CS 31 Solutions Week 9

Please Fill Out End of Year LA Feedback Form:
http://tinyurl.com/LA-Feedback-F24

This worksheet is entirely optional, and meant for extra practice. Some problems will
be more challenging than others and are designed to have you apply your
knowledge beyond the examples presented in lecture, discussion or projects. All
exams will be done on paper, so it is in your best interest to practice these problems
by hand and not rely on a compiler.

Concepts: Pointers, Dynamic Allocation

Reading Problems

1. What will the following program output?:

#include <iostream>
using namespace std;
void showarray(int* a, int 1);

int main() {
char sl1[16] = "spring";
char* pl;
int a[8] = {3, 6, 9, 12, 15};
int b([(8] = {0,0,0,0,0,0,0,0};
int* x = &b[0];
int* p2;

showarray(a, 8);
showarray (x, 8);

for (int i = 0; 1 < 8; i++){
x[1] = a[i] + *(a+7-1);
}

showarray (x, 8);

p2 = &al2];
p2 = p2 -1;
(*p2) ++;
p2-=;

(*p2) += p2[0];

showarray(a, 8);

pl = sl;

while (*pl) {
(*pl)-=7;
pl++;

}
cout << sl <<endl;
return 0;

void showarray (int* a, int 1) {
int 1i;
for (1 = 0; 1 < 1; 1i++) {
cout << *(at+i)<<<" ";
}

cout<<endl;

6 9 12 15
00000
6 9 27 27
7 9 12 15
roghmf

0 // default set uninitialized elements to 0 in array

o W O W
o W O O

2. Find the six errors in the following code, and write the fixes.
#include <iostream>

#include <string>

using namespace std;

const int NAME LEN = 100;

class Cat {
int m age;
char m name [NAME LEN];
string m_type;
public: (1) // classes are private by default!
Cat (int age, const char name[], string type) {

m age = age;
m _name = name; (2)
strcpy (m name, name); (2) // name is a c-string, so use

strpy ()
m _type = type;

void introduce () {
cout << "Hi! I am a " + m type + " cat" << endl;

}s

struct Sheep {
string m name;
int m_age;
Sheep (int age) {
m age = age;
}
void introduce () {
cout << "Hi! I am " + m name + " the sheep" << endl;

}:(3)

Don't forget the semicolon! (3)
int main () {
Cat* schrodinger = new Cat (5, "Schrodinger's cat", "Korat");

schrodinger->introduce () ;

cout << schrodinger->m age << endl; (4)

Private variables cannot be accessed outside a class
declaration.

cout << schrodinger->getAge() << endl; (4)

Sheep dolly (6);

dolly->introduce(); (5)

dolly.introduce(); (5) // the -> operator is only used if you
have a pointer. If dolly was a Sheep*, then you would use ->

delete schrodinger;

delete dolly; (6)

Do not delete dolly, because it was not created on the heap
(not using the new operator)!

Every execution of delete should correspond to an execution
of new. (6)

The errors are highlighted in red and the fixes are in green! Each error and fix
can be matched by the corresponding number.

What will the program above successfully print once all the fixes have been
made?

Hi! | am a Korat cat!
5
Hill am the sheep!

3. Find the 4 errors in the following class definitions so the
main function runs correctly.

#include <iostream>

#include <string>

using namespace std;

class Account {
public:
Account (int x) {
cash = x;
}
int cash;
}; // Don’t forget the semicolon!

class Billionaire {

public:
Billionaire(string n) : account (10000) {
// : account (10000) is special notation since “account’ has no
default constructor. This says “pass the value 10000 into account’s
constructor.” You’ll learn more about this in CS 32!

offshore = new Account (1000000000) ;
// We need the new keyword to allocate a pointer object with a longer
lifespan than a typical variable. This way, the account point doesn’t
go out of scope once the constructor exits.

name = n;

}

// now that we use dynamic allocation (new), we need a
destructor.
~Billionaire () {
delete offshore;

Account account;
Account* offshore;
string name;

}s

int main () {

Billionaire jim = Billionaire ("Jimmy");
cout << jim.name << " has " << jim.account.cash +
Jim.offshore->cash << endl;

OQutput: Jimmy has 1000010000

Programming Problems

1. After being defined by the above code, Jim the Billionaire funded a cloning
project and volunteers himself as the first human test subject. Sadly, all his
money isn't cloned, so his clone has his name, but has $0. Add the needed
function to the Billionaire class so the following main function produces the
following output.

int main () {
Billionaire jim = Billionaire ("Jimmy");
Billionaire jimClone = jim;
cout << jimClone.name << " has " << jimClone.account.cash

+ jimClone.offshore->cash<< endl;

cout << jim.name << " has " << jim.account.cash +
jim.offshore->cash << endl;

Billionaire (const Billionaire &b) //-> Review for section
account (0), name (b.name)

offshore = new Account (0);

Output: Jimmy has O
Jimmy has 1000010000

1

2. ImplementaNetflix class which holds Show objects in a “watching queue”.
The capacity cannot exceed 100.

class Netflix {
public:

private:
int num_ shows; // number of shows in queue
Show* queue[100];
int m capacity;
// Hint: you can use this function in cleanUp ()
void remove from queue (int index) {

delete queue[index];

for (int i = index; i < num shows - 1; i++) {
queue[i] = queue[i+l];

}

num_shows--;
}s

class Show {
public:

bool isWatched() {
return is watched;

}

string getName () {
return name;

}

private:
string name;
bool is watched;

}s

Implement all of the functions highlighted in

1. Netflix (int capacity) --declare a Netflix object with a
maximum capacity for the number of shows in queue.
2. void watch(string name) --tellsthe Netflix object that you want

to watch a particular show (as a result when cleanUp is called, the
show you watched should be removed from the queue)

3. bool add(string name) --adda new show toyour queue. If the
addition is successful (queue is not full), return True, else return
False.

4. void cleanUp () -- clean up the queue and remove all shows that
have been watched. Update the number of shows to reflect this
change

5. ~Netflix () --destructor, make sure you remember to delete
everything you have created on the heap!

6. Show(string name) --declare a Show object with a name

7. void watch () --updatesthe Show object from unwatched to

watched. All shows are initially “unwatched”

Sample use case:
int main() {
Netflix n(3);
.add ("Stranger Things"); // returns True
.add("The Office"); // returns True
.add ("Arrested Development"); // returns True
.add("Sherlock"); // returns False
.watch ("The Office");
.cleanUp () ;
.add ("Sherlock"); // returns True

5 83 8 3 3 B3 5

Netflix::Netflix (int capacity) {
m capacity = capacity;
num shows = 0;

void Netflix::watch(string name) {
for(int 1 = 0; 1 < num shows; i++) {
if (queue[i]->getName () == name) {
queue [i]->watch () ;

bool Netflix::add(string name) {

if (num shows == m capacity)
return false;
else {
queue [num shows] = new Show (name) ;

num_ shows++;
return true;

void Netflix::cleanUp() { //****
int toClean[100];
int counter = 0;
for(int i = 0; 1 < num shows; i++) {
if (queuel[i]->isWatched()) {
toClean[counter] = 1i;
counter++;

}

for(int j = 0; j < counter; J++) {

remove from queue (toClean([]]);

}
} //*****

Netflix::~Netflix(
for(int 1 = 0
// NOTE: the array isn’t dynamically allocated, but the

objects inside are,
over the array,

) |

; 1 < num shows; i++) {

so to avoid a memory leak,

iterate
deleting each element

delete queuel[i];

Show: :Show (string name) {
this->name = name;
is watched = false;

vold Show::watch () {

is watched = true;

	CS 31 Solutions Week 9
	Concepts: Pointers, Dynamic Allocation

