39" IEEE International Conference on Software Maintenance and Evolution
(ICSME 2023) Bogota, Colombia

Most Influential Paper Award from

ICSME 2013

“ An Empirical Study of API Stability and Adoption in the
Android Ecosystem”
by Tyler McDonnell, Baishakhi Ray, and Miryung Kim

COLUMBIA
S UNIVERSITY

What was 2013 like?

Senior undergraduate student:
Tyler McDonnell

2023: Senior Manager,
Al Researcher,
lives in Austin area

2013: Senior Undergrad at
University of Texas, Austin

2018: PhD in Al from
University of Texas, Austin

4th Year graduate Student:
Baishakhi Ray

Assistant Professor,

Assistant/Associate Professor, University of Virginia

Columbia University at New York

gth year Assistant Professor:
Miryung Kim

Suman & Baishakhi
Farewell in Austin
Sept 17 2013

DaV|d Notkln

Jan1i, 1955-

Apr 22, 2013 ICSM 2013

Submission Deadline
Apr 24, 2013
~ Feb252013 Conf: Sept 22-27 2013

Deadlines sketched on
the white board

ICSM 2130 in Eindhoven, The
Netherlands.

What ideas have motivated and
oired Android API Evolution?

Dagstuhl: Multiversion Program
Analysis in 2005

Miryung’s PhD @
University of Washington

My PhD Advisor:
David Notkin
(1 Jan 1955 — 22 Apr 2013)

Analyses of Software Evolution
- Evolution of Code Clones

A

High-level changes are often systematic at

a code level

.2

Automatic Inference of

High-Level Change Descriptions
- Rule-based Change Representations
- Rule LearningAlgorithms

Baishakhi’'s PhD @ UT Austin

Cross-system co-evolution

A Case Study of Cross-System Porting in Forked Projects

Baishakhi Ray and Miryung Kim
The University of Texas at Austin
Austin, TX USA
rayb@utexas.edu, miryung@ece.utexas.edu

Detecting and Characterizing Semantic
Inconsistencies in Ported Code

Baishakhi Ray, Miryung Kim Ruzette Person MNeha Rungta
The University of Texas at Austin MASA Langley Research Center NASA Ames Research Center
Austin, USA Hampton, USA Mountain View, USA
‘ rayb@utexas.edu, miryung @ece utexas.edu suzelie. person & nasa gov neha s rungiadnasa. gov
(Dec., ‘04)
Net2 0 NetBSD
Net1.0 et2. Net3.0 Net4.0 Net5.0
______ _
-~

A patch propagation latency = S 47 months

target patch release date — ‘s
source patch release date. R T
® ® 8
Open3.7 Open4.0 Opend.4 5penBSD

(Nov.,
'08) 10

Na Meng’'s PhD @ UT Austin

Automating Updates to Clones;

Systematic Editing:
Generating Program Transformations from an Example

NoMeng MigungKim Kathryn S. McKinley LASE: Locating and Applying Systematic Edits by Learning

The University of Texas at Austin frDm Exam ple:‘h

mengnal521738gmail.com, miryung@ece. utexas.edu, mckinley@cs. utexas.edu
MNa Meng" Mirvung Kim® Kathryn 5. McKinley*!

The University of Texas at Austin® Microsol it Research’
mengnalS @ csutexas.edu, miryung @ece.utexas.edu, mekinley @microsofi.com

Abstract edit script
application

Identifier &
edit position
abstraction

Aold BoId CoId

Program Context
differencing extraction

new new

Which ideas have influenced us to
study evolution in software

ecosystem?

Evolutionary Studies on Software

Analysis of the Linux Kernel Evolution Using Code Clone Coverage

Simone Livieri' Yoshiki Higof Makoto Matsushita' Katsuro Inoue’

'Graduate School of Information Science and Technology, Osaka University
1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
E-mail: {simone, y-higo, matusita, inoue}@ist.osaka-u.ac.jp

Evolution in Open Source Software: Understanding Collateral Evolution in

A Case Study Linux Device Drivers
Michael W. Godfrey and Qiang Tu Yoann Padioleau Julia L. Lawall Gilles Muller
. OBASCO Group DIKU OBASCO Group
Software Architecture GTDUP (S WAG) Ecole des Mines de University of Copenhagen Ecole des Mines de
: i] Nantes-IMRIA, LINA 2100 Copenhagen @, Mantes-INRIA, LINA
Depaﬂment Gf CDmPUter SCIEHCE’ Unlverf;lt}, Of Wateﬂﬂﬂ 44307 Mantes cedex 3, France Denmark 44307 Nantes cedex 3, France

email: {migod, gtu}@swag.uwaterloo.ca Yoann.Padioleau@emn.fr julia@diku.dk Gilles.Muller@emn.fr

Notion of Software Ecosystem

Lungu et al.’s definition—a — C
collection of software projects
which are developed and co-

evolve in the same environment.

Robbes etal. found that14% of = =
deprecated methods produce == :_
non-trivial APl change effects.

Studies in Smalltalk

Impact of APl Refactoring on

Client Applications

Dig and Johnson found that 80% of the code changes that
break client-side code are API refactorings.

Xing and Stroulia studied Eclipse evolution history and found
that 70% of structural changes are due to refactorings and
existing IDEs lack support for complex refactoring.

Kim et al. founs rs after API

pklie piskiie Toerd e bepeprfogr DL, fonerei]

refactorings
* REFACTOR

* YOUR CODE.

*

Fast-paced Android Ecosystem
Evolution

00 ‘“ Y 3w

Alpha Beta Cupcake Donut Eclalr Froyo Ginger H lceCrmm - ;o .'
e & ngad camb Sandwich Bean

- - . -
- 1.: . . - L 8 -
2008 2009 2009 2oq£.zoo,9:*201 310~ 2011 z‘o"'“f "2012:-2013 2014 2015
: ™ — e

- \ T . D4 .

Excerpts from Original
ICSM 2013 Talk

An Empirical Study of API Stability and Adoption in the Android Ecosystem

Tyler McDonnell, Baishakhi Ray, Miryung Kim
Department of Electrical and Computer Engineering
The University of Texas at Austin

Austin, TX, USA

An Empirical Study of API
Stability and Adoption in the
Android Ecosystem

Tyler McDonnell, Baishakhi Ray and Miryung Kim
The University of Texas at Austin

Motivation

Despite the benefit of new or updated APIs,
developers are often slow to adopt new APIs.

APl evolution and its associated ripple effect
throughout software ecosystems are still
under-studied.

Study Findings

We study the co-evolution of Android APlIs
and applications using the github data

Android is evolving fast at a rate of 115 API
updates per month.

28% of APl references in client apps are outdated
with a median lagging time of 16 months.

APl usage adaptation code is defect prone than
other code.

Outline

Motivation & Related Work
Study Approach
Research Questions and Results

Limitations
Conclusions

Study Approach

0 Android API a Mobile Apps Iin
Version History Github

— S
9 Correlate changes in mobile apps
with changes in Android OS

Client Code :
APl Version: Remote.java
14 Commit Date: January 26, 2012

Release date: October 19, 2011

import android.widget.RemoteViews;

int viewID = settings.getViewID() ;
Intent I = new Intent (this,
ActivityTwo.class) ;

Class: android.widget.RemoteViews

void setRemoteAdapter(int, Intent)

setRemoteAdapter(viewlD,);

Android APl Version History Client Source Code

Android OS API Evolution

Characteristics

APl Version 3to 15

Class Method Fields
A A + - A + -
Min 37 0 0 0 14 0 0
Max | 269 | 416 o8 9 619 | 205 0
Avg | 149 | 158 37 2 179 32 0
Rate | 42 44 11 <1 51 9 0

Android OS is evolving fast at the rate of 115 APl updates per month.

Android API Evolution

Characteristics

APl Update Interval (Month)

. =
=
8 8 a
-
text .
| .
L
|
|
i
i
Ml E |
|
|
|
[
L
L
T
i
| e
I
L
L

dat abase
1!
L=

A0
' et
15 D' W

Hardware, user interface and web support are evolving fast.

Data Sets : Mobile Apps

Revision LOC Author % Android Refs.
Congress Tracker 1359 13349 7 30%
Apollo M 9 15783 1 35%
Cyanogen 109 28972 20 24%
Google Analytic 926 52932 23 26%
LastFM 212 9771 7 16%
mp3Tunes 104 9608 1 22%
OneBusAway 497 51784 3 22%
ownCloud 665 25109 12 30%
RedPhone 116 21315 3 19%
XMBCremote 928 92893 24 22%

Around 25% of all method and field references in client code use

Android APIs.

Research Questions

Q1i: What is the lag time between client code
and the most recent Android API?
Q2: How quickly do APl changes propagate

throughout ¢

ient code?

Q3: What is the relationship between API
updates and bugs in clients?

Q4: Whatis t

ne relationship between API

stability and adoption?

Qa: What is the lag time between client

code and the most recent Android API?

APl Version: 7
APl Version: 4 Release Date: October 26, 2009
Release Date: September 15, 2009 Changed Method:
Added Method: void setButton2(charSequence)
void setButton2(charSequence) *now deprecated*

Android API
Lag Time: 2 months
Client Code
Client Code
Commit Date: December 20, 2009
Method Use:

setButton2(charSequence)

Lag time: the number of months elapsed between the release of
the new version and the commit time of the outdated APl usage

Qa: What is the lag time between client

code and the most recent Android API?

o
]
Wyl

=
Ln

0.25

% of outdated API usages
-

1 8 15 22 29 36

Lag Time (months)

A half of all outdated API references are lagging behind by 16
months or more.

Q2: How quickly do API changes

propagate throughout client code?

API Version: 1 APl Version: g9
Release Date: September 23, 2008 Release Date: December 6, 2010
Added Method: Changed Method:
Method getMethod(String) Method getMethod(String, Class)
Android API
Propagation Time: 3 months
Client Code
Client Code Client Code
Commit Date: March 18, 2009 Commit Date: March 8, 2011
Method Use: Method Use:
getMethod(String) getMethod(String, Class)

Propagation time: time difference in months between the API
release and the timing of client adaptation

Q2: How quickly do API changes

propagate throughout client code?

=
~
LA

1 8 15 22 29 36

% of Updated API References
=
Pl
Ln

Propagation Time (months)

The median propagation time is 14 months. Outdated APl usages
upgrade to newer APIs but at a much slower pace than the API
release rate.

Q3: What is the relationship between

APl updates and bugs?

Spearman Correlation with bugs

CLOC APl Update Non API Update
Congress Tracker 0.39 0.56 0.39
OneBusAway 0.26 0.46 0.25
RedPhone 0.23 0.24 0.23
XMBCremote 0.34 0.62 0.33
Google Analytic 0.36 0.54 0.31
ownCloud 0.43 0.55 042
Cyanogen 0.58 0.63 0.58
LastFM 0.42 0.37 043

Files with APl usage adaptations are defect-prone in all
applications except LastFM.

Q4: What is the relationship between

API stability and usage?

API evolution vs client usage

40 ’ 20
2
=

30 15 &

S =

o >
()

§ 20 10 £

o b
©

< 5 3
=)
=
<

f

QX g 2zessBresE 8L 383
Q 0O @ 6 O 2 =2 9 c 538 © C Q@
o+ o ; o+~ -+ o+ + R S S

£ c © @© Q W
v T o Q c = &8 9
[O o £ o o =]
o < 3 © ©
——usage (%) APl update interval

Correlation between API usage (%) and APl update interval: -0.47
Fast evolving APIs are used more by clients.

Reflections on the paper

SE community took this work to

several directions

Change Impact Analysis
of APls

API migration
Android
evolution

API testing and

RS A e N vulnerability analysis

Automated API

App store aiEE recommendation

Generic API
related

Github/Stack overflow
analysis to mine API Third party library
patterns

Some follow-up studies on Android

APl evolution

More empirical
analysis on API
fragmentation

Session J3: Problematic Patches CCS"17, October 30-November 3, 2017, Dallas, TX, USA

Keep me Updated: An Empirical Study of Third-Party Library
Updatability on Android

Erik Derr, Sven Bugiel Sascha Fahl, Yasemin Acar Michael Backes
CISPA, Saarland University Leibniz University Hannover CISPA, Saarland University
Saarland Informatics Campus Saarland Informatics Campus

Testing to
handle API

fragmentation

Continuous, Evolutionary and Large-Scale: A New
Perspective for Automated Mobile App Testing

Mario Linares-Véisquez', Kevin Moran?, and Denys Poshyvanyk?
Wniversidad de los Andes, Bogotd, Colombia
“College of William & Mary, Williamsburg, VA, USA

Fixing API
fragmentation

Taming Android Fragmentation: Characterizing and
Detecting Compatibility Issues for Android Apps

Lili Wei, Yepang Liu, Shing-Chi Cheung

Department of Computer Science and Engineering
The Hong Kong University of Science and Technology, Hong Kong, China
{weias, andrewust, scci@cse.ust.hk

Some follow-up studies on API

Evolution in Ecosystem

Understanding the Test Automation Culture
of App Developers

Pavneet Singh Kochhar!, Ferdian Thung', Nachiappan Magappan®, Thomas Zimmermann®, and David Lo!
LSingapore Management University
Irdicrosofll Research
{kochharps.201 2 ferdiant. 2013 davidlo } & smu.cdu. sg, { nachin. tzimmer } & microsoft.com

Can Automated Pull Requests Encourage Software
Developers to Upgrade Out-of-Date Dependencies?

Samim Mirhossein
North Carolina State University

Chris Parnin
Morth Carolina State University
Raleigh, NC, USA Raleigh, NC, USA
smirhos@ncsu.edu cjparnin@®@ ncsu.edu

= When and How to Make Breaking Changes: Policies and
Practices in 18 Open Source Software Ecosystems

CHRIS BOGART, CHRISTIAN KASTNER, and JAMES HERBSLEB,
Carnegie Mellon University, USA

FERDIAN THUNG, Singapore Management University, Singapore

Thanks to Miryung'’s Students

From Right to Left

Baishakhi Ray (PhD 2013 =Assistant Prof @ Columbia) Detecting Recurring Changes and Errors

Na Meng (PhD 2014 = Assistant Prof @ Virginia Tech) Automating Recurring Changes & Clone Removal

Tianyi Zhang (PhD 2019, Postdoc @ Harvard) Leveraging Redundancy for Code Review, Testing, APl Usage Mining
Muhammad Ali Gulzar (PhD 2020 = Assistant Prof @ Virginia Tech) Debugging and Testing for Big Data Analytics
Myoungkyu Song (Postdoc 2015 = Assistant Prof @ Nebraska, Omaha) Error Detection in Refactoring Edits

Thanks to Baishakhi’s Students

Saikat Chakraborty (PhD 2022 =Senior Researcher @ Microsoft
Research RiSE group)

Kexin Pei (PhD 2023/Postdoc =Assistant Professor, U Chicago)

Yuchi Tian(PhD 2021 =Facebook Research)

Thankful to ICSME “Community”

———— e

N IcsM 2013 Einhoven

|ICSM 2009 Edmonton |ICSM 2011 Williamsburg
My first PC My first OC/ ERA co-chair

ICSME 2019 ICSME 2019-2022

ICSM Riva del Gard
2012 RlVa delhards My first PC co-chair SC membership

ICSM 2013 “Friendly” Memories

Meet, Learn, and Share Monday 9/23/13 1 Inbox x S O

Emily Hill hillem@mail. montclair.edu via ece.utexas.edu Sun, Sep 22, 2013, 2:44PM Yk] :

to Lori, Lori, Anca.lonita, U.Tikhonova, a.farcasi, anne.etien, aschwar2, bazelli, camargo, carolina.chiao, Dawi -

Greetings!

Lori and | are excited to join everyone tomorrow for our Meet, Learn, and Share Session at ICSM 2013. Since
we have this great opportunity with over a dozen ladies in software maintenance attending, please try to
think ahead about what you'd like to get out of the event (e.g., what questions you'd like answered or
partnerships you'd like to form). We will have an opportunity during the pre-dinner session to network and
think about how best to address the questions & issues you bring with you.

The schedule:
4-5:45 pm Session in 2.03 Zwarte Doos (building #55 on the map http://www.tue.nl/fileadmin/
content/universiteit/Over de universiteit/Route Plattegrond/plattegrond/actuele plattegrond/90--GIPO
20130815 .pdf)

5:45 pm walk to Usine, Lichttoren 6
6-8:30 pm Dinner

We look forward to seeing you at ICSM!
Emily & Lori

39" IEEE International Conference on Software Maintenance and Evolution
(ICSME 2023) Bogota, Colombia

Most Influential Paper Award from

ICSME 2013

“ An Empirical Study of API Stability and Adoption in the
Android Ecosystem” David Notkin
by Tyler McDonnell, Baishakhi Ray, | | == SNCCTIEELE)

and Miryung Kim

COLUMBIA
UNIVERSITY

Study Limitations and Future Work

False negatives and positives in detecting AP|
usage updates.

Our method of detecting lagging methods
does not take into account multi-version API
support.

We study the correlation between APl usage,
adoption, and bugs, but not causation.
External validity beyond studied mobile apps
from github.

Summary and Future Work

We study on the co-evolution of Android OS and
its clients.

28% of Android references are lagging behind the
latest version with a median lagging time of 16
months.

22% of outdated API references upgrade to use newer
APls. The median propagation time is 14 months.

Fast-evolving APIs are used more.

APl updates are more defect prone than other types
of changes in client code.

Summary and Future Work

Various stakeholders affect the process of
APl adoption in the software ecosystem. We
need to identify factors affecting API
adoption.

Our goal is to automate required AP
adaptations in client applications using our
example-based program transformation
approach [Meng et al. 2013.]

Qa: What is the lag time between client

code and the most recent Android API?

Lagging API

references(%)
Congress Tracker 18%
Apollo M 2%
Cyanogen 12%
Google Analytic 37%
LastFM 43%
mp3Tunes 5%
OneBusAway 3%
ownCloud 18%
RedPhone 43%
XMBCremote 15%
Average 28%

Q2: How quickly do API changes

propagate throughout client code?

% of outdated usages that were
upgraded to use newer APls

Congress Tracker 45%
Apollo Music 0%
Cyanogen 27%
Google Analytic 34%
LastFM 5%
mp3Tunes 0%
OneBusAway 12%
ownCloud 29%
RedPhone 39%
XMBCremote 33%
Average 22%

Qa: What is the lag time between client

code and the most recent Android API?

Lag (# Method) Lagging API

references(%)
Congress Tracker 216 18%
Apollo M 964 12%
Cyanogen 171 12%
Google Analytic 1409 37%
LastFM 181 43%
mp3Tunes 26 9%
OneBusAway 14 3%
ownCloud 489 18%
RedPhone 498 43%
XMBCremote 937 15%
Average 451 28%

Qs: What is the relationship between

API stability and adoption?

API evolution vs propagation count

— 40 20
R £
E 30 15 5
= E
pt =
£ 20 e 10 B
E | A 5
] lﬂ / - 5 .E
3 g
2 0 2
e =t e gl =— [T = (%51 ==
“tsfcf5g8spes58z3€88 gz
T a8 2cLE - - > E

TP og g g g 288

= ‘.:ﬁ R = s [

T < Z e o
~propagation count (%) APl update interval

Correlation between API usage (%) and APl update interval: -0.47
Clients update to faster evolving APIs more frequently.

lignl
ApplEalznn

Lpndln N o
Lanpres Dracker
Lo ratpem
“||:1_'|r 5

T o

it Furees

Clne s Away
by L

Eed Plioss:

XMEC remmle

E1gune 5.

Azalrnd

Degres O

Tsdal
AP APl

U3
[] 195
=10 P
1 Ml 1%

]]

"3l f L

KR i
B30 4304

ER | LT

% Amalnind
APl

I Andraoid APl dependence of cliest

Unigee
Aslcaid AF]

code

Related Work

Many techniques have been proposed to ease
APl update and version incompatibilities

APl evolution and its associated ripple effect
through ecosystems are under-studied

Robbes et al. study how API deprecation affects
client applications in Smalltalk.
Kim et al. study the relationship between API

refactoring and bugs in libraries.

	Slide 1: Most Influential Paper Award from ICSME 2013 “ An Empirical Study of API Stability and Adoption in the Android Ecosystem” by Tyler McDonnell, Baishakhi Ray, and Miryung Kim
	Slide 2: What was 2013 like?
	Slide 3: Senior undergraduate student: Tyler McDonnell
	Slide 4: 4th Year graduate Student: Baishakhi Ray
	Slide 5: 5th year Assistant Professor: Miryung Kim
	Slide 6: ICSM 2130 in Eindhoven, The Netherlands.
	Slide 7: What ideas have motivated and inspired Android API Evolution?
	Slide 8: Dagstuhl: Multiversion Program Analysis in 2005
	Slide 9: Miryung’s PhD @ University of Washington
	Slide 10: Baishakhi’s PhD @ UT Austin Cross-system co-evolution
	Slide 11: Na Meng’s PhD @ UT Austin Automating Updates to Clones
	Slide 12: Which ideas have influenced us to study evolution in software ecosystem?
	Slide 13: Evolutionary Studies on Software
	Slide 14: Notion of Software Ecosystem
	Slide 15: Impact of API Refactoring on Client Applications
	Slide 16: Fast-paced Android Ecosystem Evolution
	Slide 17: Excerpts from Original ICSM 2013 Talk
	Slide 18: An Empirical Study of API Stability and Adoption in the Android Ecosystem
	Slide 19: Motivation
	Slide 20: Study Findings
	Slide 21: Outline
	Slide 22: Study Approach
	Slide 23: Android OS API Evolution Characteristics
	Slide 24: Android API Evolution Characteristics
	Slide 25: Data Sets : Mobile Apps
	Slide 26: Research Questions
	Slide 27: Q1: What is the lag time between client code and the most recent Android API?
	Slide 28: Q1: What is the lag time between client code and the most recent Android API?
	Slide 29: Q2: How quickly do API changes propagate throughout client code?
	Slide 30: Q2: How quickly do API changes propagate throughout client code?
	Slide 31: Q3: What is the relationship between API updates and bugs?
	Slide 32: Q4: What is the relationship between API stability and usage?
	Slide 33: Reflections on the paper
	Slide 34: SE community took this work to several directions
	Slide 35: Some follow-up studies on Android API evolution
	Slide 36: Some follow-up studies on API Evolution in Ecosystem
	Slide 37: Thanks to Miryung’s Students
	Slide 38: Thanks to Baishakhi’s Students
	Slide 39: Thankful to ICSME “Community”
	Slide 40: ICSM 2013 “Friendly” Memories
	Slide 41: Most Influential Paper Award from ICSME 2013 “ An Empirical Study of API Stability and Adoption in the Android Ecosystem” by Tyler McDonnell, Baishakhi Ray, and Miryung Kim
	Slide 42
	Slide 43: Study Limitations and Future Work
	Slide 44: Summary and Future Work
	Slide 45: Summary and Future Work
	Slide 46: Q1: What is the lag time between client code and the most recent Android API?
	Slide 47: Q2: How quickly do API changes propagate throughout client code?
	Slide 48: Q1: What is the lag time between client code and the most recent Android API?
	Slide 49: Q5: What is the relationship between API stability and adoption?
	Slide 50
	Slide 51: Related Work

