CS 31 Worksheet Week 9

Please Fill Out End of Year LA Feedback Form:
http://tinyurl.com/LA-Feedback-F24

This worksheet is entirely optional, and meant for extra practice. Some problems will
be more challenging than others and are designed to have you apply your
knowledge beyond the examples presented in lecture, discussion or projects. All
exams will be done on paper, so it is in your best interest to practice these problems
by hand and not rely on a compiler.

Concepts: Pointers, Dynamic Allocation

Reading Problems

1. What will the following program output?:

#include <iostream>
using namespace std;
void showarray(int* a, int 1);

int main() {
char sl1[16] = "spring";
char* pl;
int a[8] = {3, 6, 9, 12, 15};
int b[(8] = {0,0,0,0,0,0,0,0};
int* x = &b[0];
int* p2;

showarray(a, 8);
showarray (x, 8);

for (int 1 = 0; 1 < 8; i++){
x[1i] = al[i] + *(a+7-1);
}

showarray(x, 8);

p2 = &al2];

P2 = p2 -1;
(*p2) ++;
p2--i

(*p2) += p2[0];
showarray(a, 8);

pl = sl;

while (*pl) {
(*pl) --;
pl++;

}

cout << sl <<endl;

return 0;

void showarray (int* a, int 1) {

2.

int 1i;

for (1 = 0; 1 < 1; i++) {
cout << *(a+i)<<" ";

}

cout<<endl;

Find the six errors in the following code, and write the fixes.

#include <iostream>

#include <string>

using namespace std;

const int NAME LEN = 100;

class Cat {

b

int m_age;

char m name [NAME LEN];

string m_type;

Cat (int age, const char name[], string type)
m age = age;
m name = name;
m type = type;

}

void introduce () {

cout << "Hi! I am a " + m type + " cat" << endl;

struct Sheep {

string m name;
int m age;
Sheep (int age) {

m _age = age;
}

void introduce () {
cout << "Hi! I am " + m name + " the sheep" << endl;

int main () {
Cat* schrodinger = new Cat (5, "Schrodinger's cat", "Korat");
schrodinger->introduce () ;
cout << schrodinger->m age << endl;

Sheep dolly(6);
dolly->introduce () ;

delete schrodinger;
delete dolly;

3) Find the 4 errors in the following class definitions so the main function runs
correctly.

finclude <iostream>

#include <string>

using namespace std;

class Account {
public:
Account (int x) {
cash = x;
}

int cash;

class Billionaire {
public:
Billionaire(string n) {
offshore = Account (1000000000) ;

name = nj;

Account account;
Account* offshore;
string name;

}s

int main () {
Billionaire jim = Billionaire ("Jimmy") ;
cout << jim.name << " has "
<< jim.account.cash + jim.offshore->cash << endl;

Output: Jimmy has 1000010000

Programming Problems

After being defined by the above code, Jim the Billionaire funded a cloning project
and volunteered himself as the first human test subject. Sadly, all his money isn’t
cloned, so his clone has his name, but has $0. Add the needed function to the
Billionaire class so the following main function produces the following output.

int main () {
Billionaire jim = Billionaire("Jimmy") ;
Billionaire jimClone = jim;
cout << jimClone.name << " has " << jimClone.account.cash

+ jimClone.offshore->cash<< endl;

cout << jim.name << " has " << jim.account.cash +
jim.offshore->cash << endl;

Output: Jimmy has O
Jimmy has 1000010000

Implement aNetflix class which holds show objects in a “watching queue”. The
capacity cannot exceed 100.

class Netflix {
public:

private:

}s

int num shows; // number of shows in queue
Show* queue[100];
int m capacity;
// Hint: you can use this function in cleanUp ()
vold remove from queue (int index) {
delete queue[index];
for (int i1 = index; i < num shows - 1; i++) {
queue[i] = queue[it+l];
}

num_ shows--;

class Show {

public:

bool isWatched () {
return is watched;

}

string getName () {
return name;

}

private:

}s

string name;
bool is watched;

Implement all of the functions highlighted in

1. Netflix (int capacity) --declare a Netflix object with a
maximum capacity for the number of shows in queue.

2. void watch(string name) -- tells the Netflix object that you want
to watch a particular show (as a result when cleanUp is called, the show
you watched should be removed from the queue)

3. bool add(string name) --add a new show to your queue. If the
addition is successful (queue is not full), return True, else return False.

4. void cleanUp () --clean up the queue and remove all shows that
have been watched. Update the number of shows to reflect this change
5. ~Netflix () --destructor, make sure you remember to delete

everything you have created on the heap!
6. Show(string name) --declare a Show object with a name

7. void watch () --updatesthe Show object from unwatched to
watched. All shows are initially “unwatched”

Sample use case:
int main () {
Netflix n(3);
.add ("Stranger Things"); // returns True
.add ("The Office"); // returns True
.add ("Arrested Development"); // returns True
.add ("Sherlock"); // returns False
.watch ("The Office");
.cleanUp () ;
.add ("Sherlock"); // returns True

5 B8 B8 B3 B3 B3 5

	CS 31 Worksheet Week 9
	Concepts: Pointers, Dynamic Allocation

