CS 31 Worksheet 6

This worksheet is entirely optional, and meant for extra practice. Some problems will
be more challenging than others and are designed to have you apply your
knowledge beyond the examples presented in lecture, discussion or projects. All
exams will be done on paper, so it is in your best interest to practice these problems
by hand and not rely on a compiler.

Solutions are written in red. The solutions for programming problems are not

absolute, it is okay if your code looks different; this is just one way to solve the specific
problem.

Concepts: 2D Arrays, C strings

Reading Problems
1)

a) What does the following program print out?
#include <iostream>

using namespace std;

int main () {
char sentence[] = "Peter loves his sandwich.";
for (int i = 0; i < strlen(sentence); i++) { // change in part b
sentence[strlen(sentence) - 1] = '\0';
}
cout << "Drum roll please: " << sentence << endl;

}
Drum roll please: Peter loves

One each iteration of the loop, a zero byte is stored one position closer to
the beginning of the string, so strlen(sentence) will return a value one less
than it did before. As i grows and strlen(sentence) shrinks, they'll meet when
i reaches the middle of the array, causing the loop to end.

b) Repeat part a), but replace the for loop inside main() to the following code:

int n = strlen(sentence);
for (int i = 0; i < n; i++) {
sentence[strlen(sentence) - 1] = '\0';

}

Avoids readjusting the changing length of the cstring in each
iteration by storing the length in a variable before the loop begins.
Will replace every character in the cstring with a null byte.

Programming Problems

1) Write a function with the following header:
void reflect (int matrix[] [N], int n);
where

matrix isa2-dimensional array of integers of size N x N. In this header, N is to
be replaced by a number chosen by the programmer (you).

n is the value N (passed in so that reflect knows how many rows matrix has)

reflect should reflect matrix across the negative-sloping diagonal, so that
the rows become the columns and vice versa. (i.e. matrix|[i][j] becomes
matrix[j][i] after reflect)

Example:

/* The second [] in a 2D array passed as a parameter requires a
number as the size, which restricts the implementation of reflect to
be able to work on only one matrix size. The following example works
only on 2D arrays of size 3x3. For reflect’s declaration, the N in
the function header has been replaced by 3. */

void reflect (int matrix[][3], 1int n) {

// Implementation goes here...

}

int main () {
int foobar[3][3] = {{1, 2, 3},{4, 5, 6}, {7, 8, 9}};
reflect (foobar, 3);

/* foobar is now expected to be:

{{1, 4, 7}, {2, 5, 8}, {3, 6, 91} */

// to check results
for (int i = 0; 1 < 3; i++) |
for (int j = 0; J < 3; j++) {
cout << foobar[i][j] << "™ ";

}

cout << endl;

// This solution is for 3x3 arrays.

void reflect (int matrix[][3], int n) {
for (int 1 = 0; 1 < n; i++) {
for (int j = i; 3 < n; j++) {

int temp = matrix[i][j];

matrix([i] [J] matrix[3][i];

matrix[j][i] = temp;

}

2) Write a function charlnsert that inserts a character into a valid C-string at a given
position. The function has the following header:

bool charInsert (char str[], int n, int idx, char c);

The parameter n denotes the size of the character array str, which is not necessarily
equivalent to the string’s length. idx refers to the index at which the insertion will be
done, so if idx is O then the char ¢ will be the first character in the new string. The
insertion cannot be performed if idx is negative or greater than the string’s length.

Additionally, the insertion cannot be performed if the result would exceed the size of
the array n.

If the insertion is successful, the function returns true. If the insertion cannot be
done, the function returns false and leaves str unmodified.

Examples:
char success[10] = "aaaaa";
bool res = charInsert (success, 10, 1, 'b'); // res should equal true

cout << success << endl; // abaaaa

abcd
char success[10] = "aaaaa";
bool res = charInsert (success, 10, 5, 'b'); // res should equal true

cout << success << endl; // aaaaab

char failure[6] = "aaaaa";
bool res = charInsert(failure, 6, 1, 'b'); // res should equal false

cout << failure << endl; // aaaaa unchanged

bool charInsert(char str[], int n, int idx, char c)

if ((idx < 0) || (idx > strlen(str)) || (strlen(str)+l >= n))

return false;

str[strlen(str) + 1] = '\0';

for (int i = strlen(str); i >= idx; i--)
str[i+l] = str([i];

str[idx] = c;

return true;
}

3) Write a function wordRotateleft that takes in a valid C-string and rotates each
word left one character. A word is defined as a sequence of non-spaces separated by

spaces. Each rotated word wraps around, meaning that “CS31” would become “S31C".

The function has the following header:
void wordRotatelLeft (char strl[]);
Example:

char test[] = "I love CS31"; wordRotatelLeft (test);

cout << test << endl; // "I ovel S31C"

char test2[] = "I.love.CS31"; wordRotateleft (test2);

cout << test2 << endl; // ".love.CS31I"

void wordRotateLeft (char str[]) {
int len = strlen(str);
int beginWord = O0;
for(int 1 = 0; i < len; i++){
if (str[i] == " "){

char beginChar = str[beginWord];

for(int j = beginWord; j < i - 1; j++){ // iterate through

the word

strlj]
with the character to the right

}

str(j + 11; // replace leftmost character

str[i - 1] = beginChar; // replace the last char of

the word with the first char

beginWord = i + 1; // set beginWord to the index of the first

char of the next word

}

if (beginWord < len){ // if this is the last word in your sentence

char beginChar

str[beginWord];

for (int j = beginWord; J < len - 1; j++){

str[j] = str[j + 1];
}

str[len - 1] = beginChar;

}
4) Write a function with the following header:

bool rangeSearch(int sorted nums[], int n, int target,
int& start, inté& end);

sorted nums is an array of integers sorted in decreasing order
n is the number of elements in sorted nums
target isa number to search for within sorted nums

rangeSearch should return true if target is found in sorted nums and false
otherwise.

If rangeSearch returns true, start should be set to the first index where target
appears and end should be set to the last index where target appears, so that the
integers of indices from start to end should only contain target.

If rangeSearch returns false, start and end should not be altered.

Example:

int fool[7] = {5, 4, 3, 3, 1, -2, -=-3};
int s = 21;

int e = 14;

rangeSearch (foo, 7, 0, s, e); // returns false, s remains 21, e ==
rangeSearch (foo, 7, 3, s, e); // returns true, now s == 2 and e ==
bool rangeSearch (int sorted nums[], int n, int target, inté& start, inté& end) {
int s = 0;
int e = n-1;

while (s<n && sorted nums[s]>target)
s++;

while (e>=0 && sorted nums[e]<target)
e——;

if (sorted nums[s] == target && sorted nums[e] == target) {

1
3

4

start = s;

end = e;

return true;

return false;

