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What ideas have motivated and
oired Android API Evolution?




Dagstuhl: Multiversion Program
Analysis in 2005




Miryung’s PhD @
University of Washington

My PhD Advisor:
David Notkin
(1 Jan 1955 — 22 Apr 2013)

Analyses of Software Evolution
- Evolution of Code Clones

A

High-level changes are often systematic at

a code level

.2

Automatic Inference of

High-Level Change Descriptions
- Rule-based Change Representations
- Rule LearningAlgorithms




Baishakhi’'s PhD @ UT Austin

Cross-system co-evolution
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Which ideas have influenced us to
study evolution in software

ecosystem?




Evolutionary Studies on Software
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Notion of Software Ecosystem

Lungu et al.’s definition—a — C
collection of software projects
which are developed and co-

evolve in the same environment.

Robbes etal. found that14% of = =
deprecated methods produce == :_
non-trivial APl change effects.

Studies in Smalltalk




Impact of APl Refactoring on

Client Applications

Dig and Johnson found that 80% of the code changes that
break client-side code are API refactorings.

Xing and Stroulia studied Eclipse evolution history and found
that 70% of structural changes are due to refactorings and
existing IDEs lack support for complex refactoring.

Kim et al. founs rs after API
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Fast-paced Android Ecosystem
Evolution
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Excerpts from Original
ICSM 2013 Talk

An Empirical Study of API Stability and Adoption in the Android Ecosystem

Tyler McDonnell, Baishakhi Ray, Miryung Kim
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Motivation

Despite the benefit of new or updated APIs,
developers are often slow to adopt new APIs.

APl evolution and its associated ripple effect
throughout software ecosystems are still
under-studied.



Study Findings

We study the co-evolution of Android APlIs
and applications using the github data

Android is evolving fast at a rate of 115 API
updates per month.

28% of APl references in client apps are outdated
with a median lagging time of 16 months.

APl usage adaptation code is defect prone than
other code.



Outline

Motivation & Related Work
Study Approach
Research Questions and Results

Limitations
Conclusions



Study Approach

0 Android API a Mobile Apps Iin
Version History Github

— S
9 Correlate changes in mobile apps
with changes in Android OS

Client Code :
APl Version: Remote.java
14 Commit Date: January 26, 2012

Release date: October 19, 2011

import android.widget.RemoteViews;

int viewID = settings.getViewID() ;
Intent I = new Intent (this,
ActivityTwo.class) ;

Class: android.widget.RemoteViews

void setRemoteAdapter(int, Intent)

setRemoteAdapter(viewlD, );

Android APl Version History Client Source Code



Android OS API Evolution

Characteristics

APl Version 3to 15

Class Method Fields
A A + - A + -
Min 37 0 0 0 14 0 0
Max | 269 | 416 o8 9 619 | 205 0
Avg | 149 | 158 37 2 179 32 0
Rate | 42 44 11 <1 51 9 0

Android OS is evolving fast at the rate of 115 APl updates per month.



Android API Evolution

Characteristics

APl Update Interval (Month)
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Hardware, user interface and web support are evolving fast.



Data Sets : Mobile Apps

Revision LOC Author % Android Refs.
Congress Tracker 1359 13349 7 30%
Apollo M 9 15783 1 35%
Cyanogen 109 28972 20 24%
Google Analytic 926 52932 23 26%
LastFM 212 9771 7 16%
mp3Tunes 104 9608 1 22%
OneBusAway 497 51784 3 22%
ownCloud 665 25109 12 30%
RedPhone 116 21315 3 19%
XMBCremote 928 92893 24 22%

Around 25% of all method and field references in client code use

Android APIs.




Research Questions

Q1i: What is the lag time between client code
and the most recent Android API?
Q2: How quickly do APl changes propagate

throughout ¢

ient code?

Q3: What is the relationship between API
updates and bugs in clients?

Q4: Whatis t

ne relationship between API

stability and adoption?



Qa: What is the lag time between client

code and the most recent Android API?

APl Version: 7
APl Version: 4 Release Date: October 26, 2009
Release Date: September 15, 2009 Changed Method:
Added Method: void setButton2(charSequence)
void setButton2(charSequence) *now deprecated*

Android API
Lag Time: 2 months
Client Code
Client Code
Commit Date: December 20, 2009
Method Use:

setButton2(charSequence)

Lag time: the number of months elapsed between the release of
the new version and the commit time of the outdated APl usage



Qa: What is the lag time between client

code and the most recent Android API?
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% of outdated API usages
-
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Lag Time (months)

A half of all outdated API references are lagging behind by 16
months or more.



Q2: How quickly do API changes

propagate throughout client code?

API Version: 1 APl Version: g9
Release Date: September 23, 2008 Release Date: December 6, 2010
Added Method: Changed Method:
Method getMethod(String) Method getMethod(String, Class)
Android API
Propagation Time: 3 months
Client Code
Client Code Client Code
Commit Date: March 18, 2009 Commit Date: March 8, 2011
Method Use: Method Use:
getMethod(String) getMethod(String, Class)

Propagation time: time difference in months between the API
release and the timing of client adaptation



Q2: How quickly do API changes

propagate throughout client code?
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The median propagation time is 14 months. Outdated APl usages
upgrade to newer APIs but at a much slower pace than the API
release rate.



Q3: What is the relationship between

APl updates and bugs?

Spearman Correlation with bugs

CLOC APl Update Non API Update
Congress Tracker 0.39 0.56 0.39
OneBusAway 0.26 0.46 0.25
RedPhone 0.23 0.24 0.23
XMBCremote 0.34 0.62 0.33
Google Analytic 0.36 0.54 0.31
ownCloud 0.43 0.55 042
Cyanogen 0.58 0.63 0.58
LastFM 0.42 0.37 043

Files with APl usage adaptations are defect-prone in all
applications except LastFM.



Q4: What is the relationship between

API stability and usage?

API evolution vs client usage
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Correlation between API usage (%) and APl update interval: -0.47
Fast evolving APIs are used more by clients.



Reflections on the paper




SE community took this work to

several directions

Change Impact Analysis
of APls

API migration
Android
evolution

API testing and

RS A e N vulnerability analysis

Automated API

App store aiEE recommendation

Generic API
related

Github/Stack overflow
analysis to mine API Third party library
patterns



Some follow-up studies on Android

APl evolution

More empirical
analysis on API
fragmentation

Session J3: Problematic Patches CCS"17, October 30-November 3, 2017, Dallas, TX, USA

Keep me Updated: An Empirical Study of Third-Party Library
Updatability on Android

Erik Derr, Sven Bugiel Sascha Fahl, Yasemin Acar Michael Backes
CISPA, Saarland University Leibniz University Hannover CISPA, Saarland University
Saarland Informatics Campus Saarland Informatics Campus

Testing to
handle API

fragmentation

Continuous, Evolutionary and Large-Scale: A New
Perspective for Automated Mobile App Testing

Mario Linares-Véisquez', Kevin Moran?, and Denys Poshyvanyk?
Wniversidad de los Andes, Bogotd, Colombia
“College of William & Mary, Williamsburg, VA, USA

Fixing API
fragmentation

Taming Android Fragmentation: Characterizing and
Detecting Compatibility Issues for Android Apps

Lili Wei, Yepang Liu, Shing-Chi Cheung

Department of Computer Science and Engineering
The Hong Kong University of Science and Technology, Hong Kong, China
{weias, andrewust, scci@cse.ust.hk




Some follow-up studies on API

Evolution in Ecosystem

Understanding the Test Automation Culture
of App Developers

Pavneet Singh Kochhar!, Ferdian Thung', Nachiappan Magappan®, Thomas Zimmermann®, and David Lo!
LSingapore Management University
Irdicrosofll Research
{kochharps.201 2 ferdiant. 2013 davidlo } & smu.cdu. sg, { nachin. tzimmer } & microsoft.com

Can Automated Pull Requests Encourage Software
Developers to Upgrade Out-of-Date Dependencies?

Samim Mirhossein
North Carolina State University

Chris Parnin
Morth Carolina State University
Raleigh, NC, USA Raleigh, NC, USA
smirhos@ncsu.edu cjparnin@®@ ncsu.edu

= When and How to Make Breaking Changes: Policies and
Practices in 18 Open Source Software Ecosystems

CHRIS BOGART, CHRISTIAN KASTNER, and JAMES HERBSLEB,
Carnegie Mellon University, USA

FERDIAN THUNG, Singapore Management University, Singapore




Thanks to Miryung'’s Students

From Right to Left

Baishakhi Ray (PhD 2013 =Assistant Prof @ Columbia) Detecting Recurring Changes and Errors

Na Meng (PhD 2014 = Assistant Prof @ Virginia Tech) Automating Recurring Changes & Clone Removal

Tianyi Zhang (PhD 2019, Postdoc @ Harvard) Leveraging Redundancy for Code Review, Testing, APl Usage Mining
Muhammad Ali Gulzar (PhD 2020 = Assistant Prof @ Virginia Tech) Debugging and Testing for Big Data Analytics
Myoungkyu Song (Postdoc 2015 = Assistant Prof @ Nebraska, Omaha) Error Detection in Refactoring Edits
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Saikat Chakraborty (PhD 2022 =Senior Researcher @ Microsoft
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ICSM 2013 “Friendly” Memories

Meet, Learn, and Share Monday 9/23/13 1 Inbox x S O

Emily Hill hillem@mail. montclair.edu via ece.utexas.edu Sun, Sep 22, 2013, 2:44PM Yk ] :

to Lori, Lori, Anca.lonita, U.Tikhonova, a.farcasi, anne.etien, aschwar2, bazelli, camargo, carolina.chiao, Dawi -

Greetings!

Lori and | are excited to join everyone tomorrow for our Meet, Learn, and Share Session at ICSM 2013. Since
we have this great opportunity with over a dozen ladies in software maintenance attending, please try to
think ahead about what you'd like to get out of the event (e.g., what questions you'd like answered or
partnerships you'd like to form). We will have an opportunity during the pre-dinner session to network and
think about how best to address the questions & issues you bring with you.

The schedule:
4-5:45 pm Session in 2.03 Zwarte Doos (building #55 on the map http://www.tue.nl/fileadmin/
content/universiteit/Over de universiteit/Route Plattegrond/plattegrond/actuele plattegrond/90--GIPO
20130815 .pdf)

5:45 pm walk to Usine, Lichttoren 6
6-8:30 pm Dinner

We look forward to seeing you at ICSM!
Emily & Lori
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Study Limitations and Future Work

False negatives and positives in detecting AP|
usage updates.

Our method of detecting lagging methods
does not take into account multi-version API
support.

We study the correlation between APl usage,
adoption, and bugs, but not causation.
External validity beyond studied mobile apps
from github.



Summary and Future Work

We study on the co-evolution of Android OS and
its clients.

28% of Android references are lagging behind the
latest version with a median lagging time of 16
months.

22% of outdated API references upgrade to use newer
APls. The median propagation time is 14 months.

Fast-evolving APIs are used more.

APl updates are more defect prone than other types
of changes in client code.



Summary and Future Work

Various stakeholders affect the process of
APl adoption in the software ecosystem. We
need to identify factors affecting API
adoption.

Our goal is to automate required AP
adaptations in client applications using our
example-based program transformation
approach [Meng et al. 2013.]



Qa: What is the lag time between client

code and the most recent Android API?

Lagging API

references(%)
Congress Tracker 18%
Apollo M 2%
Cyanogen 12%
Google Analytic 37%
LastFM 43%
mp3Tunes 5%
OneBusAway 3%
ownCloud 18%
RedPhone 43%
XMBCremote 15%
Average 28%




Q2: How quickly do API changes

propagate throughout client code?

% of outdated usages that were
upgraded to use newer APls

Congress Tracker 45%
Apollo Music 0%
Cyanogen 27%
Google Analytic 34%
LastFM 5%
mp3Tunes 0%
OneBusAway 12%
ownCloud 29%
RedPhone 39%
XMBCremote 33%
Average 22%




Qa: What is the lag time between client

code and the most recent Android API?

Lag (# Method) Lagging API

references(%)
Congress Tracker 216 18%
Apollo M 964 12%
Cyanogen 171 12%
Google Analytic 1409 37%
LastFM 181 43%
mp3Tunes 26 9%
OneBusAway 14 3%
ownCloud 489 18%
RedPhone 498 43%
XMBCremote 937 15%
Average 451 28%




Qs: What is the relationship between

API stability and adoption?

API evolution vs propagation count
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Correlation between API usage (%) and APl update interval: -0.47
Clients update to faster evolving APIs more frequently.
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Related Work

Many techniques have been proposed to ease
APl update and version incompatibilities

APl evolution and its associated ripple effect
through ecosystems are under-studied

Robbes et al. study how API deprecation affects
client applications in Smalltalk.
Kim et al. study the relationship between API

refactoring and bugs in libraries.
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