
CS 31 Worksheet Week 8 Solutions

This worksheet is entirely optional, and meant for extra practice. Some problems will
be more challenging than others and are designed to have you apply your
knowledge beyond the examples presented in lecture, discussion or projects. All
exams will be done on paper, so it is in your best interest to practice these problems
by hand and not rely on a compiler.

Solutions are written in red. The solutions for programming problems are not
absolute, it is okay if your code looks different; this is just one way to solve the
specific problem.

If you have any questions or concerns please contact your LA or go to any of the LA
office hours.

Concepts: Classes and Structs

1. Conceptual Questions (Vishal)

○ What’s the main difference between declaring a type with the keyword
struct and declaring it with the keyword class?

When using struct, until you specify otherwise, the compiler treats
members as if you said public:, whereas for class, the assumption is
private:.

○ Why should you not allow data members to be public?

So users cannot manipulate data they are not supposed to have access
to (they might set it to an unexpected value and cause the class/struct
to behave unexpectedly)

○ What is the purpose of having private member functions in a class?

Can you give some examples of when they would be used?

Private member functions are useful as helper functions for public
methods. We don’t want these functions to be called outside the
function we defined them for, so we make them private to prevent the
user from using those functions in isolation. In general, if we don’t want
a user to use the functions, we make them private.

○ What happens if you forget to deallocate memory once you’re done

with the object?

There will be a memory leak. This happens when a program finishes
but memory stored on the heap is not deallocated. Normal variables
are stored on the stack and are deallocated automatically when a

variable goes out of scope (the brackets) while dynamically allocated
variables are created on the heap and must be explicitly deleted to
prevent a memory leak. This is one of the reasons why we test our
programs on g31, as opposed to relying solely on the Xcode/Visual
Studio compilers; the added compiler flags enabled in g31 will help
catch memory leaks.

○ (True/False) A class may have more than one constructor.

True. You can have constructors that take different arguments to
initialize different member variables. This is called overloading.

class MyClass {

 public:

 MyClass() {

 a = 0;

 b = 0;

 }

 MyClass(int a, int b) {

// we need to use ‘this’ because our

private member variables have the same name

as our arguments (the ‘this’ pointer refers

to our member variables)

// often, member variables are prefixed

with m_ (ex: m_a) to avoid this issue

 this->a = a;

 this->b = b;

 }

 private:

 int a;

 int b;

};

○ (True/False) A class may have more than one destructor.

False. Since a destructor cannot have parameters or a return type, it is
impossible to create more than one destructor for a class.

○ If you have an object pointed to by a pointer, which operator is used
with the pointer to access the object's members?

You can either dereference the object and access the members
normally or use the -> (left arrow) operator.

(*object).member means the same thing as object->member

// this includes functions! ex: object->member_function()

2. Write a class Person that has two private data members: (Michelle Bai)

○ m_age (an int)
○ m_catchphrase (a string).

The Person class should have a default constructor that initializes its data
members to reasonable values and a second constructor that initializes the
data members to the values of its parameters. In addition, Person should have
three public member functions:

○ getAge(), which returns the Person’s age
○ haveBirthday(), which increments the Person’s age by 1
○ speak(), which prints the Person’s catchphrase.

class Person

{

 public:

 Person()

{

m_age = 0;

 m_catchphrase = "";

 }

 Person(int age, string catchphrase)

{

m_age = age;

 m_catchphrase = catchphrase;

}

int getAge() const

{

 return m_age;

 }

 void haveBirthday()

{

 m_age++;

}

void speak() const

{

 cout << m_catchphrase << endl;

 }

private:

 int m_age;

 string m_catchphrase;

};

3. A line in Euclidean space can be represented by two parameters, m and b

from its slope-intercept equation y = mx + b. Here m represents the slope of
the line and b represents the line’s y-intercept.
Write a class that represents a line. Your class must have a simple constructor
that initializes the line’s m and b. Next, define a member function with the
following prototype:
double intersection(Line line2);

This function must compute the x-coordinate where this line and another line
(line2) intersect.

double m1 = 2;

double b1 = 3;

double m2 = -2;

double b2 = 7;

Line line1(m1, b1);

Line line2(m2, b2);

cout << line1.intersection(line2) << endl; // prints 1.0

This function must compute the x-coordinate where this line and another line
(line2) intersect.

class Line

{

public:

Line(double m, double b)

{

m_m = m;

m_b = b;

}

double m() const

{

return m_m;

}

double b() const

{

return m_b;

}

double intersection(Line line2)

{

if (m_m == line2.m())

{

// same slope! SO the lines either are

coincident or parallel

// spec doesn't specify what we should do here,

so return

// whatever; in the real world we may want to

throw an exception

 // (which aren't discussed in CS 31)

 return 0;

 }

return (line2.b() - m_b)/(m_m - line2.m());

}

private:

double m_m;

double m_b;

};

Bonus: There are a few ways in which this problem specification is
incomplete; they are not related to C++, but to the problem domain. What are
they?

ANS: As mentioned in the comments above, the spec does not tell us what we
should return if the two lines are coincident or parallel.

4. Write a program that repeatedly reads an age and a catchphrase from the user
and uses them to dynamically allocate a Person object, before calling the Person’s
speak() function and then deallocating the Person object. (Aki)

#include <iostream>

#include <string>

using namespace std;

int main()
{

int age;

string catchphrase;

while(true) // repeats indefinitely

{

cout << "Please enter an age: ";

cin >> age;

cin.ignore(10000, '\n');

cout << "Please enter a catchphrase: " << endl;

getline(cin, catchphrase);

Person* p = new Person(age, catchphrase);

p->speak();

delete p;

}

}

5. Write a class called Complex, which represents a complex number. Complex
should have a default constructor and the following constructor: (Michelle Lee)

Complex(int real, int imaginary);

// -3 + 8i would be represented as Complex(-3, 8)

Additionally, the class should contain two functions: sum and print. Calling
sum should set the calling object to the sum of the 2 complex numbers
passed as arguments. Print should print which complex number the object
represents. You may declare any private or public member variables or
getters/setters you deem necessary. Your code should work with the example
below.

int main() {

(1) Complex c1(5, 6);

(2) Complex c2(-2, 4);

(3) Complex* c3 = new Complex();

(4) c1.print();

(5) c2.print();

(6) cout << "The sum of the two complex numbers is:" << endl;

(7) c3->sum(c1, c2);

(8) c3->print();

(9) delete c3;

}

// The output of the main program:

5+6i

-2+4i

The sum of the two complex numbers is:

3+10i

 Bonus: What would happen if we swapped line (8) and (9)?

class Complex {

 int m_real;

 int m_imaginary;

 public:

 Complex() {}

 Complex(int real, int imaginary) {

 m_real = real;

 m_imaginary = imaginary;

 }

 void print() {

 cout << m_real << "+" << m_imaginary << "i" << endl;

 }

 void sum(Complex c1, Complex c2) {

 m_real = c1.m_real + c2.m_real;

 m_imaginary = c1.m_imaginary + c2.m_imaginary;

 }

};

What would happen if swapped the order of (8) and (9)? How would it change
the output?

After deleting the object pointed to by c3, an attempt to follow the pointer c3
is undefined behavior. The program might crash, print weird values (perhaps
because the memory used by the deleted object was overwritten with some
bookkeeping information the storage manager uses), print 3+10i (if the
memory used was not overwritten), or do something else.

	Concepts: Classes and Structs

