
Most Influential Paper Award from
ICSME 2013
“ An Empirical Study of API Stability and Adoption in the
Android Ecosystem”
by Tyler McDonnell, Baishakhi Ray, and Miryung Kim

39th IEEE International Conference on Software Maintenance and Evolution
(ICSME 2023) Bogota, Colombia

What was 2013 like?

Senior undergraduate student:
Tyler McDonnell

2018: PhD in AI from
University of Texas, Austin

2023: Senior Manager,
AI Researcher,

lives in Austin area

2013: Senior Undergrad at
University of Texas, Austin

4th Year graduate Student:
Baishakhi Ray

PhD, UT Austin
Postdoc, UC Davis

Assistant Professor,
University of Virginia

Assistant/Associate Professor,
Columbia University at New York

5th year Assistant Professor:
Miryung Kim

Deadlines sketched on
the white board

David Notkin,
Jan 1, 1955-
Apr 22, 2013

Feb 25 2013

ICSM 2013
Submission Deadline
Apr 24, 2013
Conf: Sept 22-27 2013

Suman & Baishakhi
Farewell in Austin
Sept 17 2013

ICSM 2130 in Eindhoven, The
Netherlands.

What ideas have motivated and
inspired Android API Evolution?

Dagstuhl: Multiversion Program
Analysis in 2005

Miryung’s PhD @
University of Washington

My PhD Advisor:
David Notkin
(1 Jan 1955 – 22 Apr 2013)

Baishakhi’s PhD @ UT Austin
Cross-system co-evolution

Net4.0Net3.0

(Dec., ‘04)
Net2.0Net1.0

NetBSD

OpenBSDOpen3.7 Open4.0

Net5.0

Open4.4
(Nov.,
’08) 10

47 monthsA patch propagation latency =
target patch release date –
source patch release date.

Na Meng’s PhD @ UT Austin
Automating Updates to Clones

Program
differencing

Aold

Anew

Abstract edit script
application

Context
extraction

Identifier &
edit position
abstraction

Bold

Bnew

ColdDELETE: config =

(ILaunchConfiguration)iter.next()

;

DELETE: v1 = (t1)v2.m1();

Cnew

Which ideas have influenced us to
study evolution in software
ecosystem?

Evolutionary Studies on Software

Notion of Software Ecosystem

Lungu et al.’s definition—a

collection of software projects

which are developed and co-

evolve in the same environment.

Robbes et al. found that 14% of

deprecated methods produce

non-trivial API change effects.

Studies in Smalltalk

Impact of API Refactoring on
Client Applications

Dig and Johnson found that 80% of the code changes that

break client-side code are API refactorings.

Xing and Stroulia studied Eclipse evolution history and found

that 70% of structural changes are due to refactorings and

existing IDEs lack support for complex refactoring.

Kim et al. found the number of bug fixes increases after API

refactorings

Fast-paced Android Ecosystem
Evolution

Excerpts from Original
ICSM 2013 Talk

An Empirical Study of API
Stability and Adoption in the
Android Ecosystem

Tyler McDonnell, Baishakhi Ray and Miryung Kim
The University of Texas at Austin

Motivation

◼Despite the benefit of new or updated APIs,
developers are often slow to adopt new APIs.

◼API evolution and its associated ripple effect
throughout software ecosystems are still
under-studied.

Study Findings

◼We study the co-evolution of Android APIs
and applications using the github data

▪ Android is evolving fast at a rate of 115 API
updates per month.

▪ 28% of API references in client apps are outdated
with a median lagging time of 16 months.

▪ API usage adaptation code is defect prone than
other code.

Outline

◼Motivation & Related Work
◼Study Approach
◼Research Questions and Results
◼Limitations
◼Conclusions

Study Approach

Android API
Version History

Mobile Apps in
Github

Correlate changes in mobile apps
with changes in Android OS

❶ ❷

❸

Android API Version History Client Source Code

void setRemoteAdapter(int, Intent)

API Version:
14

Release date: October 19, 2011

Class: android.widget.RemoteViews

setRemoteAdapter(viewID, I);

Client Code :
Remote.java

Commit Date: January 26, 2012

import android.widget.RemoteViews;

int viewID = settings.getViewID();

Intent I = new Intent(this,

ActivityTwo.class);

Android OS API Evolution
Characteristics

◼API Version 3 to 15

Class Method Fields

∆ ∆ + - ∆ + -

Min 37 0 0 0 7 0 0

Max 269 416 98 9 619 205 0

Avg 149 158 37 2 179 32 0

Rate 42 44 11 <1 51 9 0

Android OS is evolving fast at the rate of 115 API updates per month.

Android API Evolution
Characteristics

Hardware, user interface and web support are evolving fast.

Data Sets : Mobile Apps

Revision LOC Author % Android Refs.

Congress Tracker 1359 13349 7 30%

Apollo M 9 15783 1 35%

Cyanogen 109 28972 20 24%

Google Analytic 926 52932 23 26%

LastFM 212 9771 7 16%

mp3Tunes 104 9608 1 22%

OneBusAway 497 51784 5 22%

ownCloud 665 25109 12 30%

RedPhone 116 21315 5 19%

XMBCremote 928 92893 24 22%

Around 25% of all method and field references in client code use
Android APIs.

Research Questions

◼Q1: What is the lag time between client code
and the most recent Android API?

◼Q2: How quickly do API changes propagate
throughout client code?

◼Q3: What is the relationship between API
updates and bugs in clients?

◼Q4: What is the relationship between API
stability and adoption?

Q1: What is the lag time between client
code and the most recent Android API?

Android API

API Version: 4
Release Date: September 15, 2009
Added Method:
void setButton2(charSequence)

API Version: 7
Release Date: October 26, 2009
Changed Method:
void setButton2(charSequence)
now deprecated

Client Code

Client Code
Commit Date: December 20, 2009
Method Use:
setButton2(charSequence)

Lag Time: 2 months

Lag time: the number of months elapsed between the release of
the new version and the commit time of the outdated API usage

A half of all outdated API references are lagging behind by 16
months or more.

Q1: What is the lag time between client
code and the most recent Android API?

Q2: How quickly do API changes
propagate throughout client code?

Android API

API Version: 1
Release Date: September 23, 2008
Added Method:
Method getMethod(String)

API Version: 9
Release Date: December 6, 2010
Changed Method:
Method getMethod(String, Class)

Client Code

Client Code
Commit Date: March 18, 2009
Method Use:
getMethod(String)

Client Code
Commit Date: March 8, 2011
Method Use:
getMethod(String, Class)

Propagation Time: 3 months

Propagation time: time difference in months between the API
release and the timing of client adaptation

Q2: How quickly do API changes
propagate throughout client code?

The median propagation time is 14 months. Outdated API usages
upgrade to newer APIs but at a much slower pace than the API

release rate.

Q3: What is the relationship between
API updates and bugs?

Files with API usage adaptations are defect-prone in all
applications except LastFM.

Spearman Correlation with bugs

CLOC API Update Non API Update

Congress Tracker 0.39 0.56 0.39

OneBusAway 0.26 0.46 0.25

RedPhone 0.23 0.24 0.23

XMBCremote 0.34 0.62 0.33

Google Analytic 0.36 0.54 0.31

ownCloud 0.43 0.55 0.42

Cyanogen 0.58 0.63 0.58

LastFM 0.42 0.37 0.43

Q4: What is the relationship between
API stability and usage?

Correlation between API usage (%) and API update interval: -0.47
Fast evolving APIs are used more by clients.

0

5

10

15

20

0

10

20

30

40
.io

te
xt

b
lu

et
o

o
th

h
ar

d
w

ar
e

te
le

p
h

o
ny

co
n

te
n

t

an
im

at
io

n

lo
ca

ti
on

te
st

n
et u
ti

l

gr
ap

h
ic

s

w
e

bk
it

d
at

ab
as

e

se
cu

ri
ty o
s

vi
ew

A
P

I u
p

d
at

e
in

te
rv

al
 (

m
o

n
th

s)

A
P

I u
sa

ge
 (

%
)

API evolution vs client usage

usage (%) API update interval

Reflections on the paper

SE community took this work to
several directions

App store analysis
Automated API

recommendation

Github/Stack overflow
analysis to mine API

patterns
Third party library

Generic API
related

Change Impact Analysis
of APIs

API migration

API Compatibility
API testing and

vulnerability analysis

Android
evolution

Some follow-up studies on Android
API evolution

More empirical
analysis on API
fragmentation

Testing to
handle API

fragmentation

Fixing API
fragmentation

Some follow-up studies on API
Evolution in Ecosystem

Thanks to Miryung’s Students

From Right to Left
Baishakhi Ray (PhD 2013 ⇒Assistant Prof @ Columbia) Detecting Recurring Changes and Errors
Na Meng (PhD 2014 ⇒Assistant Prof @ Virginia Tech) Automating Recurring Changes & Clone Removal
Tianyi Zhang (PhD 2019, Postdoc @ Harvard) Leveraging Redundancy for Code Review, Testing, API Usage Mining
Muhammad Ali Gulzar (PhD 2020 ⇒Assistant Prof @ Virginia Tech) Debugging and Testing for Big Data Analytics
Myoungkyu Song (Postdoc 2015 ⇒Assistant Prof @ Nebraska, Omaha) Error Detection in Refactoring Edits

Thanks to Baishakhi’s Students

Saikat Chakraborty (PhD 2022 ⇒Senior Researcher @ Microsoft
Research RiSE group)

Kexin Pei (PhD 2023/Postdoc ⇒Assistant Professor, U Chicago)

Yuchi Tian(PhD 2021 ⇒Facebook Research)

Thankful to ICSME “Community”

ICSM 2009 Edmonton
My first PC

ICSM 2011 Williamsburg
My first OC/ ERA co-chair

ICSM 2012 Riva del Garda ICSME 2019
My first PC co-chair

ICSM 2013 Einhoven

ICSME 2019-2022
SC membership

ICSM 2013 “Friendly” Memories

Most Influential Paper Award from
ICSME 2013
“ An Empirical Study of API Stability and Adoption in the
Android Ecosystem”
by Tyler McDonnell, Baishakhi Ray,
and Miryung Kim

39th IEEE International Conference on Software Maintenance and Evolution
(ICSME 2023) Bogota, Colombia

David Notkin
(1955 –2013)

Study Limitations and Future Work

◼False negatives and positives in detecting API
usage updates.

◼Our method of detecting lagging methods
does not take into account multi-version API
support.

◼We study the correlation between API usage,
adoption, and bugs, but not causation.

◼External validity beyond studied mobile apps
from github.

Summary and Future Work

◼We study on the co-evolution of Android OS and
its clients.
▪ 28% of Android references are lagging behind the

latest version with a median lagging time of 16
months.

▪ 22% of outdated API references upgrade to use newer
APIs. The median propagation time is 14 months.

▪ Fast-evolving APIs are used more.

▪ API updates are more defect prone than other types
of changes in client code.

Summary and Future Work

◼Various stakeholders affect the process of
API adoption in the software ecosystem. We
need to identify factors affecting API
adoption.

◼Our goal is to automate required API
adaptations in client applications using our
example-based program transformation
approach [Meng et al. 2013.]

Q1: What is the lag time between client
code and the most recent Android API?

Lagging API

references(%)

Congress Tracker 18%

Apollo M 72%

Cyanogen 12%

Google Analytic 37%

LastFM 43%

mp3Tunes 5%

OneBusAway 3%

ownCloud 18%

RedPhone 43%

XMBCremote 15%

Average 28%

Q2: How quickly do API changes
propagate throughout client code?

% of outdated usages that were

upgraded to use newer APIs

Congress Tracker 45%

Apollo Music 0%

Cyanogen 27%

Google Analytic 34%

LastFM 5%

mp3Tunes 0%

OneBusAway 12%

ownCloud 29%

RedPhone 39%

XMBCremote 33%

Average 22%

Q1: What is the lag time between client
code and the most recent Android API?

Lag (# Method) Lagging API

references(%)

Congress Tracker 216 18%

Apollo M 964 72%

Cyanogen 171 12%

Google Analytic 1409 37%

LastFM 181 43%

mp3Tunes 26 5%

OneBusAway 14 3%

ownCloud 489 18%

RedPhone 498 43%

XMBCremote 537 15%

Average 451 28%

Q5: What is the relationship between
API stability and adoption?

Correlation between API usage (%) and API update interval: -0.47
Clients update to faster evolving APIs more frequently.

Related Work

◼Many techniques have been proposed to ease
API update and version incompatibilities

◼API evolution and its associated ripple effect
through ecosystems are under-studied

▪ Robbes et al. study how API deprecation affects
client applications in Smalltalk.

◼Kim et al. study the relationship between API
refactoring and bugs in libraries.

	Slide 1: Most Influential Paper Award from ICSME 2013 “ An Empirical Study of API Stability and Adoption in the Android Ecosystem” by Tyler McDonnell, Baishakhi Ray, and Miryung Kim
	Slide 2: What was 2013 like?
	Slide 3: Senior undergraduate student: Tyler McDonnell
	Slide 4: 4th Year graduate Student: Baishakhi Ray
	Slide 5: 5th year Assistant Professor: Miryung Kim
	Slide 6: ICSM 2130 in Eindhoven, The Netherlands.
	Slide 7: What ideas have motivated and inspired Android API Evolution?
	Slide 8: Dagstuhl: Multiversion Program Analysis in 2005
	Slide 9: Miryung’s PhD @ University of Washington
	Slide 10: Baishakhi’s PhD @ UT Austin Cross-system co-evolution
	Slide 11: Na Meng’s PhD @ UT Austin Automating Updates to Clones
	Slide 12: Which ideas have influenced us to study evolution in software ecosystem?
	Slide 13: Evolutionary Studies on Software
	Slide 14: Notion of Software Ecosystem
	Slide 15: Impact of API Refactoring on Client Applications
	Slide 16: Fast-paced Android Ecosystem Evolution
	Slide 17: Excerpts from Original ICSM 2013 Talk
	Slide 18: An Empirical Study of API Stability and Adoption in the Android Ecosystem
	Slide 19: Motivation
	Slide 20: Study Findings
	Slide 21: Outline
	Slide 22: Study Approach
	Slide 23: Android OS API Evolution Characteristics
	Slide 24: Android API Evolution Characteristics
	Slide 25: Data Sets : Mobile Apps
	Slide 26: Research Questions
	Slide 27: Q1: What is the lag time between client code and the most recent Android API?
	Slide 28: Q1: What is the lag time between client code and the most recent Android API?
	Slide 29: Q2: How quickly do API changes propagate throughout client code?
	Slide 30: Q2: How quickly do API changes propagate throughout client code?
	Slide 31: Q3: What is the relationship between API updates and bugs?
	Slide 32: Q4: What is the relationship between API stability and usage?
	Slide 33: Reflections on the paper
	Slide 34: SE community took this work to several directions
	Slide 35: Some follow-up studies on Android API evolution
	Slide 36: Some follow-up studies on API Evolution in Ecosystem
	Slide 37: Thanks to Miryung’s Students
	Slide 38: Thanks to Baishakhi’s Students
	Slide 39: Thankful to ICSME “Community”
	Slide 40: ICSM 2013 “Friendly” Memories
	Slide 41: Most Influential Paper Award from ICSME 2013 “ An Empirical Study of API Stability and Adoption in the Android Ecosystem” by Tyler McDonnell, Baishakhi Ray, and Miryung Kim
	Slide 42
	Slide 43: Study Limitations and Future Work
	Slide 44: Summary and Future Work
	Slide 45: Summary and Future Work
	Slide 46: Q1: What is the lag time between client code and the most recent Android API?
	Slide 47: Q2: How quickly do API changes propagate throughout client code?
	Slide 48: Q1: What is the lag time between client code and the most recent Android API?
	Slide 49: Q5: What is the relationship between API stability and adoption?
	Slide 50
	Slide 51: Related Work

