data.

Finally, in questions of mediation (Example 4.4.5) the key counterfactual expression was

E [ Yx,MX/ ]

which reads, “The expected outcome (Y) had the treatment been X = x and, simultaneously,
had the mediator M attained the value (M,,) it would have attained had X been x’”. Section 4.5.2
will list the conditions under which this “nested” counterfactual expression can be estimated,
as well as the resulting estimands and their interpretations.

4.5.1 A Tool Kit for Attribution and Probabilities of Causation

Assuming binary events, with X = x and Y = y representing treatment and outcome, respec-
tively, and X = x/, ¥ =’ their negations, our target quantity is defined by the English
sentence:

“Find the probability that if X had been x’, ¥ would be y’, given that, in reality, X
isxand Yisy.”
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Mathematically, this reads
PN(x,y) =P(Yy =Y |X=x,Y =y) 4.27)

This counterfactual quantity, named “probability of necessity” (PN), captures the legal cri-
terion of “but for,” according to which judgment in favor of a plaintiff should be made if and
only if it is “more probable than not” that the damage would not have occurred but for the
defendant’s action (Robertson 1997).

Having written a formal expression for PN, Eq. (4.27), we can move on to the identification
phase and ask what assumptions permit us to identify PN from empirical studies, be they
observational, experimental, or a combination thereof.

Mathematical analysis of this problem (described in (Pearl 2000, Chapter 9)) yields the
following results:

Theorem 4.5.1 If Y is monotonic relative to X, that is, Y,(u) > Y(u) for all u, then PN is
identifiable whenever the causal effect P(y|do(x)) is identifiable, and

_ PO) = POldo'))

N (4.28)
P(x,y)
or; substituting P(y) = P(y|x)P(x) + P(y|x")(1 — P(x)), we obtain
N = P(y|x) — P(y|x) N P(y|x") — P(y|do(x")) (4.29)

P(ylx) P(x,y)

The first term on the r.h.s. of (4.29) is called the excess risk ratio (ERR) and is often used
in court cases in the absence of experimental data (Greenland 1999). It is also known as the
Attributable Risk Fraction among the exposed (Jewell 2004, Chapter 4.7). The second term (the
confounding factor (CF)) represents a correction needed to account for confounding bias, that
is, P(y|do(x')) # P(y|x'). Put in words, confounding occurs when the proportion of population
for whom Y =y, when X is set to x’ for everyone is not the same as the proportion of the
population for whom Y =y among those acquiring X = x” by choice. For instance, suppose
there is a case brought against a car manufacturer, claiming that its car’s faulty design led to
a man’s death in a car crash. The ERR tells us how much more likely people are to die in
crashes when driving one of the manufacturer’s cars. If it turns out that people who buy the
manufacturer’s cars are more likely to drive fast (leading to deadlier crashes) than the general
population, the second term will correct for that bias.

Equation (4.29) thus provides an estimable measure of necessary causation, which can be
used for monotonic Y, (1) whenever the causal effect P(y|do(x)) can be estimated, be it from
randomized trials or from graph-assisted observational studies (e.g., through the backdoor cri-
terion). More significantly, it has also been shown (Tian and Pearl 2000) that the expression
in (4.28) provides a lower bound for PN in the general nonmonotonic case. In particular, the
upper and lower bounds on PN are given by

max{o’ P(y)—P(yIdO(X'))} <PN < min{I’P(Y'IdO(x’))—P(X',y')} (4.30)
P(x,y) P(x,y)

In drug-related litigation, it is not uncommon to obtain data from both experimental and
observational studies. The former is usually available from the manufacturer or the agency

&
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that approved the drug for distribution (e.g., FDA), whereas the latter is often available from
surveys of the population.
A few algebraic steps allow us to express the lower bound (LB) and upper bound (UB) as

LB = ERR + CF
UB = ERR + q + CF 4.31)

where ERR, CF, and ¢ are defined as follows:

CF 2 [P(|X') — P(y)1/P(x,y) (4.32)
ERR21—-1/RR=1-PQy|x")/P(y|x) (4.33)
q = PG/|x)/P(y|x) (4.34)

Here, CF represents the normalized degree of confounding among the unexposed (X = x/),
ERR is the “excess risk ratio” and ¢ is the ratio of negative to positive outcomes among the
exposed.

Figure 4.5(a) and (b) depicts these bounds as a function of ERR, and reveals three useful
features. First, regardless of confounding, the interval UB—LB remains constant and depends
on only one observable parameter, P(y'|x)/P(y|x). Second, the CF may raise the lower bound
to meet the criterion of “more probable than not,” PN > l, when the ERR alone would not
suffice. Lastly, the amount of “rise” to both bounds is given by CF, which is the only estimate
needed from the experimental data; the causal effect P(y,) — P(y,s) is not needed.

Theorem 4.5.1 further assures us that, if monotonicity can be assumed, the upper and lower
bounds coincide, and the gap collapses entirely, as shown in Figure 4.5(b). This collapse does
not reflect ¢ = 0, but a shift from the bounds of (4.30) to the identified conditions of (4.28).

If it is the case that the experimental and survey data have been drawn at random from
the same population, then the experimental data can be used to estimate the counterfactuals

PN
Upper iN / PN
bound ower
A bound 1 \
1 /// ‘ // 1
/A % %
A=
PN y PN
1 Al J——
i —
A || ——
r/g e —
) e —
q A
A ?
V1
CF { CF {
0 ERR 1 0 ERR 1

(@ (b)

Figure 4.5 (a) Showing how probabilities of necessity (PN) are bounded, as a function of the excess
risk ratio (ERR) and the confounding factor (CF) (Eq. (4.31)); (b) showing how PN is identified when
monotonicity is assumed (Theorem 4.5.1)
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of interest, for example, P(Y, =y), for the observational as well as experimental sampled
populations.

Example 4.5.1 (Attribution in Legal Setting) A lawsuit is filed against the manufacturer of
drug x, charging that the drug is likely to have caused the death of Mr A, who took it to relieve
back pains. The manufacturer claims that experimental data on patients with back pains show
conclusively that drug x has only minor effects on death rates. However, the plaintiff argues that
the experimental study is of little relevance to this case because it represents average effects on
patients in the study, not on patients like Mr A who did not participate in the study. In particular,
argues the plaintiff, Mr A is unique in that he used the drug of his own volition, unlike subjects
in the experimental study, who took the drug to comply with experimental protocols. To support
this argument, the plaintiff furnishes nonexperimental data on patients who, like Mr A, chose
drug x to relieve back pains but were not part of any experiment, and who experienced lower
death rates than those who didn’t take the drug. The court must now decide, based on both the
experimental and nonexperimental studies, whether it is “more probable than not” that drug
X was in fact the cause of Mr A’s death.

To illustrate the usefulness of the bounds in Eq. (4.30), consider (hypothetical) data asso-
ciated with the two studies shown in Table 4.5. (In the analyses below, we ignore sampling
variability.)

The experimental data provide the estimates

P(y|do(x)) = 16/1000 = 0.016 (4.35)

P(y|do(x)) = 14/1000 = 0.014 (4.36)

whereas the nonexperimental data provide the estimates

P(y) = 30/2000 = 0.015 (4.37)
P(x,y) = 2/2000 = 0.001 (4.38)
P(ylx) = 2/1000 = 0.002 (4.39)
P(y|x) =28/1000 = 0.028 (4.40)

Table 4.5 Experimental and nonexperimental data used to illustrate the estimation
of PN, the probability that drug x was responsible for a person’s death (y)

Experimental Nonexperimental

do(x) do(x") X X
Deaths (y) 16 14 2 28
Survivals (') 984 986 998 972
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Assuming that drug x can only cause (but never prevent) death, monotonicity holds, and
Theorem 4.5.1 (Eq. (4.29)) yields

P(y|x) = POylx")  POIX') = P(y|do(x))

PN =
P@y|x) P(x,y)
_ 0.002 -0.028 0.028 —0.014 _ B34 l4=1 @41
0.002 0.001

We see that while the observational ERR is negative (—13), giving the impression that the
drug is actually preventing deaths, the bias-correction term (+14) rectifies this impression and
sets the probability of necessity (PN) to unity. Moreover, since the lower bound of Eq. (4.30)
becomes 1, we conclude that PN = 1.00 even without assuming monotonicity. Thus, the plain-
tiff was correct; barring sampling errors, the data provide us with 100% assurance that drug x
was in fact responsible for the death of Mr A.

To complete this tool kit for attribution, we note that the other two probabilities that came up
in the discussion on personal decision-making (Example 4.4.3), PS and PNS, can be bounded
by similar expressions; see (Pearl 2000, Chapter 9) and (Tian and Pearl 2000).

In particular, when Y,(«) is monotonic, we have

PNS=P(Y,=1,Y, =0)
=P(Y,=1)-P(Y, =1) (4.42)

as asserted in Example 4.4.3, Eq. (4.26).

Study questions
Study question 4.5.1

Consider the dilemma faced by Ms Jones, as described in Example 4.4.3. Assume that, in
addition to the experimental results of Fisher et al. (2002), she also gains access to an obser-
vational study, according to which the probability of recurrent tumor in all patients (regardless
of irradiation) is 30%, whereas among the recurrent cases, 70% did not choose therapy. Use
the bounds provided in Eq. (4.30) to update her estimate that her decision was necessary
for remission.

4.5.2 A Tool Kit for Mediation

The canonical model for a typical mediation problem takes the form:
t=fw,) m=f (tu) y=ft.mu) (4.43)

where T (treatment), M (mediator), and Y (outcome) are discrete or continuous random vari-
ables, fr,fy;, and fy are arbitrary functions, and Uy, Uy, Uy represent, respectively, omit-
ted factors that influence 7', M, and Y. The triplet U = (Uy, Uy, Uy) is a random vector that
accounts for all variations among individuals.

In Figure 4.6(a), the omitted factors are assumed to be arbitrarily distributed but mutually
independent. In Figure 4.6(b), the dashed arcs connecting U; and U,, (as well as U,; and Uy)
encode the understanding that the factors in question may be dependent.
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S (8, upp)
Sfy(t, m, uy)

(a) T (b) Y

Figure 4.6 (a) The basic nonparametric mediation model, with no confounding. (b) A confounded
mediation model in which dependence exists between UM and (UT, Uy)

Counterfactual definition of direct and indirect effects
Using the structural model of Eq. (4.43) and the counterfactual notation defined in
Section 4.2.1, four types of effects can be defined for the transition from 7 =0 to 7 = 1.
Generalizations to arbitrary reference points, say from 7 =t to T = ¢/, are straightforward':
(a) Total effect —

= E[Y|do(T = 1)] — E[Y|do(T = 0)] (4.44)

TE measures the expected increase in Y as the treatment changes from 7= 0 to 7 = 1, while
the mediator is allowed to track the change in T naturally, as dictated by the function f,.
(b) Controlled direct effect —

CDE(m) = E[Y,,, — Yy,,]
= E[Y|do(T = 1,M = m)] - E[Y|do(T = 0,M = m)] (4.45)

CDE measures the expected increase in Y as the treatment changes from 7' = O to 7' = 1, while
the mediator is set to a specified level M = m uniformly over the entire population.
(¢) Natural direct effect —

NDE = E[Y, 3y, = Yo, ] (4.46)

NDE measures the expected increase in Y as the treatment changes from 7’ = O to 7 = 1, while
the mediator is set to whatever value it would have attained (for each individual) prior to the
change, that is, under 7' = 0.

(d) Natural indirect effect —

NIE = E[YO,MI - YO,MO] (4.47)

NIE measures the expected increase in Y when the treatment is held constant, at 7 = 0, and M
changes to whatever value it would have attained (for each individual) under 7 = 1. It captures,
therefore, the portion of the effect that can be explained by mediation alone, while disabling
the capacity of Y to respond to X.

! These definitions apply at the population levels; the unit-level effects are given by the expressions under the expec-
tation. All expectations are taken over the factors UM and U ,
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We note that, in general, the total effect can be decomposed as
TE = NDE — NIE, (4.48)

where NIE, stands for the NIE under the reverse transition, from 7" = 1 to 7' = 0. This implies
that NV/E is identifiable whenever NDE and TF are identifiable. In linear systems, where reversal
of transitions amounts to negating the signs of their effects, we have the standard additive
formula, TE = NDE + NIE.

We further note that TE and CDE(m) are do-expressions and can, therefore, be estimated
from experimental data or in observational studies using the backdoor or front-door adjust-
ments. Not so for the NDE and NIE; a new set of assumptions is needed for their identification.
Conditions for identifying natural effects

The following set of conditions, marked A-1 to A-4, are sufficient for identifying both direct
and indirect natural effects.

We can identify the NDE and NIE provided that there exists a set W of measured covariates
such that

A-1 No member of W is a descendant of 7.

A-2 W blocks all backdoor paths from M to Y (after removing 7 — M and T — Y).

A-3 The W-specific effect of T on M is identifiable (possibly using experiments or adjust-
ments).

A-4 The W-specific joint effect of {7, M} on Y is identifiable (possibly using experiments or
adjustments).

Theorem 4.5.2 (Identification of the NDE) When conditions A-1 and A-2 hold, the natural
direct effect is experimentally identifiable and is given by

NDE = Z Z[E[Y|do(T =1,M =m),W =w] — E[Y|do(T = 0,M = m), W = w]]

m w

X P(M = m|do(T = 0), W = w)P(W = w) (4.49)

The identifiability of the do-expressions in Eq. (4.49) is guaranteed by conditions A-3 and A-4
and can be determined using the backdoor or front-door criteria.

Corollary 4.5.1 If conditions A-1 and A-2 are satisfied by a set W that also deconfounds the
relationships in A-3 and A-4, then the do-expressions in Eq. (4.49) are reducible to conditional
expectations, and the natural direct effect becomes

NDE = Z Z[E[Y|T= LM=mW=w]—E[Y|T=0,M=mW =w]|]

X P(M = m|T =0, W = w)P(W = w) (4.50)

In the nonconfounding case (Figure 4.6(a)), NDE reduces to

NDE = Y[E[Y|T =1,M =m] - E[Y|T = 0,M = ml]P(M = m|T = 0). 4.51)
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Similarly, using (4.48) and TE = E[Y|T = 1] — E[Y|T = 0], NIE becomes

NIE= ) E[Y|T=0,M=ml[PM=m|T=1)-PM=m|T = 0)] (4.52)

The last two expressions are known as the mediation formulas. We see that while NDE is a
weighted average of CDE, no such interpretation can be given to NIE.

The counterfactual definitions of NDE and NIE (Egs. (4.46) and (4.47)) permit us to give
these effects meaningful interpretations in terms of “response fractions.” The ratio NDE/TE
measures the fraction of the response that is transmitted directly, with M “frozen.” NIE/TE
measures the fraction of the response that may be transmitted through M, with Y blinded to
X. Consequently, the difference (TE — NDE)/TE measures the fraction of the response that is
necessarily due to M.

Numerical example: Mediation with binary variables

To anchor these mediation formulas in a concrete example, we return to the encouragement-
design example of Section 4.2.3 and assume that 7 = 1 stands for participation in an enhanced
training program, Y = 1 for passing the exam, and M = 1 for a student spending more than
3 hours per week on homework. Assume further that the data described in Tables 4.6 and 4.7
were obtained in a randomized trial with no mediator-to-outcome confounding (Figure 4.6(a)).
The data shows that training tends to increase both the time spent on homework and the rate
of success on the exam. Moreover, training and time spent on homework together are more
likely to produce success than each factor alone.

Our research question asks for the extent to which students’ homework contributes to their
increased success rates regardless of the training program. The policy implications of such
questions lie in evaluating policy options that either curtail or enhance homework efforts,
for example, by counting homework effort in the final grade or by providing students with

Table 4.6 The expected success (Y) for treated (7" = 1) and untreated (7 = 0)
students, as a function of their homework (M)

Treatment Homework Success rate
T M EY|T=t,M =m)
1 1 0.80
1 0 0.40
0 1 0.30
0 0 0.20

Table 4.7 The expected homework (M) done by treated
(T =1) and untreated (7' =0) students

Treatment Homework
T EM|T =1)
0 0.40
1 0.75
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adequate work environments at home. An extreme explanation of the data, with significant
impact on educational policy, might argue that the program does not contribute substantively to
students’ success, save for encouraging students to spend more time on homework, an encour-
agement that could be obtained through less expensive means. Opposing this theory, we may
have teachers who argue that the program’s success is substantive, achieved mainly due to the
unique features of the curriculum covered, whereas the increase in homework efforts cannot
alone account for the success observed.
Substituting the data into Eqgs. (4.51) and (4.52) gives

NDE = (0.40 — 0.20)(1 — 0.40) + (0.80 — 0.30)0.40 = 0.32
NIE = (0.75 — 0.40)(0.30 — 0.20) = 0.035
TE =0.80 % 0.75 4+ 0.40 X 0.25 — (0.30 X 0.40 4+ 0.20 X 0.60) = 0.46
NIE/TE = 0.07, NDE/TE = 0.696, 1 — NDE/TE = 0.304
We conclude that the program as a whole has increased the success rate by 46% and that a
significant portion, 30.4%, of this increase is due to the capacity of the program to stimulate

improved homework effort. At the same time, only 7% of the increase can be explained by
stimulated homework alone without the benefit of the program itself.

Study questions
Study question 4.5.2

Consider the structural model:

y=pim+ Pt +u, (4.53)
m=yt+u, (4.54)

(a) Use the basic definition of the natural effects (Eqs. (4.46) and (4.47)) to determine TE,
NDE, and NIE.
(b) Repeat (a) assuming that U, is correlated with u,,.

Study question 4.5.3

Consider the structural model:
y = Bim+ Pyt + Pstm + Pyw + u,, (4.55)
m=yt+y,w+u, (4.56)
w=at+u, (4.57)

with pstm representing an interaction term.
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(a) Use the basic definition of the natural effects (Eqs. (4.46) and (4.47)) (treating M as
the mediator), to determine the portion of the effect for which mediation is necessary
(TE — NDE) and the portion for which mediation is sufficient (NIE). Hint: Show that:

NDE = f, + ap, (4.58)

NIE = f,(y, + arp) (4.59)

TE = py + (y; + ayy)(f5 + p1) + apf, (4.60)

TE — NDE = (B, + p3)(y, + ayy) (4.61)

(b) Repeat, using W as the mediator.

Study question 4.5.4

Apply the mediation formulas provided in this section to the discrimination case discussed
in Section 4.4.4, and determine the extent to which ABC International practiced discrimina-
tion in their hiring criteria. Use the data in Tables 4.6 and 4.7, with T = 1 standing for male
applicants, M = 1 standing for highly qualified applicants, and Y = 1 standing for hiring.
(Find the proportion of the hiring disparity that is due to gender, and the proportion that could
be explained by disparity in qualification alone.)

Ending Remarks

The analysis of mediation is perhaps the best arena to illustrate the effectiveness of the
counterfactual-graphical symbiosis that we have been pursuing in this book. If we examine
the identifying conditions A-1 to A-4, we find four assertions about the model that are not
too easily comprehended. To judge their plausibility in any given scenario, without the graph
before us, is unquestionably a formidable, superhuman task. Yet the symbiotic analysis frees
investigators from the need to understand, articulate, examine, and judge the plausibility of
the assumptions needed for identification. Instead, the method can confirm or disconfirm
these assumptions algorithmically from a more reliable set of assumption, those encoded in
the structural model itself. Once constructed, the causal diagram allows simple path-tracing
routines to replace much of the human judgment deemed necessary in mediation analysis;
the judgment invoked in the construction of the diagrams is sufficient, and that construction
requires only judgment about causal relationships among realizable variables and their
disturbances.

Bibliographical Notes for Chapter 4

The definition of counterfactuals as derivatives of structural equations, Eq. (4.5), was
introduced by Balke and Pearl (1994a,b), who applied it to the estimation of probabilities of
causation in legal settings. The philosopher David Lewis defined counterfactuals in terms of
similarity among possible worlds Lewis (1973). In statistics, the notation Y,(«) was devised
by Neyman (1923), to denote the potential response of unit « in a controlled randomized trial,
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under treatment X = x. It remained relatively unnoticed until Rubin (1974) treated Y, as a
random variable and connected it to observed variable via the consistency rule of Eq. (4.6),
which is a theorem in both Lewis’s logic and in structural models. The relationships among
these three formalisms of counterfactuals are discussed at length in Pearl (2000, Chapter 7),
where they are shown to be logically equivalent; a problem solved in one framework would
yield the same solution in another. Rubin’s framework, known as “potential outcomes,”
differs from the structural account only in the language in which problems are defined, hence,
in the mathematical tools available for their solution. In the potential outcome framework,
problems are defined algebraically as assumptions about counterfactual independencies, also
known as “ignorability assumptions.” These types of assumptions, exemplified in Eq. (4.15),
may become too complicated to interpret or verify by unaided judgment. In the structural
framework, on the other hand, problems are defined in the form of causal graphs, from which
dependencies of counterfactuals (e.g., Eq. (4.15)) can be derived mechanically. The reason
some statisticians prefer the algebraic approach is, primarily, because graphs are relatively
new to statistics. Recent books in social science (e.g., Morgan and Winship 2014) and in
health science (e.g., VanderWeele 2015) are taking the hybrid, graph-counterfactual approach
pursued in our book.

The section on linear counterfactuals is based on Pearl (2009, pp. 389-391). Recent
advances are provided in Cai and Kuroki (2006) and Chen and Pearl (2014). Our discussion
of ETT (Effect of Treatment on the Treated), as well as additive interventions, is based on
Shpitser and Pearl (2009), which provides a full characterization of models in which ETT is
identifiable.

Legal questions of attribution, as well as probabilities of causation are discussed at length in
Greenland (1999) who pioneered the counterfactual approach to such questions. Our treatment
of PN, PS, and PNS is based on Tian and Pearl (2000) and Pearl (2000, Chapter 9). Recent
results, including the tool kit of Section 4.5.1, are given in Pearl (2015a).

Mediation analysis (Sections 4.4.5 and 4.5.2), as we remarked in Chapter 3, has a long tra-
dition in the social sciences (Duncan 1975; Kenny 1979), but has gone through a dramatic
revolution through the introduction of counterfactual analysis. A historical account of the con-
ceptual transition from the statistical approach of Baron and Kenny (1986) to the modern,
counterfactual-based approach of natural direct and indirect effects (Pearl 2001; Robins and
Greenland 1992) is given in Sections 1 and 2 of Pearl (2014a). The recent text of VanderWeele
(2015) enhances this development with new results and new applications. Additional advances
in mediation, including sensitivity analysis, bounds, multiple mediators, and stronger identi-
fying assumptions are discussed in Imai et al. (2010) and Muthén and Asparouhov (2015).

The mediation tool kit of Section 4.5.2 is based on Pearl (2014a). Shpitser (2013) has derived
a general criterion for identifying indirect effects in graphs.
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