
1

Example

• T1:
UPDATE Employee
SET salary = salary + 100
WHERE name = ‘Susan’

UPDATE Employee
SET salary = salary + 100
WHERE name = ‘Jane’

• T2:
UPDATE Employee
SET salary = salary * 2
WHERE name = ‘Susan’

UPDATE Employee
SET salary = salary * 2
WHERE name = ‘Jane’

Constraint: Susan’s salary = Jane’s salary

2

T1:
Read(A)
A <- A+100
Write(A)
Read(B)
B <- B+100
Write(B)

Example

T2:
Read(A)
A <- A*2
Write(A)
Read(B)
B <- B*2
Write(B)

(A: Susan’s salary, B: Jane’s salary)
Constraint: A=B

3

Schedule A

T1
Read(A); A <- A+100;
Write(A);
Read(B); B <- B+100;
Write(B);

A B
25 25

125

125

250

250
250 250

T2

Read(A);A <- A*2;
Write(A);
Read(B);B <- B*2;
Write(B)

4

Schedule B

T1

Read(A); A <- A+100
Write(A);
Read(B); B <- B+100;
Write(B);

A B
25 25

50

50

150

150
150 150

T2
Read(A);A <- A*2;
Write(A);
Read(B);B <- B*2;
Write(B);

5

Schedule C

T1
Read(A); A <- A+100
Write(A);

Read(B); B <- B+100;
Write(B);

A B
25 25

125

250

125

250
250 250

T2

Read(A);A <- A*2;
Write(A);

Read(B);B <- B*2;
Write(B);

6

Schedule D

T1
Read(A); A <- A+100
Write(A);

Read(B); B <- B+100;
Write(B);

A B
25 25

125

250

50

150
250 150

T2

Read(A);A <- A*2;
Write(A);
Read(B);B <- B*2;
Write(B);

7

Precedence Graph and
Conflict Serializability

• PRECEDENCE GRAPH P(S)
Nodes: transactions in S
Edges: Ti -> Tj if

1) pi(A), qj(A) are actions in S
2) pi(A) precedes qj(A)
3) At least one of pi, qj is a write

• THEOREM:
P(S) is acyclic <=> S is conflict serializable

8

Rigorous Two-Phase Locking

• Rule (1)
– Ti locks tuple A before read/write

• Rule (2)
– If Ti holds the lock on A, no other transaction

is granted the lock on A
• Rule (3)

– Release the lock at commit

9

locks
held by
Ti

Time
Commit

Rigorous Two-Phase Locking
(R2PL)

10

Two-Phase Locking (2PL)

• Rule (1)
– Ti locks tuple A before read/write

• Rule (2)
– If Ti holds the lock on A, no other transaction is

granted the lock on A
• Rule (3):

– Growing stage: Ti may obtain locks, but may not
release any lock

– Shrinking stage: Ti my release locks, but may not
obtain any new locks

11

locks
held by
Ti

Time
Growing Shrinking
Phase Phase

Two-Phase Locking

12

Logging

T1
Read(A); A←A-50;
Write(A);

Read(B); B←B+50;
Write(B);
Commit

1 <T1, start>
2 <T1, A, 100, 50>
3 <T2, start>
4 <T2, C, 100, 200>
5 <T2, commit>

6 <T1, B, 100, 150>
7 <T1, commit>

T2

Read(C);C←C*2;
Write(C);
Commit

Log

13

SQL Isolation Levels
Dirty read Non-repeatable

read
Phantom

Read
uncommitted

Y Y Y

Read
committed

N Y Y

Repeatable
read

N N Y

Serializable N N N

14

Dirty Read May be Okay

• T1:
UPDATE Employee

SET salary = salary + 100

After T1 updates John’s salary, T2 should wait until T1 commits

Sometimes, it may be okay to read uncommitted John’s salary

T2:
SELECT salary
FROM Employee
WHERE name = ‘John’

15

Non-repeatable Read May Be Okay

• T1:
UPDATE Employee
SET salary = salary + 100
WHERE name = ‘John’

• T2:
(S1) SELECT salary FROM Employee

WHERE name = ‘John’
...

(S2) SELECT salary FROM Employee
WHERE name = ‘John’

To guarantee “Isolation,” S1 and S2 should return the same value
Sometimes it may be okay to return different value

16

Phantom May Be Okay

Originally, SUM(Employee.salary) = $100,000

• T1:
INSERT INTO Employee (e1, 1000), (e2, 1000)

• T2:
SELECT SUM(salary) FROM Employee

T2 should return either $100,000 or $102,000
Sometimes, it may be fine for T2 to see only e2 and return $101,000

17

Mixing Isolation Levels
T1: T2:

UPDATE Employee SELECT salary

SET salary = salary + 100 FROM Employee

ROLLBACK WHERE name = ‘John’

T1: Serializable, T2: Serializable. What may T2 return?

T1: Serializable, T2: Read uncommitted, What may T2 return?

