
CS 31 Solutions Week 3

This worksheet is entirely optional, and meant to prepare you for upcoming projects
and exams. Some problems will be more challenging than others and are designed
to have you apply your knowledge beyond the examples presented in lecture,
discussion or projects. We encourage you to collaborate with your peers while
completing this worksheet. If you finish the worksheet early, you are welcome to
inquire with your LA for this week’s Supplemental Problems.

Solutions are written in red. The solutions for programming problems are not
absolute, it is okay if your code looks different; this is just one way to solve the specific
problem.

If you have any questions or concerns please contact your LA or go to any of the LA
office hours.

Concepts: Loops, If Statements, Cin, Variables, Doubles, Ints

Reading Problems
1. This code snippet tries to print all prime numbers between 3 (inclusive) and a given
input n (exclusive). Find the 3 bugs contained in the code and fix them.

int n;
cin >> n;
for (int candidate = 3; candidate < n; ++candidate) {
​ bool isPrime = true;
​ for (int x = 2; x < n; x++) {
​ ​ if (candidate % x = 0){
​ ​ ​ isPrime = false;

}
}

if (isPrime) {
​ cout << n << " ";
}

}

int n;
cin >> n;
// check the candidates: the integers in the interval of [3, n)
for (int candidate = 3; candidate < n; ++candidate) {

bool isPrime = true;​ // a flag for whether the candidate is
prime or not

for (int x = 2; x < ​candidate​; x++) {
​ // if any number in between 2 (inclusive) and the

candidate
// (exclusive) is the factor of the candidate,
// then the candidate is not a prime.

if (candidate % x ​==​ 0){

isPrime = false;
}

}

if (isPrime) {
​ cout << ​candidate ​<< " ";
}

}
++ before
Why use cand. Instead of n

Programming Problems

1. Write a program that takes in a number as an int and outputs the sum of all of the
digits in that number.

Sample Output:
Enter a number: 184
The sum of the digits in your number is 13!

#include <iostream>
using namespace std;

int main() {
​ /*
​ NOTICE: the modulo (%) operator can be used to “extract” the
last digit of a number. For example, 803 % 10 = 3; 41 % 10 = 1; 12345
% 10 = 5.​
​
​ Similarly, the arithmetic division operator (/) can be used to
“remove” the last digit of a number. For example, 803 / 10 = 80; 41 /
10 = 4; 12345 / 10 = 1234

​ We can exploit these facts to progressively extract and remove
the last digit of an integer to create a sum.
​ */

cout << "Enter a number: ";

int num;
cin >> num;
int sum = 0;
while (num > 0) {

sum += num % 10;
num /= 10;

}
cout << "The sum of the digits in your number is " << sum <<
"!" << endl;

}

2. Write a program that takes in N numbers and writes their mean as a double.

Sample output:
How many numbers do you want to average? 5
Number: 4
Number: 2
Number: 8
Number: 9
Number: 7
The average is 6!
-> Change to decimal
#include <iostream>
using namespace std;

int main() {

​ cout << "How many numbers do you want to average? ";
​ int n;

cin >> n; // take in a number as input
double num;
double total = 0; // store average as a double type; the

average should be a double so averages are not rounded to the nearest
whole number i.e. if total was of int type, the average of 1, 1, 2 =
1, not 1.3333

for (int i = 0; i < n; i++) {

cout << "Number: ";
cin >> num;
total += num; // add each number to your sum

}

cout << "The average is " << total/n << "!" << endl; // average

= total / n
}

3. Write a program that reads in an integer N and prints an NxN box where the (i,j)th
character is as follows:

'.' if j > i
i + j otherwise

Where i is the row number and j is the column number (starting at 0, not 1). For
Example, if the input is 4, it should print: ​
​ 0 . . .

1 2 . .
​ 2 3 4 .
​ 3 4 5 6

Bonus:
Without using any explicit if/else statements, can you modify the previous program
to only print out the sums and no ‘.’s?
Example, if the input is 4, it should print:
​ 0

1 2
​ 2 3 4
​ 3 4 5 6

#include <iostream>
using namespace std;

int main() {

int n;
cout << "Enter a positive integer: ";
cin >> n;
for (int i = 0; i < n; i++) {

for (int j = 0; j < n; j++) {
if (j > i)

cout << ". ";
else

cout << i + j << " ";
}
cout << endl;

}
}

Bonus:

#include <iostream>
using namespace std;

int main() {

int n;
 ​ cout << "Enter a positive integer: ";
 ​ cin >> n;
 ​ for (int i = 0; i < n; i++) {
 ​ ​ for (int j = 0; j <= i; j++) {
 ​ ​ cout << i + j << " ";
 ​ ​ }
 ​ cout << endl;
 ​ }
}

4. Write a program that reads in an integer and prints whether that number is a
perfect number. A perfect number is defined as a number that is equal to the sum of
all positive factors excluding itself.

Example:
​ 4 != 1 + 2​ ​ ​ => Print “Not perfect.”
​ 5 != 1​ ​ ​ ​ => Print “Not perfect.”
​ 6 = 1 + 2 + 3​ ​ ​ => Print “Perfect.”
​ 12 != 1 + 2 + 3 + 4 + 6​ ​ => Print “Not perfect.”
​ 28 = 1 + 2 + 4 + 7 + 14​ => Print “Perfect.”

int perfect;
cout << "Enter a number: ";
cin >> perfect;
int sum = 0;

// any factor of perfect is smaller than perfect: loop through all
values smaller than perfect to find all its factors
for (int i = 1; i < perfect; i++) {

// if the current iteration number is a factor of “perfect”
if (perfect % i == 0) {

// add the factor to the current total
sum += i;

}
}

// if the sum of all the factors is equal to perfect, it is a perfect
number
if (sum == perfect) {

cout << "Perfect." << endl;
} else {

// else, it is not a perfect number
cout << "Not perfect." << endl;

}

5. Write a program that takes in an integer N where N > 0, and outputs all its factors,
each one separated by a comma. There should be no comma before the first number
or after the last one.

Sample input:
12
Sample output:
1,2,3,4,6,12

#include <iostream>
using namespace std;

int main() {

int n;
cout << "Enter a number: ";
cin >> n; //Takes in the integer N; saves to declared variable

cout << "1"; // 1 is always a factor
for (int i = 2; i <= n; i++) //Iterates through all integers

less than or equal to n
{

if (n % i == 0) //If i evenly divides into n, print it
with a comma separation

cout << "," << i;
}
cout << endl;

}

6. Write a program that, given an input integer N, finds an integer x such that 2x <= N
< 2x+1. The program should ask for user input and print the integer x it finds. If there is
no such x, it should print “error” and nothing more.

Sample Input:

200 => Should output 7, since 27 = 128 <= 200 < 28 = 256.
20 => Should output 4, since 24 = 16 <= 20 < 25 = 32.
8 => Should output 3, since 23 = 8 <= 8 < 24 = 16.

#include <iostream>
using namespace std;

int main() {
​ int number;
 ​ cout << "Enter a number: ";
 ​ cin >> number;

 ​ if (number < 1) { ​ // check if the number is non-positive
 ​ ​ cout << "error" << endl;
 ​ }
 ​ else {
 ​ ​ int pow = 0, powOf2 = 1;
 ​ ​ while (powOf2 <= number) {
 ​ ​ ​ pow++;
 ​ ​ ​ powOf2 *= 2;
 ​ ​ }
 ​ ​ cout << pow - 1 << endl; ​
 ​ ​ // pow - 1 bc while loop terminates once powOf2 > number,
 ​ ​ // but we want powOf2 to still be less than number
 ​ }
}

Check if the number is positive. Want to create a loop to find 2^x.
To do this, you must keep track of both x, which is the exponent of
2, and powOf2 which is the evaluated value of 2^x. In your while
loop, check if powOf2 is greater than N as per the prompt. If powOf2
is less than the number, you must increment the power x by one. You
must also update powOf2. Once you find a powOf2 > N, then you have
found the value of x that is greater than N, so you must return pow -
1 since that will be the closest value of x which has a result powOf2
<= N.

7. The Fibonacci series consists of the integers 0, 1, 1, 2, 3, 5, 8, … . With the initial
values n1 = 0 and n2 = 1 it is possible to find the next number, because the next
number is related to the preceding two by the formula . For example, 𝑥

𝑛+1
= 𝑥

𝑛
+ 𝑥

𝑛−1
1+1 = 2, the next number in the series. Based on this information, write a program that
receives an integer n as an input and prints the nth Fibonacci number. What is the
10th one?
Your program should also check whether the integer provided is valid. If the user
inputs zero or a negative number, the program should print Error: The input must be
positive and nothing more.
If you haven’t done so already, try to write the program using a do-while loop.

10th Fibonacci number: 34

#include <iostream>
using namespace std;

int main() {

int n;
cin >> n;
if (n <= 0){

cout << "Error: The input must be positive" <<endl;
return 1;

}
if (n == 1)

cout << 0 << endl;
else if (n == 2)

cout << 1 << endl;
else {

int xnext = 0;
int x_last1 = 1;
int x_last2 = 0;
for (int i = 2; i < n; i++) {

xnext = x_last1 + x_last2;
x_last2 = x_last1;
x_last1 = xnext;

}
cout << xnext;

}
}

Implement base cases with the first 2 if / else if. In the
else branch, follow the formula to compute the next number in
the Fibonacci series. The else branch must start from the
base numbers, and compute every fibonacci number up until the
nth integer in the series.

// alternative solution with a do-while loop

#include <iostream>
using namespace std;

int main() {

// n is the fibonacci number we want
int n;
cout << "Enter a number " << endl;
cin >> n;
// check for non-positive n
if (n <= 0) {

cout << "Error: The input must be positive" <<endl;
}
else {

// initialize
int x_last2 = 0; // first fib num
int x_last1 = 1; // second fib num
switch(n) {

case 1:
cout << x_last2 << endl;
break;

case 2:
cout << x_last1 << endl;
break;

default:
// n is at least 3
int xnext;
// first 2 already computed, so init count to 2
int count = 2;
do {

// calculate the next term (sum of prev)
xnext = x_last1 + x_last2;
// push forward x_last2 and x_last1
x_last2 = x_last1;
x_last1 = xnext;
// increment the number of terms

calculated
count++;

}
while (count < n);
cout << xnext << endl;

}
}

}

	CS 31 Solutions Week 3
	Concepts: Loops, If Statements, Cin, Variables, Doubles, Ints
	Reading Problems

