
Project 3
Zombie Dash

For questions about this project, first consult your TA.

If your TA can’t help, ask Professor Nachenberg.

Time due:

Part 1: 11 PM, Thursday, February 21
Part 2: 11 PM, Thursday, February 28

WHEN IN DOUBT ABOUT A REQUIREMENT, YOU WILL NEVER LOSE CREDIT
IF YOUR SOLUTION WORKS THE SAME AS OUR POSTED SOLUTION.

SO PLEASE DO NOT ASK ABOUT ITEMS WHERE YOU CAN DETERMINE THE
PROPER BEHAVIOR ON YOUR OWN FROM OUR SOLUTION!

BACK UP YOUR SOLUTION EVERY 30 MINUTES TO THE CLOUD OR A
THUMB DRIVE. WE WILL NOT ACCEPT “MY COMPUTER CRASHED”

EXCUSES FOR LATE WORK.

PLEASE THROTTLE THE RATE YOU ASK QUESTIONS
TO 1 EMAIL PER DAY! IF YOU’RE SOMEONE WITH

LOTS OF QUESTIONS, SAVE THEM UP AND ASK ONCE.

 2

Table of Contents

Introduction ... 4	
Game Details ... 6	

Determining Object Overlap ... 10	
Determining Blocking of Movement ... 10	

So how does a video game work? ... 11	
What Do You Have to Do? ... 14	

You Have to Create the StudentWorld Class .. 14	
init() Details ... 17	
move() Details ... 17	

Give Each Actor a Chance to Do Something .. 19	
Remove Dead Actors after Each Tick ... 20	

cleanUp() Details ... 20	
Level Data File .. 21	

The Level Class ... 22	
You Have to Create the Classes for All Actors ... 23	

Penelope .. 26	
What a Penelope Object Must Do When It Is Created .. 26	
What a Penelope Object Must Do During a Tick .. 27	
What Penelope Must Do In Other Circumstances ... 28	
Getting Input From the User .. 28	

Wall ... 29	
What a Wall Must Do When It Is Created .. 29	
What a Wall Must Do During a Tick .. 30	
What a Wall Must Do In Other Circumstances ... 30	

Exit .. 30	
What an Exit Must Do When It Is Created .. 30	
What an Exit Must Do During a Tick ... 30	
What an Exit Must Do In Other Circumstances .. 31	

Pit ... 31	
What a Pit Must Do When It Is Created .. 31	
What a Pit Must Do During a Tick .. 32	
What a Pit Must Do In Other Circumstances .. 32	

Flame ... 32	
What a Flame Must Do When It Is Created .. 32	
What a Flame Must Do During a Tick .. 32	
What a Flame Must Do In Other Circumstances ... 33	

Vomit ... 33	
What Vomit Must Do When It Is Created ... 33	
What Vomit Must Do During a Tick ... 33	
What Vomit Must Do In Other Circumstances ... 34	

Vaccine Goodie ... 34	
What a Vaccine Goodie Must Do When It Is Created .. 34	
What a Vaccine Goodie Must Do During a Tick .. 34	

 3

What a Vaccine Goodie Must Do In Other Circumstances 35	
Gas Can Goodie ... 35	

What a Gas Can Goodie Must Do When It Is Created .. 35	
What a Gas Can Goodie Must Do During a Tick .. 35	
What a Gas Can Goodie Must Do In Other Circumstances 36	

Landmine Goodie .. 36	
What a Landmine Goodie Must Do When It Is Created 36	
What a Landmine Goodie Must Do During a Tick ... 37	
What a Landmine Goodie Must Do In Other Circumstances 37	

Landmine ... 37	
What a Landmine Must Do When It Is Created .. 37	
What a Landmine Must Do During a Tick .. 38	
What a Landmine Must Do In Other Circumstances .. 38	

Dumb Zombie .. 39	
What a Dumb Zombie Must Do When It Is Created ... 39	
What a Dumb Zombie Must Do During a Tick ... 39	
What a Dumb Zombie Must Do In Other Circumstances 40	

Smart Zombie .. 41	
What a Smart Zombie Must Do When It Is Created ... 41	
What a Smart Zombie Must Do During a Tick ... 41	
What a Smart Zombie Must Do In Other Circumstances 42	

Citizen .. 43	
What a Citizen Must Do When It Is Created ... 43	
What a Citizen Must Do During a Tick ... 43	
What a Citizen Must Do In Other Circumstances ... 45	

Object Oriented Programming Tips .. 46	
Don’t know how or where to start? Read this! .. 50	
Building the Game ... 51	

For Windows ... 51	
For macOS ... 52	

What to Turn In ... 52	
Part #1 (20%) ... 52	
What to Turn In For Part #1 .. 54	
Part #2 (80%) ... 55	
What to Turn In For Part #2 .. 55	

FAQ ... 56	

 4

Introduction

NachenGames corporate spies have learned that SmallSoft is planning to release a new
game called Zombie Dash, and would like you to program an exact copy so
NachenGames can beat SmallSoft to the market. To help you, NachenGames corporate
spies have managed to steal a prototype Zombie Dash executable file and several source
files from the SmallSoft headquarters, so you can see exactly how your version of the
game must work (see posted executable file) and even get a head start on the
programming. Of course, such behavior would never be appropriate in real life, but for
this project, you’ll be a programming villain.

In Zombie Dash, you play the role of Penelope Dolittle, an amateur zombie hunter and
professional StarCraft player. Your job is to trek through an abandoned building, rescuing
frightened citizens before they are turned into brainless, drooling zombies. On each level,
you must lead all of the citizens safely to the level’s exit(s), then head through an exit
yourself so you can advance to the next level of the building to save more citizens. If you
kill some zombies in the process, that’s even better. Once you have saved all of the
citizens from every level of the building, the game is over.

Here’s a screenshot of the game:

 5

In the center left of the screen, you can see Penelope with her shocking red hair,
surrounded by four frightened citizens who need to be rescued. You can also see an army
of zombies dressed in blue rags. While all of the zombies look the same, some are pretty
dumb and just wander around randomly, while others are smart and will attempt to move
toward Penelope or citizens if they get too close. Even worse, any time either type of
zombie gets next to a person and faces them, the zombie may attempt to vomit on the
person. Should the vomit hit the victim, the person will soon become a brainless,
vomiting zombie, unless before it's too late, they can get to the exit or use a vaccine.
However, only Penelope is clear-headed enough to use a vaccine on herself; a citizens'
thinking is too muddled by fear.

On the lower left and right corners of the screen, you see vaccination kits. If Penelope
picks one up, she gets a single-use vaccine that she can use to cure herself (by the player's
pressing the enter key) should she have been previously infected by zombie vomit.
Unfortunately these vaccines aren’t protective against future infection; they can only cure
a previously-acquired infection should Penelope get vomited on.

In the center right of the screen, you’ll notice a metallic box. Penelope can pick up the
box in order to obtain two landmines. Once Penelope has picked up the box, she can hit
the tab key to deploy a landmine. You can see an active landmine in green in the upper-
left corner of the screen. Be careful: Once Penelope deploys a landmine it becomes
active almost immediately, and if she or anyone else steps on it, it will explode into
flames taking out zombies and people nearby. When a landmine explodes, it will also
create a pit in the floor. You can see a row of these pits in the top middle of the screen. A
pit is deadly to people and zombies alike; if they step into one, they’ll fall through the
floor and die.

In the upper right corner, you’ll notice a gas can which holds fuel. Fuel you say? When
Penelope picks up the gas can, she’ll instantly get enough fuel to shoot five searing
flames from her not-Boring flamethrower J. Just hit the space key to fire. Be careful:
although the flames are deadly to zombies, they are also lethal to the citizens you’re
trying to save, and accidentally taking out a citizen will cost you dearly (you’ll lose lots
of points!). Flames will also destroy goodies (like vaccines, gas cans, boxes containing
landmines, etc.) and cause deployed landmines to explode violently, killing nearby
people and zombies alike.

Some dumb zombies hold vaccines (that they presumably somehow acquired in their
past). When these zombies die (e.g., from being consumed by a flame, being blown up
by a landmine, falling into a pit, etc.), they will sometimes drop a vaccine goodie onto the
square where they were standing. Penelope can pick up these vaccines to heal herself
from the effects of zombie vomit.

The citizens that Penelope needs to rescue are petrified by fear and generally remain still
unless either Penelope or a zombie comes nearby. A citizen will follow Penelope
automatically if close enough to her (hoping to be led to an exit), and will attempt to run

 6

away from a zombies that gets too close. Because of their panicked state, citizens aren't
attentive enough to watch out for pits in the floor or landmines. So be careful: If
Penelope leads a citizen near a landmine or a pit, the citizen might trigger the mine or fall
through the pit. Both will cost you many points and of course, the loss of a simulated
human life L.

In the upper middle of the screen, you see the exit (there may be more than one exit on a
level). To complete a level, Penelope must lead all of the living citizens to the exit to save
them, then use the exit herself.

Penelope is not superhuman, and she can die if she comes into contact with a flame
(hanging in the air after being fired from her flamethrower or a landmine), gets too close
to a pit and falls through, or gets infected by a zombie’s vomit and turns into a zombie
herself. The citizens can also die (or be converted to zombies) in the same ways.

Points are awarded or taken away as follows:

• When Penelope picks up a goodie (a vaccine, gas can, or landmine box): 50 points
• When a citizen makes it safely to the exit: 500 points
• When a dumb zombie is destroyed: 1000 points
• When a a smart zombie is destroyed: 2000 points
• When a citizen becomes a zombie or dies for any reason: −1000 points

You control Penelope with the arrow keys, or for lefties and others for whom the arrow
key placement is awkward, WASD or the numeric keypad: up is w or 8, left is a or 4,
down is s or 2, right is d or 6. Use the space key to fire Penelope’s flamethrower (if she’s
picked up fuel), the tab key to deploy a landmine (if she’s picked up landmines), and the
enter key to use a vaccine (if she’s picked up a vaccine kit). To quit the game at any time,
press the ‘q’ key.

Game Details

In Zombie Dash, Penelope starts out a new game with three lives and continues to play
until all of her lives have been exhausted or until there are no more levels. There are
multiple levels in Zombie Dash, beginning with level 1 (NOT zero), and during each
level Penelope (controlled by the player) must deliver all living citizens (if any) to an
exit, and then use an exit herself, in order to advance to the next level. Since it is possible
for citizens to die or be converted to zombies before Penelope has a chance to save them,
it is not required to deliver to the exit all the citizens that existed at the start of the level,
just those that remain alive. If there are no living citizens on a level, Penelope may
complete the current level by going directly to an exit. Of course, the more citizens that
she saves, the more points the player gets.

The Zombie Dash screen is exactly 256 pixels wide by 256 pixels high. The bottom-
leftmost pixel has coordinates x=0,y=0, while the upper-rightmost pixel has coordinate

 7

x=255,y=255, where x increases to the right and y increases upward toward the top of the
screen. The GameConstants.h file we provide defines constants that represent the game’s
width and height (VIEW_WIDTH and VIEW_HEIGHT), which you must use in your
code instead of hard-coding the integers. Every object in the game (e.g., Penelope, a
zombie, a landmine, etc.) will have an x coordinate in the half-open range
[0,VIEW_WIDTH), and a y coordinate in the half-open range [0, VIEW_HEIGHT).

Each level has a fixed layout that is specified in a data file found in your Assets directory
(e.g., level01.txt, level02.txt, etc.). Each level data file contains a specification for the
layout of the current level, the initial locations of all the smart and dumb zombies and
Penelope, as well as the initial locations of all walls, pits, goodies, and exits. For more
information on these level data files, please see the Level Data File section below. You
may define your own level data files in order to customize your game (and more
importantly, to test your game).

At the beginning of each level, and when the player restarts a level because Penelope died
or was turned into a zombie, the level must be reset to its initial state (as shown in the
data file). That is, all old objects should be discarded, and all zombies, people, goodies,
pits, etc., should start in their initial position and state for that level (i.e., be freshly
constructed).

At the beginning of each level (or when the player restarts a level because Penelope died
or turned into a zombie), Penelope starts out with zero flamethrower charges, zero
vaccines, and zero landmines regardless of how many she had previously. Regardless of
whether she was uninfected, infected by zombie vomit (but not yet turned into a zombie),
or turned into a zombie, she is restored to her original healthy uninfected state every time
she starts a new level or restarts the current level.

Once a level begins, it is divided into small time periods called ticks. There are dozens of
ticks per second (to provide smooth animation and gameplay).

During each tick of the game, your program must do the following:

• You must give each object – including Penelope, zombies, citizens, landmines,
flames, vomit, goodies, etc. - a chance to do something – e.g., fire, move, die,
vomit, etc.

• You must check to see if Penelope has died or changed into a zombie. If so, you
must indicate this to our game framework (we’ll tell you how later) so the level
can end and, if Penelope has more lives, restart fresh.

• You must delete/remove all dead objects from the game – this includes zombies
that have been destroyed by flames or by falling through a pit, citizens that have
been killed or converted into zombies, flames or vomit that have dissipated,
landmines that have exploded, goodies that have been picked up, etc.

• You must update the game statistics line at the top of the screen, including the
number of remaining lives Penelope has, the player’s current score, the current
level number, the number of flamethrower charges, landmines and vaccines

 8

Penelope current holds, as well as Penelope’s current infection level (0 to 499 – at
500 she becomes a zombie).

• Check to see if the player has completed the current level, and if so, end the
current level so Penelope may advance to the next level.

During each tick, the game may also need to introduce one or more new objects into the
game – for instance, a new zombie (created when a citizen has changed into a zombie), a
new flame (generated by a flamethrower or a landmine), or a new vaccine goodie
(dropped by a dumb zombie that just died).

The status line at the top of the screen must have the following components:

 Score:	004500		Level:	27		Lives:	3		Vaccines:	2		Flames:	16		Mines:	1		Infected:	0

Each labeled value of the status line must be separated from the next by exactly two
spaces. For example, the 3 between “Lives: ” and “Vaccines:” must have two spaces after
it. You may find the Stringstreams writeup on the class web site to be helpful.

There are three major types of “goodies” in Zombie Dash that Penelope will want to pick
up: vaccine goodies, gas can goodies, and landmine goodies. Their respective behaviors
are described in the sections on goodies below.

There are two major types of projectiles in Zombie Dash: flames and vomit. Their
respective behaviors are described in the sections on projectile behaviors below.

If Penelope dies or is converted into a zombie she loses one “life.” If, after losing a life,
Penelope has one or more remaining lives left, she is placed back on the current level and
must again complete the entire level from scratch (with the level starting as it was at the
beginning of the first time it was attempted). If Penelope dies and has no lives left, then
the game is over.

The player may fire Penelope's flamethrower by pressing the space bar. If Penelope has a
fuel charge (obtained by having earlier picked up a gas can goodie), firing the
flamethrower will place three flames directly in front of Penelope in the direction she is
facing. Flames fired by Penelope will instantly destroy both people and zombies touched
by the flame (including Penelope herself if she walks into a flame that was just fired!).
Flames will also destroy all goodies they touch. Finally if a flame hits a landmine, it will
cause the mine to explode just as if it were stepped upon.

The player may deploy a landmine, if Penelope has any, by pressing the tab key. A
landmine deployed by Penelope will produce a grid of flames all around it if it is stepped
on by Penelope, a citizen, or a zombie while it’s active (or activated by a flame from
another landmine or Penelope’s flamethrower). These flames, like those fired from
Penelope’s flamethrower, instantly kill all peoples and zombies that are close enough,
including Penelope. When a landmine explodes, it will also introduce a pit in the ground
at the location of the landmine.

 9

A person (Penelope or a citizen) or a zombie who steps on a pit will fall in and die.

There are two types of zombies in Zombie Dash: dumb zombies and smart zombies. A
dumb zombie wanders around randomly and, if it happens to face a person near it, will
attempt to vomit on that person. A smart zombie also wanders around randomly until it
gets soewhat near Penelope or a citizen. At this point, it will attempt to move toward the
person, and vomit on that person when it's close enough. The exact behaviors are
described in the sections on zombie behaviors below.

Just as Penelope can fire flames, zombies can shoot projectile vomit from their mouths
when they are next to a person. A person will turn into a zombie exactly 500 ticks after
being infected by zombie vomit. The only exception is if Penelope gets infected and
subsequently uses a vaccine to cure herself.

When Penelope is turned into a zombie, the player’s number of remaining lives is
decremented by 1. If the player still has at least one life left, then the user is prompted to
continue and given another chance by restarting the current level from scratch.

Your game implementation must play various sounds when certain events occur, using
the playSound method provided by our GameWorld class, e.g.:

 // Make a sound effect when Penelope fires her flamethrower
 pointerToGameWorld->playSound(SOUND_PLAYER_FIRE);

• You must play a SOUND_PLAYER_FIRE sound any time Penelope successfully
fires her flamethrower.

• You must play a SOUND_ZOMBIE_VOMIT sound any time a zombie attempts
to vomit on a person.

• You must play a SOUND_PLAYER_DIE sound any time Penelope dies by being
damaged by a flame, falling into a pit, or turning into a zombie.

• You must play a SOUND_ZOMBIE_DIE sound any time a zombie dies by being
damaged by a flame or falling into a pit.

• You must play a SOUND_CITIZEN_DIE sound any time a citizen dies by being
damaged by a flame or falling into a pit.

• You must play a SOUND_LANDMINE_EXPLODE sound any time a landmine
explodes.

• You must play a SOUND_GOT_GOODIE sound any time the player successfully
picks up a goodie.

• You must play a SOUND_CITIZEN_INFECTED sound any time a citizen is
successfully infected by a zombie’s vomit. Note: This sound is played only when
the citizen is first covered in vomit, NOT when they become a zombie.

• You must play a SOUND_ZOMBIE_BORN sound any time a citizen converts
from an infected citizen into a full-fledged zombie

• You must play a SOUND_CITIZEN_SAVED sound any time a citizen uses an
exit on the level to reach safety

 10

• You must play a SOUND_LEVEL_FINISHED sound every time Penelope
successfully completes a level.

Constants for each specific sound, e.g., SOUND_ZOMBIE_BORN, may be found in our
GameConstants.h file.

Determining Object Overlap

In a video game, it’s often important to determine if two game objects come into contact.
For example, if a zombie shoots vomit out of its mouth, did this vomit come into contact
with a nearby person? Or when Penelope walks near a goodie, did she get close enough
to pick it up?

In Zombie Dash, two objects are said to overlap if the Euclidean distance between their
(x,y) centers is less than or equal to 10 pixels (i.e., if (∆x)2 + (∆y)2 ≤ 102). So, for
example, in this spec we may say:

• Vomit will infect a person if it overlaps with the person.
• A flame will kill a person if it overlaps with the person.
• A person will fall into a pit if they overlap with the pit.
• Penelope will pick up a goodie if she overlaps with the goodie.
• A flame will activate a landmine if it overlaps with the landmine.
• A flame will destroy a goodie if it overlaps with the goodie.
• A person will use an exit if they overlap with the exit.
• A flame will be blocked from being fired by a wall or an exit.

This means that the center (x,y) positions of each of the two objects must be within 10
pixels of each other for the action to take place/be blocked.

Determining Blocking of Movement

In Zombie Dash, citizens, zombies, and Penelope can move anywhere on the level, with
the following exceptions:

• They must not move onto any wall.
• They must not move onto any citizen, zombie, or Penelope.

When we say “P must not move onto Q” we mean the following: Moving P must not
result in P’s bounding box intersecting AT ALL with Q’s bounding box. If an actor has
its lower left corner at location (x,y), then the actor’s bounding box is the rectangle with
lower left corner (x,y) and upper right corner
 (x+SPRITE_WIDTH−1, y+SPRITE_HEIGHT−1)

 11

where SPRITE_WIDTH and SPRITE_HEIGHT are the width and height of all game
objects (16x16).

There are additional game details that you must address in your implementation – these
will be described in the sections below.

So how does a video game work?

Fundamentally, a video game is composed of a bunch of game objects; in Zombie Dash,
those objects include Penelope, zombies (dumb and smart), goodies (e.g., vaccine
goodies, gas can goodies, and landmine goodies), projectiles (e.g., flames, vomit),
landmines, pits, and exits. Let’s call these objects “actors,” since each object is an actor
in our video game. Each actor has its own (x,y) location in space, its own internal state
(e.g., a smart zombie knows its location, what direction it’s moving, etc.) and its own
special algorithms that control its actions in the game based on its own state and the state
of the other objects in the world. In the case of Penelope, the algorithm that controls the
Penelope object is the user’s own brain and hand and the keyboard! In the case of other
actors (e.g., a dumb zombie), each object has an internal autonomous algorithm and state
that dictates how the object behaves in the game world.

Once a game begins, gameplay is divided into ticks. A tick is a unit of time, for example,
50 milliseconds (that’s 20 ticks per second).

During a given tick, the game calls upon each object’s behavioral algorithm and asks the
object to perform its behavior. When asked to perform its behavior, each object’s
behavioral algorithm must decide what to do and then make a change to the object’s state
(e.g., move the object 1 pixel to the left), or change other objects’ states (e.g., when a
smart zombie’s algorithm is called by the game, it may determine that Penelope has
moved in front of it, and it may eject vomit at her). Typically the behavior exhibited by
an object during a single tick is limited in order to ensure that the gameplay appears
smooth and that things don’t move too quickly and confuse the player. For example, a
dumb zombie will move just a pixel left/right/up/down, rather than moving ten or more
pixels per tick; a dumb zombie moving, say, 20 pixels in a single tick would be annoying
to the player, because we humans are used to seeing smooth movement in video games,
not jerky shifts.

After the current tick is over and all actors have had a chance to adjust their state (and
possibly adjust other actors’ states), the graphical framework that we provide animates
the actors onto the screen in their new configuration. So if a dumb zombie changed its
location from (10,5) to (9,5) (moved one pixel left), then our game framework would
erase the graphic of the dumb zombie from location (10,5) on the screen and draw the
dumb zombie’s graphic at (9,5) instead. Since this process (asking actors to do
something, then animating them to the screen) happens 20 times per second, the user will
see somewhat smooth animation.

 12

Then, the next tick occurs, and each actor’s algorithm is again allowed to do something,
our framework displays the updated actors on-screen, etc.

Assuming the ticks are quick enough (a fraction of a second), and the actions performed
by the objects are subtle enough (i.e., a dumb zombie doesn’t move 3 inches away from
where it was during the last tick, but instead moves 1 millimeter away), when you display
each of the objects on the screen after each tick, it looks as if each object is performing a
continuous series of fluid motions.

A video game can be broken into three different phases:

Initialization: The Game World is initialized and prepared for play. This involves
allocating one or more actors (which are C++ objects) and placing them in the game
world so that they will appear in the maze.

Gameplay: Gameplay is broken down into a bunch of ticks. During each tick, all of the
actors in the game have a chance to do something, and perhaps die. During a tick, new
actors may be added to the game and actors who die must be removed from the game
world and deleted.

Cleanup: The player has lost a life (but has more lives left), the player has completed the
current level, or the player has lost all of their lives and the game is over. This phase frees
all of the objects in the World (e.g., Penelope, citizens, zombies, pits, flames, vomit,
exits, landmines, etc.), since the level has ended. If the game is not over (i.e., the player
has more lives), then the game proceeds back to the Initialization step, where the level is
repopulated with new occupants, and gameplay starts for the level.

Here is what the main logic of a video game looks like, in pseudocode (The
GameController.cpp we provide for you has some similar code):

 while (Penelope has lives left)
 {
 Prompt the player to start playing // "press a key to start"

Initialize the game world // you’re going to write this

while (Penelope is still alive)
{
 // each pass through this loop is a tick (1/20th of a sec)

 // you’re going to write code to do the following
 Tell all actors to do something
 Remove any dead actors from the world

 // we write this code to handle the animation for you
 Animate each actor to the screen
 Sleep for one tick to give the user time to react
}
 // Penelope died – you’re going to write this code
Cleanup all game world objects // you’re going to write this

 13

if (Penelope has lives left)
 Prompt the player to continue

 }

 Tell the player the game is over // we provide this

And here is what Tell all actors to do something might do:

 for each actor on the level:
 if (the actor is still alive)
 tell the actor to doSomething()

You will typically use a container (a vector or a list) to hold pointers to each of your live
actors. Each actor (a C++ object) has a doSomething() member function in which the
actor decides what to do. For example, here is some pseudocode showing what a
(simplified) dumb zombie might decide to do each time it gets asked to do something:

 class DumbZombie : public SomeOtherClass
 {
 public:
 virtual void doSomething()
 {
 If the player is in front of me and close by, then
 Vomit in the direction of the player

Else if I still want to continue moving in the current direction
Move one pixel in my current direction
Decrement the number of remaining ticks to move in this direction

 Else if I want to choose a new direction
 Pick a new direction to move, and pick how many ticks to move
 in that direction.
 }
 ...
 };

And here’s what Penelope’s doSomething() member function might look like:

 class Penelope : public …
 {
 public:
 virtual void doSomething()
 {
 Try to get user input (if any is available)

 If the user pressed the UP key then
 Increase my y location by one
 If the user pressed the DOWN key then

 Decrease my y location by one
 ...
 If the user pressed the space bar to fire and I have

 flamethrower charges left, then
 Introduce three new flame objects into the game in front
 of me
 ...
 }
 ...
 };

 14

What Do You Have to Do?

You must create a number of different classes to implement Zombie Dash game. Your
classes must work properly with our provided classes, and you must not modify our
classes or our source files in any way to get your classes to work properly (doing so
will result in a score of zero on the entire project!). Here are the specific classes that
you must create:

1. You must create a class called StudentWorld that is responsible for keeping track
of your game world and all of the actors/objects (Penelope, citizens, zombies,
projectiles, goodies, landmines, pits, flames, walls, exits, etc.) in the game.

2. You must create a class to represent Penelope in the game.
3. You must create classes for dumb zombies, smart zombies, vomit, flames, vaccine

goodies, gas can goodies, landmine goodies, walls, pits, landmines, etc., as well as
any additional base classes (e.g., a zombie base class if you find it convenient)
that help you implement your actors.

You Have to Create the StudentWorld Class

Your StudentWorld class is responsible for orchestrating virtually all gameplay – it keeps
track of the entire game world (each level and all of its inhabitants such as citizens, dumb
zombies, smart zombies, Penelope, goodies, projectiles, walls, etc.). It is responsible for
initializing the game world at the start of the game, asking all the actors to do something
during each tick of the game, destroying an actor when it disappears (e.g., a zombie dies,
the user shoots a flame at a goodie and destroys it, a flame dissipates, etc.), and
destroying ALL of the actors in the game world when the user loses a life.

Your StudentWorld class must be derived from our GameWorld class (found in
GameWorld.h) and must implement at least these three methods (which are defined as
pure virtual in our GameWorld class):

	 virtual	int	init()	=	0;	
	 virtual	int	move()	=	0;	
	 virtual	void	cleanUp()	=	0;	
	
The code that you write must never call any of these three functions (except that
StudentWorld's destructor may call cleanUp()). Instead, our provided game framework
will call these functions for you. So you have to implement them correctly, but you won’t
ever call them yourself in your code (except in the one place noted above).	
	
Each time a level starts, our game framework, not you, will call the init() method that you
defined in your StudentWorld class. The init() method is responsible for constructing a
representation of the current level in a StudentWorld object and populating it with initial
objects (e.g., walls, zombies, goodies, exits, Penelope), using one or more data structures
that you come up with.

 15

The init() method is automatically called by our provided code either (a) when the game
first starts, (b) when the player completes the current level and advances to a new level
(which needs to be initialized), or (c) when the user loses a life (but has more lives left)
and the game is ready to restart at the current level.

When the player has finished the level loaded from level01.txt, the next level data file to
load is level02.txt; after level02.txt, level03.txt; etc. If there is no level data file with the
next number, or if the level just completed is level 99, the init() method must return
GWSTATUS_PLAYER_WON. If the next level file exists but is not in the proper format for a level
data file, the init() method must return GWSTATUS_LEVEL_ERROR. Otherwise, the init()
method initializes your data structures/objects for the current level and returns
GWSTATUS_CONTINUE_GAME.

Once a level has been prepared with a call to the init() method, our game framework will
repeatedly call the StudentWorld’s move() method, at a rate of roughly 20 times per
second. Each time the move() method is called, it must run a single tick of the game. This
means that it is responsible for asking each of the game actors (e.g., Penelope, each
citizen, zombie, goodie, projectile, landmine, exit, pit, etc.) to try to do something: move
themselves and/or perform their specified behavior. Finally, this method is responsible
for disposing of (i.e., deleting) actors that need to disappear during a given tick (e.g.,
vomit that falls to the ground and disappears, a dead dumb zombie, etc.). For example, if
a dumb zombie is hit by a flame, then its state should be set to dead, and then after all of
the live actors in the game get a chance to do something during the tick, the move()
method should remove that dumb zombie from the game world (by deleting its object and
removing any reference to the object from the StudentWorld’s data structures). The
move() method will automatically be called once during each tick of the game by our
provided game framework. You will never call the move() method yourself.

The cleanup() method is called by our framework when Penelope completes the current
level or loses a life (e.g., she falls into a pit, gets singed by flames, or turns into a
zombie). The cleanup() method is responsible for freeing all actors (e.g., all zombie
objects, all wall objects, all projectiles, all goodie objects, the Penelope object, landmine
objects, exit objects, etc.) that are currently in the game. This includes all actors created
during either the init() method or introduced during subsequent gameplay by the actors in
the game (e.g., a flame that was added to the screen by an exploding landmine) that have
not yet been removed from the game.

You may add as many other public/protected/private member functions or private data
members to your StudentWorld class as you like (in addition to the above three member
functions, which you must implement). You must not add any public or protected data
members.

Your StudentWorld class must be derived from our GameWorld class. Our GameWorld
class provides the following methods for your use:

 16

	 int	getLevel()	const;	
	 int	getLives()	const;	
	 void	decLives();	
	 void	incLives();	
	 int	getScore()	const;	
	 void	increaseScore(int	howMuch);	
	 void	setGameStatText(string	text);	
	 string	assetPath()	const;	
	 bool	getKey(int&	value);	

void	playSound(int	soundID);	
	
getLevel() can be used to determine the current level number.

getLives() can be used to determine how many lives Penelope has left.

decLives() reduces the number of lives Penelope has by one.

incLives() increases the number of lives Penelope has by one.

getScore() can be used to determine Penelope’s current score.

increaseScore() is used by a StudentWorld object (or your other classes) to increase or
decrease the user’s score upon successfully destroying a zombie or picking up a goodie of
some sort. When your code calls this method, you must specify how many points the
user gets (e.g., 1000 points for destroying a dumb zombie, −1000 points if a citizen dies
or is converted to a zombie). This means that the game score is controlled by our
GameWorld object – you must not maintain your own score data member in your own
classes.

The setGameStatText() method is used to specify what text is displayed at the top of the
game screen, e.g.:

 Score:	001200		Level:	4		Lives:	2		Vaccines:	4		Flames:	19		Mines:	3		Infected:	0

assetPath() returns the path to the directory that contains the game assets (images,
sounds, and the level data files).

getKey() can be used to determine if the user has hit a key on the keyboard to move
Penelope or to fire a projectile. This method returns true if the user hit a key during the
current tick, and false otherwise (if the user did not hit any key during this tick). The only
argument to this method is a variable that will be set to the key that was pressed by the
user (if any key was pressed). If the function returns true, the argument will be set to one
of the following values (defined in GameConstants.h):

KEY_PRESS_LEFT	 	 	
KEY_PRESS_RIGHT	 	 	
KEY_PRESS_UP	 	 	 	
KEY_PRESS_DOWN	 	 	
KEY_PRESS_SPACE	 	
KEY_PRESS_TAB	
KEY_PRESS_ENTER	

 17

The playSound() method can be used to play a sound effect when an important event
happens during the game (e.g., a zombie dies or Penelope picks up a goodie). You can
find constants (e.g., SOUND_PLAYER_FIRE) that describe what noise to make in the
GameConstants.h file. The playSound() method is defined in our GameWorld class,
which you will use as the base class for your StudentWorld class. Here’s how this method
might be used:

 // if a dumb zombie dies, make a dying sound

 if (the Zombie Has Died)
 studentWorldPtr->playSound(SOUND_ZOMBIE_DIE);

init() Details

Your StudentWorld’s init() member function must:

1. Initialize the data structures used to keep track of your game’s world.
2. Allocate and insert a Penelope object into the game world as specified in the

current level’s data file.
3. Allocate and insert various wall, pit, goodie, zombie, and exit objects into the

game world as specified in the current level’s data file.

Your init() method must construct a representation of your world and store this in a
StudentWorld object. It is required that you keep track of all of the actors (e.g., zombies
like smart zombies, pits, landmines, projectiles like vomit, goodies, etc.) in a single STL
collection such as a list or vector. (To do so, we recommend using a container of pointers
to the actors). If you like, a StudentWorld object may keep a separate pointer to the
Penelope object rather than keeping a pointer to that object in the container with the other
actor pointers; Penelope is the only actor pointer allowed to not be stored in the single
actor container. The init() method may also initialize any other StudentWorld member
variables it needs, such as the number of remaining citizens that need to be saved on this
level before Penelope can use the exit.

You must not call the init() method yourself. Instead, this method will be called by our
framework code when it’s time for a new game to start (or when the player completes a
level or needs to restart a level).

move() Details

The move() method must perform the following activities:

1. It must ask all of the actors that are currently alive in the game world to do
something (e.g., ask a dumb zombie to move itself, ask a goodie to check if it
overlaps with Penelope, and if so, grant her something, give Penelope a chance to
move up, down, left or right, etc.).

 18

a. If an actor does something that causes Penelope to die (e.g., a flame
overlaps with Penelope, she falls into a pit, she turns into a zombie), then
the move() method should immediately return GWSTATUS_PLAYER_DIED.

b. Otherwise, if the all remaining citizens and Penelope have used the exit
and it’s time to advance to the next level, then the move() method must
return a value of GWSTATUS_FINISHED_LEVEL.

2. If move() hasn't returned as a result of the above, it must then delete any actors
that have died during this tick (e.g., a dumb zombie that was killed by a flame or a
goodie that disappeared because it overlapped with Penelope and was therefore
picked up) and remove them from the collection of actors.

3. It must update the status text on the top of the screen with the latest information
(e.g., the user’s current score, the number of landmines Penelope has, the current
level, etc.).

The move() method must return one of three different values when it returns at the end of
each tick (all are defined in GameConstants.h):

GWSTATUS_PLAYER_DIED		 	 	 	
GWSTATUS_CONTINUE_GAME	 	 	 	 	
GWSTATUS_FINISHED_LEVEL	

The first return value indicates that Penelope died during the current tick, and instructs
our provided framework code to tell the user the bad news and restart the level if
Penelope has more lives left (or end the game if she’s out of lives). If your move()
method returns this value and Penelope has more lives left, then our framework will
prompt the player to continue the game, call your cleanup() method to destroy the level,
call your init() method to re-initialize the level from scratch, and then begin calling your
move() method over and over, once per tick, to let the user play the level again.

The second return value indicates that the tick completed without Penelope dying BUT
Penelope has not yet completed the current level. Therefore the gameplay should
continue normally for the time being. In this case, the framework will advance to the
next tick and call your move() method again.

The final return value indicates that Penelope has completed the current level (that is, she
successfully escorted all of the citizens to an exit and used an exit herself). If your move()
method returns this value, then the current level is over, and our framework will call your
cleanup() method to destroy the level, our framework will then advance to the next level
(if one exists), then call your init() method to prepare that level for play, etc…

IMPORTANT NOTE: The skeleton code that we provide to you is hard-coded to return
a GWSTATUS_PLAYER_DIED	status value from our dummy version of the move() method.
Unless you implement something that returns GWSTATUS_CONTINUE_GAME	your game will
not display any objects on the screen! So if the screen just immediately tells you that you
lost a life once you start playing, you’ll know why!

Here’s pseudocode for how the move() method might be implemented:

 19

 int StudentWorld::move()
 {
 // The term "actors" refers to all zombies, Penelope, goodies,
 // pits, flames, vomit, landmines, etc.

// Give each actor a chance to do something, including Penelope
for each of the actors in the game world

 {
 if (actor[i] is still alive)
 {
 // tell each actor to do something (e.g. move)
 actor[i]->doSomething();

if (Penelope died during this tick)
 return GWSTATUS_PLAYER_DIED;

if (Penelope completed the current level)
 return GWSTATUS_FINISHED_LEVEL;

 }
 }

 // Remove newly-dead actors after each tick
 Remove and delete dead game objects

 // Update the game status line

Update Display Text // update the score/lives/level text at screen top

 // the player hasn’t completed the current level and hasn’t died, so
 // continue playing the current level
 return GWSTATUS_CONTINUE_GAME;
 }

Give Each Actor a Chance to Do Something

During each tick of the game each active actor must have an opportunity to do something
(e.g., move around, shoot, etc.). Actors include Penelope, zombies, projectiles like flames
and vomit (which are added to the game when Penelope or a zombie attacks or when a
landmine goes off and the flames it produces must linger on the screen for a second or
two, then disappear), landmines, goodies like vaccine goodies, pits, and walls.

Your move() method must iterate over every actor that’s in the game (i.e., held by a
StudentWorld object) and ask it to do something by calling a member function in the
actor’s object named doSomething(). In each actor’s doSomething() method, the object
will have a chance to perform some activity based on the nature of the actor and its
current state: e.g., a dumb zombie might move one pixel left, Penelope might shoot a
flame or drop a landmine, a flame may singe a nearby actor, etc.

It is possible that one actor (e.g., a flame) may destroy another actor (e.g., a dumb
zombie) during the current tick. If an actor has died earlier in the current tick, then the
dead actor must not have a chance to do something during the current tick (since it’s
dead). Also, other live actors processed during the tick must not interact with an actor
after it has died (e.g., a zombie that died during the tick should NOT block a person from
moving into a location that intersects with its former bounding box).

 20

To help you with testing, if you press the f key during the course of the game, our game
controller will stop calling move() every tick; it will call move() only when you hit a key
(except the r key). Freezing the activity this way gives you time to examine the screen,
and stepping one move at a time when you're ready helps you see if your actors are
moving properly. To resume regular gameplay, press the r key.

Remove Dead Actors after Each Tick

At the end of each tick, your move() method must determine which of your actors are no
longer alive, remove them from your container of active actors, and use a C++ delete
expression to free their objects (so you don’t have a memory leak). So if, for example, a
dumb zombie is killed by a flame and it dies, then it should be noted as dead (so that
other actors don't interact with it during the current tick), and at the end of the tick, its
pointer should be removed from the StudentWorld’s container of active objects, and the
dumb zombie object should be deleted (using a C++ delete expression) to free up
memory for future actors that will be introduced later in the game. Or, for example, after
a flame has been fired and has burned nearby actors for exactly two ticks, it must
disappear from the screen and its object needs to be deleted as well. (Hint: Each of your
actors could maintain a dead/alive status.)

cleanUp() Details

When your cleanUp() method is called by our game framework, it means that Penelope
lost a life (e.g., she fell into a pit, turned into a zombie after being infected, or walked
into a flame she fired herself) or has completed the current level. In this case, every actor
in the entire game (Penelope and every zombie, goodie, projectile, landmine, wall, pit,
etc.) must be deleted and removed from the StudentWorld’s container of active objects,
resulting in an empty level. If the user has more lives left, our provided code will
subsequently call your init() method to reload and repopulate the level with a new set of
actors, and the level will then continue from scratch.

You must not call the cleanUp() method yourself when Penelope dies. Instead, this
method will be called by our code when init() returns an appropriate status.

The StudentWorld destructor will be called by our game framework when the game is
over. If the game ends prematurely because the player pressed the q key, cleanUp() will
NOT have been called by our framework, so your destructor should call it to make sure
the game shuts down cleanly. In normal gameplay, Penelope may lose her last life or
finish the last level, resulting in cleanUp() being called as for any level ending; a little
later, the StudentWorld destructor is called, which would call cleanUp() again. Make
sure that two consecutive calls to cleanUp() won't do anything undefined. For
example, if cleanUp() deletes an object and leaves a dangling pointer, it could be
disastrous if the second call to cleanUp() tries use that pointer in a delete expression.

 21

Level Data File

As mentioned, every level of Zombie Dash has a different layout. The layout for each
level is stored in a text data file that you can edit with Windows Notepad or macOS’s
textedit. The file “level01.txt” holds the details for the first level’s maze, “level02.txt”
holds the details for the second level’s maze, etc. If the next numbered level file does not
exist, Penelope has completed all the levels and the player wins.

Here’s an example level data file (you can modify our level data files to create wacky
new levels, or add your own new level data files to add new levels, if you like):

level01.txt:

################
#L @ #
X G#
OOOOO########

ss#
C #ss#
C #ss#
#ss#
L#ss#
C #ss#
#ss#
C #dd#
####dd#
#V C C#ddddV#
################

As you can see, the data file contains a 16x16 grid of different characters that represent
the different actors/things in the level. Valid characters for your level data file are as
follows; upper and lower case version of a letter are treated the same way:

The # character represents a wall. The perimeter of each maze MUST be surrounded
completely by walls.

The @ character specifies the starting location of Penelope, the player’s avatar, when she
starts a level. If Penelope must replay the current level because she dies or gets converted
to a zombie, she must restart at this location.

The C character represents a citizen that Penelope must save – this specifies that a citizen
must start at this location when the player starts (or replays) the current level.

The O (oh, not zero) character represents a pit that people and zombies can fall into.

The V character represents a vaccine goodie that Penelope can pick up and later use to
cure herself if she’s been vomited upon and is infected by zombie vomit.

 22

The G character represents a gas can goodie that gives Penelope 5 flamethrower charges.

The L character represents a landmine goodie that grants Penelope two landmines.

The X character represents the level’s exit. Penelope must lead all living citizens to exits,
and then go into one herself to complete a level.

The D character represents a dumb zombie – this specifies that a dumb zombie must start
at this location when the player starts (or replays) the current level.

The S character represents a smart zombie – this specifies that a smart zombie must start
at this location when the player starts (or replays) the current level.

All space characters represent empty locations where Penelope, citizens, and zombies
may walk within the level.

The x and y values in the level coordinate system lie in the half-open ranges
[0,LEVEL_WIDTH) and [0,LEVEL_HEIGHT) respectively, where LEVEL_WIDTH is
16 and LEVEL_HEIGHT is 16. Since each object in the game is SPRITE_WIDTH
pixels wide and SPRITE_HEIGHT pixels tall (i.e., 16x16), an object like the bottom-
leftmost citizen (C) in the level shown above, at level x coordinate 3 and level y
coordinate 1 in the level file, has (48, 16) as its (x,y) coordinates in the game.

The Level Class

We have graciously J decided to provide you with a class that can load level data files
for you. The class is named Level and may be found in our provided Level.h file. Here’s
how this class might be used:

#include "Level.h" // required to use our provided class

void StudentWorld::someFunc()
{
 Level lev(assetPath());

 string levelFile = "level01.txt";
 Level::LoadResult result = lev.loadLevel(levelFile);
 if (result == Level::load_fail_file_not_found)
 cerr << "Cannot find level01.txt data file" << endl;
 else if (result == Level::load_fail_bad_format)
 cerr << "Your level was improperly formatted" << endl;
 else if (result == Level::load_success)
 {
 cerr << "Successfully loaded level" << endl;

 Level::MazeEntry ge = lev.getContentsOf(5,10); // level_x=5, level_y=10
 switch (ge) // so x=80 and y=160
 {
 case Level::empty:
 cout << "Location 80,160 is empty" << endl;
 break;
 case Level::smart_zombie:
 cout << "Location 80,160 starts with a smart zombie" << endl;

 23

 break;
 case Level::dumb_zombie:
 cout << "Location 80,160 starts with a dumb zombie" << endl;
 break;
 case Level::player:
 cout << "Location 80,160 is where Penelope starts" << endl;
 break;
 case Level::exit:
 cout << "Location 80,160 is where an exit is" << endl;
 break;
 case Level::wall:
 cout << "Location 80,160 holds a Wall" << endl;
 break;
 case Level::pit:
 cout << "Location 80,160 has a pit in the ground" << endl;
 break;
 // etc…
 }
 }
}

Hint: You will likely want to use our Level class to load the current level specification in
your StudentWorld class’s init() method. The assetPath() and getLevel() methods that
your StudentWorld class inherits from GameWorld might also be useful, along with the
Stringstreams writeup on the class web site!

You Have to Create the Classes for All Actors

Zombie Dash has a number of different game objects, including:

• Penelope
• Dumb zombies
• Smart zombies
• Citizens
• Landmines
• Pits
• Flames
• Vomit
• Vaccine Goodies
• Gas can Goodies
• Landmine Goodies
• Walls
• Exits

Each of these game objects can occupy your various levels and interact with other game
objects within the visible screen view.

Now of course, many of your game objects will share things in common – for instance,
every object in the game (dumb zombies, citizens, Penelope, pits, flames, exits, etc.) has
x,y coordinates. Many game objects can perform an action (e.g., move or vomit) during
each tick of the game. Many of them can be attacked (e.g., Penelope, citizens, and

 24

zombies) and could “die” during a tick, including goodies and landmines if they’re
burned by a flame. Some objects like flames, vomit, pits, landmines, and goodies
“activate” when they come into contact with an appropriate target (e.g., goodies activate
when they overlap with Penelope (and give her some special power), flames activate
when they overlap with Penelope, zombies and citizens, etc.

It is therefore your job to determine the commonalities between your different game
objects and make sure to factor out common behaviors and traits and move these into
appropriate base classes, rather than duplicate these items across your derived classes –
this is in fact one of the tenets of object oriented programming.

Your grade on this project will depend upon your ability to intelligently create a set of
classes that follow good object-oriented design principles. Your classes must avoid
duplicating code or data members – if you find yourself writing the same (or largely
similar) code or duplicating member variables across multiple classes, then this is an
indication that you should define a common base class and migrate this common
functionality/data to the base class. Duplication of code is a so-called code smell, a
weakness in a design that often leads to bugs, inconsistencies, code bloat, etc.

Hint: When you notice this specification repeating the same text nearly identically in the
following sections (e.g., in the vaccine goodie section and the gas can goodie section, or
in the dumb zombie and smart zombie sections) you must make sure to identify common
behaviors and move these into proper base classes. DO NOT duplicate behaviors across
classes that can be moved into a base class!

You MUST derive all of your game objects directly or indirectly from a base class that
we provide called GraphObject, e.g.:

class	Actor:	public	GraphObject	
{	
public:	

	 	 …	
	 };	

class	SmartZombie:	public	Actor	
{	
public:	
	 …	
};	
	
class	Goodie:	public	Actor	
{	
public:	
	 …	
};	
		

GraphObject is a class that we have defined that helps hide the ugly logic required to
graphically display your actors on the screen. If you don’t derive your classes from our
GraphObject base class, then you won’t see anything displayed on the screen! J

 25

The GraphObject class provides the following methods that you may use:

	 GraphObject(int	imageID,	double	startX,	double	startY,	
	 	 	 	 	 	 int	startDirection	=	0,	int	depth	=	0);	

double	getX()	const;																					//	in	pixels	(0-255)	
	 double	getY()	const;																					//	in	pixels	(0-255)	
	 virtual	void	moveTo(double	x,	double	y);	//	in	pixels	(0-255)	
	 int	getDirection()	const;																//	in	degrees	(0-359)	
	 void	setDirection(Direction	d);										//	{up,	down,	left,	right}	
	
You may use any of these member functions in your derived classes, but you must not
use any other member functions found inside of GraphObject in your other classes (even
if they are public in our class). You must not redefine any of these methods in your
derived classes since they are not defined as virtual in our base class.

GraphObject(int imageID,

 double startX, // column first
 double startY, // then row!
 int startDirection,
 int depth)

is the constructor for a new GraphObject. When you construct a new GraphObject, you
must specify an image ID that indicates how the GraphObject should be displayed on
screen (e.g., as a dumb zombie, citizen, Penelope, a pit, a flame, etc.). You must also
specify the initial (x,y) location of the object. The x value may range from 0 to
VIEW_WIDTH-1 inclusive, and the y value may range from 0 to VIEW_HEIGHT-1
inclusive (these constants are defined in our provided header file GameConstants.h).
Notice that you pass the coordinates as x, y (i.e., column, row starting from bottom left,
and not row, column). You may also specify the initial direction an object is facing: up,
down, left or right. Finally, you may specify the depth of the object. An object of depth
0 is in the foreground, whereas objects with increasing depths are drawn further in the
background. Thus an object of depth zero always covers object with a depth of one or
greater, and an object with a depth of one always covers objects of depth two or greater,
etc.

One of the following IDs, found in GameConstants.h, must be passed in for the imageID
value:

IID_PLAYER	(for	Penelope)	 	 									
IID_ZOMBIE	(for	both	smart	and	dumb	zombies)	
IID_CITIZEN	
IID_FLAME							
IID_VOMIT								
IID_PIT	
IID_LANDMINE	(for	a	deployed	landmine)	
IID_VACCINE_GOODIE	
IID_GAS_CAN_GOODIE	
IID_LANDMINE_GOODIE	
IID_EXIT	
IID_WALL	

	

 26

If you derive your game objects from our GraphObject class, they will be displayed on
screen automatically by our framework (e.g., a zombie image will be drawn to the screen
at the GraphObject’s specified x,y coordinates if the object’s ImageID is IID_ZOMBIE).

The classes you write MUST NOT store an imageID value or any value somehow
related/derived from the imageID value in any way or you will get a Zero on this
project. Only our GraphObject class may store the imageID value.	

getX() and getY() are used to determine a GraphObject’s current location in the level.
Since each GraphObject maintains its own (x,y) location, this means that your derived
classes MUST NOT also have x or y member variables, but instead use these functions
and moveTo() from the GraphObject base class.

moveTo(double x, double y) is used to update the location of a GraphObject within the
level. For example, if a dumb zombie’s movement logic dictates that it should move one
pixel to the left, you could do the following:

 moveTo(getX()-1, y); // move one pixel to the left

You must use the moveTo() method to adjust the location of a game object if you want
that object to be properly animated. As with the GraphObject constructor, note that the
order of the parameters to moveTo is x,y (col,row) and NOT y,x (row,col).

getDirection() is used to determine the direction a GraphObject is facing, and returns a
value of up, down, left or right.

setDirection(Direction d) is used to change the direction a GraphObject is facing. For
example, you could use this method and getDirection() to adjust the direction a person or
zombie faces when it decides to move in a new direction.

Penelope

Here are the requirements you must meet when implementing Penelope class.

What a Penelope Object Must Do When It Is Created

When it is first created:

1. A Penelope object must have an image ID of IID_PLAYER.
2. The object must start at the location on the level as specified in the current level’s

data file. The object’s starting location in the level must be equal to
(SPRITE_WIDTH * level_x, SPRITE_HEIGHT * level_y); its starting level_x
and level_y can be obtained using our provided Level class. Hint: The
StudentWorld object can pass in this (x,y) location when constructing the object.

3. A Penelope object starts out alive.
4. A Penelope object has a direction of right.

 27

5. A Penelope object has a depth of 0.
6. A Penelope object has no landmines, flamethrower charges, or vaccines.
7. A Penelope object has an infection status of false.
8. A Penelope object has an infection count of 0.

What a Penelope Object Must Do During a Tick

A Penelope object must be given an opportunity to do something during every tick (in her
doSomething() method). When given an opportunity to do something, Penelope must do
the following:

1. Penelope must check to see if she is currently alive. If not, then Penelope’s
doSomething() method must return immediately – none of the following steps
should be performed.

2. The doSomething() method must check to see if Penelope is infected (because of
previously being vomited on by a zombie). If so, she must increase her infection
count by one. If Penelope’s infection count reaches 500, she becomes a zombie
and:

a. She must immediately set her status to dead.
b. The game must play a SOUND_PLAYER_DIE sound effect
c. The doSomething() method must return immediately, doing nothing more

during this tick.
d. (The StudentWorld object should then detect that she’s dead and the

current level ends)
3. The doSomething() method must check to see if the player pressed a key (the

section below shows how to check this). If the player pressed a key:
a. If the player pressed the space key and Penelope has at least one

flamethrower charge, then Penelope will attempt to fire three flames into
the three slots directly in front of her:

i. Penelope’s flamethrower charge count must decrease by 1.
ii. Penelope must play the SOUND_PLAYER_FIRE sound effect

(see the StudentWorld section of this document for details on how
to play a sound).

iii. Penelope will add up to three new flame objects to the game. If
Penelope is at (px, py) this is where the new flame objects will go:
For i = 1, 2, and 3,
• If Penelope is facing up: posi = (px, py + i *SPRITE_HEIGHT)
• If she is facing down: posi = (px, py − i *SPRITE_HEIGHT)
• If she is facing left: posi = (px − i *SPRITE_WIDTH, py)
• If she is facing right: posi = (px + i *SPRITE_WIDTH, py)

You must use something like the following algorithm to add the flames to
the game: For each of the i=1,2, and 3 slots in front of Penelope

i. Compute the position posi where the next flame will go.

 28

ii. If a flame at posi would overlap1 with a wall or exit object, then
immediately stop the loop.

iii. Otherwise add a new flame object2 at posi with a starting direction
that is the same as the direction Penelope is facing.

b. If the user pressed the tab key and if Penelope has any landmines in her
inventory, Penelope will introduce a new landmine object at her current
(x,y) location into the game and her landmine count will decrease by 1.

c. If the user pressed the enter key and if Penelope has any vaccines in her
inventory, Penelope will set her infected status to false and reduce her
vaccine count by 1. (She wasted that vaccine if she was not infected.)

d. If the user asks to move up, down, left or right by pressing a directional
key:

i. Set Penelope’s direction to the specified movement direction.
ii. Determine Penelope’s destination location (dest_x, dest_y) which

will be exactly 4 pixels in the direction Penelope is facing. So for
example, if Penelope is at (x=16, y=16) and is facing down, her
destination would be (dest_x=16, dest_y=12).

iii. If the movement to (dest_x, dest_y) would not cause Penelope’s
bounding box to intersect with the bounding box3 of any wall,
citizen or zombie objects, then update Penelope’s location to the
specified location with the GraphObject class’s moveTo() method.

What Penelope Must Do In Other Circumstances

• Penelope can be infected by vomit. When vomit overlaps with Penelope, her
infection status becomes true.

• Penelope can be damaged. If a flame object overlaps with Penelope it will kill her.
When killed:

o She must immediately has her status set to dead,
o The game must play a SOUND_PLAYER_DIE sound effect
o (The StudentWorld object should detect her death and the current level

ends)
• Penelope blocks other objects from moving nearby/onto her. Penelope’s bounding

box must never intersect with that of any citizen, zombie, or wall.

Getting Input From the User

Since Zombie Dash is a real-time game, you can’t use the typical getline or cin approach
to get a user's key press within Penelope’s doSomething() method— that would stop your
program and wait for the user to type something and then hit the enter key. This would
make the game awkward to play, requiring the user to hit a directional key then hit enter,
then hit a directional key, then hit enter, etc. Instead of this approach, you will use a

1 See the discussion of overlap in the Determining Object Overlap section.
2 Hint: When you create a new flame object at a particular location, give it to the StudentWorld object to
manage (e.g., animate) along with the other game objects.
3 See the discussion of bounding boxes in the Determining Blocking of Movement section.

 29

function called getKey() that we provide in our GameWorld class (from which your
StudentWorld class is derived) to get input from the player4. This function rapidly checks
to see if the user has hit a key. If so, the function returns true and the int variable passed
to it is set to the code for the key. Otherwise, the function immediately returns false,
meaning that no key was hit. This function could be used as follows:

void Penelope::doSomething()
{
 ...
 int ch;
 if (getWorld()->getKey(ch))
 {
 // user hit a key during this tick!
 switch (ch)
 {
 case KEY_PRESS_LEFT:
 ... move Penelope to the left ...;
 break;
 case KEY_PRESS_RIGHT:
 ... move Penelope to the right ...;
 break;
 case KEY_PRESS_SPACE:

 ... add flames in front of Penelope...;
 break;

 // etc…

 }
 }
 ...
}

Wall

Walls don’t really do much. They just sit there. Here are the requirements you must meet
when implementing the wall class.

What a Wall Must Do When It Is Created

When it is first created:

1. A wall object must have an image ID of IID_WALL.
2. The object must start at the location on the level as specified in the current level’s

data file. The object’s starting location in the level must be equal to
(SPRITE_WIDTH * level_x, SPRITE_HEIGHT * level_y); its starting level_x
and level_y can be obtained using our provided Level class. Hint: The
StudentWorld object can pass in this (x,y) location when constructing the object.

3. A wall object has a direction of right.
4. A wall object has a depth of 0.

4 Hint: Since your Penelope object will need to access the getKey() method in the GameWorld class (which
is the base class for your StudentWorld class), your Penelope object (or more likely, one of its base classes)
will need a way to obtain a pointer to the StudentWorld object it belongs to. If you look at our code
example, you’ll see how Penelope’s doSomething() method first gets a pointer to its world via a call to
getWorld() (a method in one of its base classes that returns a pointer to a StudentWorld), and then uses this
pointer to call the getKey() method.

 30

What a Wall Must Do During a Tick

A wall must be given an opportunity to do something during every tick (in its
doSomething() method). When given an opportunity to do something during a tick, the
wall must do nothing. After all, it's just a wall!

What a Wall Must Do In Other Circumstances

• A wall cannot be damaged by a flame.
• A wall cannot be infected by vomit.
• A wall blocks the movement of citizens, zombies, and Penelope (its bounding box

must never intersect with any actor’s bounding box)5
• A wall blocks flames (e.g., a flame fired by Penelope or emitted by a landmine

cannot overlap6 or be created past a wall).

Exit

You must create a class to represent an exit that the citizens and Penelope can use to exit
the current level. When a citizen overlaps with an exit, they will immediately leave the
current level and the player will get points. When Penelope overlaps with an exit and all
citizens have exited the level (or died), she will advance to the next level. Here are the
requirements you must meet when implementing the exit class.

What an Exit Must Do When It Is Created

When it is first created:

1. An exit object must have an image ID of IID_EXIT.
2. The object must start at the location on the level as specified in the current level’s

data file. The object’s starting location in the level must be equal to
(SPRITE_WIDTH * level_x, SPRITE_HEIGHT * level_y); its starting level_x
and level_y can be obtained using our provided Level class. Hint: The
StudentWorld object can pass in this (x,y) location when constructing the object.

3. An exit has a direction of right.
4. An exit has a depth of 1.

What an Exit Must Do During a Tick

An exit must be given an opportunity to do something during every tick (in its
doSomething() method). When given an opportunity to do something during a tick, the
exit must do the following:

5 See the Determining Blocking of Movement section.
6 See the Determining Object Overlap section.

 31

1. The exit must determine if it overlaps with a citizen (not Penelope!). If so, then

the exit must:
a. Inform the StudentWorld object that the user is to receive 500 points.
b. Set the citizen object’s state to dead (so that it will be removed from the game

by the StudentWorld object at the end of the current tick) – note, this must
not kill the citizen in a way that deducts points from the player as if the
citizen died due to a zombie infection, a flame, or a pit.

c. Play a sound effect to indicate that the citizen was saved by using the exit:
SOUND_CITIZEN_SAVED.

2. The exit must determine if it overlaps7 with Penelope. If so and all citizens have
either exited the level or died, then:
a. Inform the StudentWorld object that Penelope has finished the current level.

What an Exit Must Do In Other Circumstances

• An exit cannot be damaged by a flame.
• An exit cannot be infected by vomit.
• An exit do not block other objects from moving nearby/onto them.
• An exit does block flames (i.e., a flame fired by Penelope or emitted by a

landmine cannot overlap or be created past an exit).

Pit

Pits don’t really do much. They just sit there waiting for actors to fall into them. Here are
the requirements you must meet when implementing the pit class.

What a Pit Must Do When It Is Created

When it is first created:

1. A pit object must have an image ID of IID_PIT.
2. The object must start at the location on the level as specified in the current level’s

data file. The object’s starting location in the level must be equal to
(SPRITE_WIDTH * level_x, SPRITE_HEIGHT * level_y); its starting level_x
and level_y can be obtained using our provided Level class. Hint: The
StudentWorld object can pass in this (x,y) location when constructing the object.

3. A pit object has a direction of right.
4. A pit object has a depth of 0.

7 See the Determining Object Overlap section.

 32

What a Pit Must Do During a Tick

A pit must be given an opportunity to do something during every tick (in its
doSomething() method). When given an opportunity to do something during a tick, the pit
will cause any person or zombie that overlaps with it to be destroyed (they fall into the
pit). When the person/zombie is destroyed, it must behave just as it were damaged by a
flame (e.g., if a dumb zombie falls into a pit, the player gets 1000 points, the game plays
a dying noise, etc.; if Penelope falls into a pit the current level will end; a citizen falling
into a pit dies, and the player loses 1000 points, etc.).

What a Pit Must Do In Other Circumstances

• A pit cannot be damaged by a flame.
• A pit cannot be infected by vomit.
• A pit does not block the movement of actors.
• A pit does not block vomit or flames.

Flame

You must create a class to represent a flame. Flame objects are produced from two
different sources: by Penelope’s flamethrower and by landmines. Here are the
requirements you must meet when implementing the flame class.

What a Flame Must Do When It Is Created

When it is first created:

1. A flame object must have an image ID of IID_FLAME.
2. The starting location of a flame must be specified during construction.
3. The starting direction of a flame must be specified during construction.
4. A flame object has a depth of 0.
5. A flame object starts in an “alive” state.

What a Flame Must Do During a Tick

A flame must be given an opportunity to do something during every tick (in its
doSomething() method). When given an opportunity to do something during a tick, the
flame must do the following:

1. It must check to see if it is currently alive. If not, then doSomething() must return
immediately – none of the following steps should be performed.

2. After exactly two ticks from its creation, the flame must set its state to dead so it
can be destroyed and removed from the level by the StudentWorld object. The
doSomething() method must return immediately, doing nothing more during this
tick.

 33

3. Otherwise, the flame will damage all damageable objects that overlap8 with the
flame. The following objects are all damageable and must react to being damaged
in the appropriate way: Penelope, citizens, all types of goodies, landmines, and all
types of zombies.

What a Flame Must Do In Other Circumstances

• A flame cannot be damaged by a flame.
• A flame cannot be infected by vomit.
• A flame does not block other objects from moving nearby/onto them.

Vomit

You must create a class to represent zombie vomit. Vomit objects are produced by both
dumb and smart zombies when the zombie is next to a person (Penelope or a citizen) and
the zombie faces in their direction. Here are the requirements you must meet when
implementing the vomit class.

What Vomit Must Do When It Is Created

When it is first created:

1. An vomit object must have an image ID of IID_VOMIT.
2. The starting location of vomit must be specified during construction.
3. The starting direction of vomit must be specified during construction.
4. A vomit object has a depth of 0.
5. A vomit object starts in an “alive” state.

What Vomit Must Do During a Tick

Vomit must be given an opportunity to do something during every tick (in its
doSomething() method). When given an opportunity to do something during a tick, the
vomit must do the following:

1. It must check to see if it is currently alive. If not, then doSomething() must return
immediately – none of the following steps should be performed.

2. After exactly two ticks from its creation, the vomit must set its state to dead so it
can be destroyed and removed from the level by the StudentWorld object. The
doSomething() method must return immediately, doing nothing more during this
tick.

8 See the Determining Object Overlap section.

 34

3. Otherwise, the vomit will infect any infectable object that overlaps9 with the
vomit. The following objects are infectable and must react to being infected in the
appropriate way: Penelope and citizens.

What Vomit Must Do In Other Circumstances

• Vomit cannot be damaged by a flame.
• Vomit cannot be infected by vomit.
• Vomit does not block other objects from moving nearby/onto it.

Vaccine Goodie

You must create a class to represent a vaccine goodie that Penelope can pick up. When
Penelope overlaps with (picks up) this goodie, it adds one vaccine to Penelope’s
inventory. She may later use the vaccine by pressing the enter key to cure herself from a
zombie infection (caused by a previous encounter with zombie vomit). Here are the
requirements you must meet when implementing the vaccine goodie class.

What a Vaccine Goodie Must Do When It Is Created

When it is first created:

1. A vaccine goodie object must have an image ID of IID_VACCINE_GOODIE.
2. The object must start at the location on the level as specified in the current level’s

data file. The object’s starting location in the level must be equal to
(SPRITE_WIDTH * level_x, SPRITE_HEIGHT * level_y); its starting level_x
and level_y can be obtained using our provided Level class. Hint: The
StudentWorld object can pass in this (x,y) location when constructing the object.

3. A vaccine goodie has a direction of right.
4. A vaccine goodie has a depth of 1.
5. A vaccine goodie starts in an “alive” state.

What a Vaccine Goodie Must Do During a Tick

A vaccine goodie must be given an opportunity to do something during every tick (in its
doSomething() method). When given an opportunity to do something during a tick, the
vaccine goodie must do the following:

1. It must check to see if it is currently alive. If not, then doSomething() must return
immediately – none of the following steps should be performed.

2. The vaccine goodie must determine if it overlaps with Penelope. If so, then the
vaccine goodie must:

a. Inform the StudentWorld object that the user is to receive 50 points.

9 See the Determining Object Overlap section.

 35

b. Set its state to dead (so that it will be removed from the game by the
StudentWorld object at the end of the current tick).

c. Play a sound effect to indicate that Penelope picked up the goodie:
SOUND_GOT_GOODIE.

d. Inform the StudentWorld object that Penelope is to receive one dose of
vaccine.

What a Vaccine Goodie Must Do In Other Circumstances

• A vaccine goodie can be damaged by a flame. When damaged, it must set its
status to dead.

• A vaccine goodie cannot be infected by vomit.
• A vaccine goodie does not block other objects from moving nearby/onto it.

Gas Can Goodie

You must create a class to represent a gas can goodie that Penelope can pick up. When
Penelope overlaps10 with (picks up) this goodie, it adds 5 flamethrower charges to her
inventory. She may later use the flamethrower charges by pressing the space key to fire
her flamethrower. Here are the requirements you must meet when implementing the Gas
Can Goodie class.

What a Gas Can Goodie Must Do When It Is Created

When it is first created:

1. A gas can goodie object must have an image ID of IID_GAS_CAN_GOODIE.
2. The object must start at the location on the level as specified in the current level’s

data file. The object’s starting location in the level must be equal to
(SPRITE_WIDTH * level_x, SPRITE_HEIGHT * level_y); its starting level_x
and level_y can be obtained using our provided Level class. Hint: The
StudentWorld object can pass in this (x,y) location when constructing the object.

3. A gas can goodie has a direction of right.
4. A gas can goodie has a depth of 1.
5. A gas can goodie starts in an “alive” state.

What a Gas Can Goodie Must Do During a Tick

A gas can goodie must be given an opportunity to do something during every tick (in its
doSomething() method). When given an opportunity to do something during a tick, the
gas can goodie must do the following:

10 See the Determining Object Overlap section.

 36

1. It must check to see if it is currently alive. If not, then doSomething() must return
immediately – none of the following steps should be performed.

2. The gas can goodie must determine if it overlaps with Penelope. If so, then the
gas can goodie must:
a. Inform the StudentWorld object that the user is to receive 50 points.
b. Set its state to dead (so that it will be removed from the game by the

StudentWorld object at the end of the current tick).
c. Play a sound effect to indicate that Penelope picked up the goodie:

SOUND_GOT_GOODIE.
d. Inform the StudentWorld object that Penelope is to receive 5 charges for her

flamethrower.

What a Gas Can Goodie Must Do In Other Circumstances

• A gas can goodie can be damaged by a flame. When damaged it must set its status
to dead.

• A gas can goodie cannot be infected by vomit.
• A gas can goodie does not block other objects from moving nearby/onto it.

Landmine Goodie

You must create a class to represent a landmine goodie that Penelope can pick up. When
Penelope overlaps11 with (picks up) this goodie, it adds two landmines to Penelope’s
inventory. She may later use the landmines by pressing the tab key to deploy a landmine.
Here are the requirements you must meet when implementing the landmine goodie class.

What a Landmine Goodie Must Do When It Is Created

When it is first created:

1. A landmine goodie object must have an image ID of
IID_LANDMINE_GOODIE.

2. The object must start at the location on the level as specified in the current level’s
data file. The object’s starting location in the level must be equal to
(SPRITE_WIDTH * level_x, SPRITE_HEIGHT * level_y); its starting level_x
and level_y can be obtained using our provided Level class. Hint: The
StudentWorld object can pass in this (x,y) location when constructing the object.

3. A landmine goodie has a direction of right.
4. A landmine goodie has a depth of 1.
5. A landmine goodie starts in an “alive” state.

11 See the Determining Object Overlap section.

 37

What a Landmine Goodie Must Do During a Tick

A landmine goodie must be given an opportunity to do something during every tick (in its
doSomething() method). When given an opportunity to do something during a tick, the
landmine goodie must do the following:

1. It must check to see if it is currently alive. If not, then doSomething() must return
immediately – none of the following steps should be performed.

2. The landmine goodie must determine if it overlaps with Penelope. If so, then the
landmine goodie must:
a. Inform the StudentWorld object that the user is to receive 50 points.
b. Set its state to dead (so that it will be removed from the game by the

StudentWorld object at the end of the current tick).
c. Play a sound effect to indicate that Penelope picked up the goodie:

SOUND_GOT_GOODIE.
d. Inform Inform the StudentWorld object that Penelope is to receive 2

landmines.

What a Landmine Goodie Must Do In Other Circumstances

• A landmine goodie can be damaged by flames. When damaged it must set its
status to dead.

• A landmine goodie cannot be infected by vomit.
• A landmine goodie does not block other objects from moving nearby/onto them.

Landmine

You must create a class to represent a landmine. When a person (including Penelope) or
zombie overlaps12 with a landmine it will trigger the landmine and cause it to introduce
flames all around the landmine (the flames will then damage anything they touch; the
landmine itself does not damage anything directly). When another flame overlaps with a
landmine it will trigger the landmine and cause it to introduce flames all around the
landmine. Once triggered, a landmine is replaced by a pit. Here are the requirements you
must meet when implementing the landmine class.

What a Landmine Must Do When It Is Created

When it is first created:

1. A landmine object must have an image ID of IID_LANDMINE.
2. The location of a landmine must be specified when it is constructed.
3. A landmine has a direction of right.
4. A landmine has a depth of 1.

12 See the Determining Object Overlap section.

 38

5. A landmine starts with 30 safety ticks (before it becomes active).
6. A landmine starts in an inactive state.
7. A landmine starts in an “alive” state.

What a Landmine Must Do During a Tick

A landmine must be given an opportunity to do something during every tick (in its
doSomething() method). When given an opportunity to do something during a tick, the
landmine must do the following:

1. It must check to see if it is currently alive. If not, then doSomething() must return
immediately – none of the following steps should be performed.

2. If the landmine is not yet active then:
a. It must decrement the number of safety ticks left.
b. If the number of safety ticks is zero, the landmine becomes active.
c. The doSomething() method must return immediately, doing nothing more

during this tick.
3. The landmine must determine if it overlaps13 with Penelope, a citizen, or a

zombie. If so, then the landmine must:
a. Set its state to dead (so that it will be removed from the game by the

StudentWorld object at the end of the current tick).
b. Play a sound effect to indicate that the landmine exploded:

SOUND_LANDMINE_EXPLODE.
c. Introduce a flame object at the same (x,y) location as the landmine .
d. Introduce flame objects in the eight adjacent slots around the landmine (north,

northeast, east, southeast, south, southwest, west, northwest). Each such
adjacent spot must exactly SPRITE_WIDTH pixels away horizontally and/or
SPRITE_HEIGHT pixels away vertically. (SPRITE_WIDTH and
SPRITE_HEIGHT are both 16.) So if the landmine goodie were at position
(100, 100), the northwest flame would be added at (84, 116), the east goodie
at (116, 100), the southeast goodie at (116, 84), etc.

e. Introduce a pit object at the same (x,y) location as the landmine.

What a Landmine Must Do In Other Circumstances

• A landmines can be damaged by flames. If a flame overlaps with a landmine
(whether or not the landmine is active), then it must trigger the landmine just as if
a person stepped on it. When damaged, the landmine must:

o Set its state to dead (so that it will be removed from the game by the
StudentWorld object at the end of the current tick).

o Play a sound effect to indicate that the landmine exploded:
SOUND_LANDMINE_EXPLODE.

o Introduce a flame object in the same (x,y) location as the landmine .
o Introduce flame objects in the eight adjacent slots around the landmine

(north, northeast, east, southeast, south, southwest, west, northwest). Each

13 See the Determining Object Overlap section.

 39

such adjacent spot must exactly SPRITE_WIDTH pixels away
horizontally and/or SPRITE_HEIGHT pixels away vertically.
(SPRITE_WIDTH and SPRITE_HEIGHT are both 16.) So if the
landmine goodie were at position (100, 100), the northwest flame would
be added at (84, 116), the east goodie at (116, 100), the southeast goodie at
(116, 84), etc.

o Introduce a pit object at the same (x,y) location as the landmine.
• A landmine cannot be infected by vomit.
• A landmine does not block other objects from moving nearby/onto them.
• A landmine does not block flames.

Dumb Zombie

You must create a class to represent a dumb zombie. Here are the requirements you must
meet when implementing the dumb zombie class.

What a Dumb Zombie Must Do When It Is Created

When it is first created:

1. A dumb zombie object must have an image ID of IID_ZOMBIE.
2. If the object was created because an infected person became a zombie, it must

start at the location passed to its constructor. Otherwise, the object must start at
the location on the level as specified in the current level’s data file. The object’s
starting location in the level must be equal to (SPRITE_WIDTH * level_x,
SPRITE_HEIGHT * level_y); its starting level_x and level_y can be obtained
using our provided Level class. Hint: The StudentWorld object can pass in this
(x,y) location when constructing the object.

3. A dumb zombie has a direction of right.
4. A dumb zombie has a depth of 0.
5. A dumb zombie starts with a movement plan distance of 0.
6. A dumb zombie starts out in an “alive” state.

	
What a Dumb Zombie Must Do During a Tick

A dumb zombie must be given an opportunity to do something during every tick (in its
doSomething() method). When given an opportunity to do something during a tick, the
dumb zombie must do the following:

1. The dumb zombie must check to see if it is currently alive. If not, then its
doSomething() method must return immediately – none of the following steps
should be performed.

2. The dumb zombie will become paralyzed every other tick trying to figure out
what to do. The 2nd, 4th, 6th, etc., calls to doSomething() for a dumb zombie are the

 40

“paralysis” ticks for which doSomething() must return immediately – none of the
following steps should be performed.

3. The dumb zombie must check to see if a person (either Penelope or one of the
citizens on the level) is in front of it in the direction it is facing:

a. It will compute vomit coordinates in the direction it is facing,
SPRITE_WIDTH pixels away if it is facing left or right, or
SPRITE_HEIGHT pixels away if it is facing up or down. So if the dumb
zombie is at position (x,y) facing left, it would compute the vomit
coordinates (x−SPRITE_WIDTH, y), i.e., (x−16, y).

b. If there is a person whose Euclidean distance from the vomit coordinates
is less than or equal to 10 pixels, then there is a 1 in 3 chance that the
dumb zombie will vomit. If the zombie choses to vomit, it will:

i. Introduce a vomit object into the game at the vomit coordinates.
ii. Play the sound SOUND_ZOMBIE_VOMIT.

iii. Immediately return and do nothing more this tick.
4. The dumb zombie will check to see if it needs a new movement plan because its

current movement plan distance has reached zero. If so, the dumb zombie will:
a. Pick a new random movement plan distance in the range 3 through 10

inclusive.
b. Set its direction to a random direction (up, down, left, or right).

5. The dumb zombie will then determine a destination coordinate (dest_x, dest_y)
that is 1 pixel in front of it in the direction it is facing.

6. If the movement to (dest_x, dest_y) would not cause the dumb zombie’s bounding
box to intersect with the bounding box14 of any wall, person or other zombie
objects, then:

a. Update the dumb zombie’s location to (dest_x, dest_y) using the
GraphObject class’s moveTo() method.

b. Decrease the movement plan distance by 1.
7. Otherwise, the dumb zombie was blocked from moving by another wall, person or

zombie, so set the movement plan distance to 0 (which will cause the dumb
zombie to pick a new direction to move during the next tick).

What a Dumb Zombie Must Do In Other Circumstances

• A dumb zombie can be damaged by flames. If a flame overlaps with a dumb
zombie, it will kill the dumb zombie. The dumb zombie must:

o Set its own state to dead (so that it will be removed from the game by the
StudentWorld object at the end of the current tick).

o Play a sound effect to indicate that the dumb zombie died:
SOUND_ZOMBIE_DIE.

o Increase the player’s score by 1000 points.
o 1 in 10 dumb zombies are mindlessly carrying a vaccine goodie that they'll

drop when they die. If this dumb zombie has a vaccine goodie, it will
introduce a new vaccine goodie at its (x,y) coordinate by adding it to the
StudentWorld object.

14 See the Determining Blocking of Movement section.

 41

• A dumb zombie cannot be infected by vomit.
• A dumb zombie blocks other objects from moving nearby/onto it. A dumb

zombie's bounding box must never intersect with that of any other dumb zombie,
smart zombie, person, or wall).

• A dumb zombie does not block flames.

Smart Zombie

You must create a class to represent a smart zombie. Here are the requirements you must
meet when implementing the smart zombie class.

What a Smart Zombie Must Do When It Is Created

When it is first created:

1. A smart zombie object must have an image ID of IID_ZOMBIE.
2. If the object was created because an infected person became a zombie, it must

start at the location passed to its constructor. Otherwise, the object must start at
the location on the level as specified in the current level’s data file. The object’s
starting location in the level must be equal to (SPRITE_WIDTH * level_x,
SPRITE_HEIGHT * level_y); its starting level_x and level_y can be obtained
using our provided Level class. Hint: The StudentWorld object can pass in this
(x,y) location when constructing the object.

3. A smart zombie has a direction of right.
4. A smart zombie has a depth of 0.
5. A smart zombie starts with a movement plan distance of 0.
6. A smart zombie starts out in an “alive” state.

	
What a Smart Zombie Must Do During a Tick

A smart zombie must be given an opportunity to do something during every tick (in its
doSomething() method). When given an opportunity to do something during a tick, the
smart zombie must do the following:

1. The smart zombie must check to see if it is currently alive. If not, then its
doSomething() method must return immediately – none of the following steps
should be performed.

2. The smart zombie will become paralyzed every other tick trying to figure out
what to do. The 2nd, 4th, 6th, etc., calls to doSomething() for a smart zombie are the
“paralysis” ticks for which doSomething() must return immediately – none of the
following steps should be performed.

3. The smart zombie must check to see if a person (either Penelope or one of the
citizens on the level) is in front of it in the direction it is facing:

a. It will compute vomit coordinates in the direction it is facing,
SPRITE_WIDTH pixels away if it is facing left or right, or

 42

SPRITE_HEIGHT pixels away if it is facing up or down. So if the smart
zombie is at position (x,y) facing left, it would compute the vomit
coordinates (x−SPRITE_WIDTH, y), i.e., (x−16, y).

a. If there is a person whose Euclidean distance from the vomit coordinates
is less than or equal to 10 pixels, then there is a 1 in 3 chance that the
smart zombie will vomit. If the zombie choses to vomit, it will:

i. Introduce a vomit object into the game at the vomit coordinates.
ii. Play the sound SOUND_ZOMBIE_VOMIT.

iii. Immediately return and do nothing more this tick.
4. The smart zombie will then check to see if it needs a new movement plan because

its current movement plan distance has reached zero. If so, the smart zombie will:
a. Pick a new random movement plan distance in the range 3 through 10

inclusive.
b. Select the person (Penelope or a citizen) closest to the smart zombie, i.e.,

the one whose Euclidean distance from the zombie is the smallest. If more
than one person is the same smallest distance away, select one of them.

c. Set its direction:
i. If the distance to the selected nearest person is more than 80 pixels

away, the direction is chosen randomly from up, down, left, and
right.

ii. Otherwise, the nearest person is less than or equal to 80 pixels
away, the direction is chosen to be one that would cause the
zombie to get closer to the person:

1. If the zombie is on the same row or column as the person,
choose the (only) direction that gets the zombie closer.

2. Otherwise, choose randomly between the two directions
(one horizontal and one vertical) that get the zombie closer.

5. The smart zombie will then determine a destination coordinate (dest_x, dest_y)
that is 1 pixel in front of it in the direction it is facing.

6. If the movement to (dest_x, dest_y) would not cause the smart zombie’s bounding
box to intersect with the bounding box15 of any wall, person or other zombie
objects, then:

b. Update the smart zombie’s location to (dest_x, dest_y) using the
GraphObject class’s moveTo() method.

c. Decrease the movement plan distance by 1.
7. Otherwise, the smart zombie was blocked from moving by another wall, person or

zombie, so set the movement plan distance to 0 (which will cause the smart
zombie to pick a new direction to move during the next tick).

What a Smart Zombie Must Do In Other Circumstances

• A smart zombie can be damaged by flames. If a flame overlaps with a smart
zombie, it will kill the smart zombie. The smart zombie must:

o Set its own state to dead (so that it will be removed from the game by the
StudentWorld object at the end of the current tick).

15 See the Determining Blocking of Movement section of this document.

 43

o Play a sound effect to indicate that the smart zombie died:
SOUND_ZOMBIE_DIE.

o Increase the player’s score by 2000 points.
• A smart zombie cannot be infected by vomit.
• A smart zombie blocks other objects from moving nearby/onto it. A smart

zombie's bounding box must never intersect with that of any other smart zombie,
dumb zombie, person, or wall).

• A smart zombie does not block flames.

Citizen

You must create a class to represent a citizen. Here are the requirements you must meet
when implementing the citizen class.

What a Citizen Must Do When It Is Created

When it is first created:

1. A Citizen object must have an image ID of IID_CITIZEN.
8. The object must start at the location on the level as specified in the current level’s

data file. The object’s starting location in the level must be equal to
(SPRITE_WIDTH * level_x, SPRITE_HEIGHT * level_y); its starting level_x
and level_y can be obtained using our provided Level class. Hint: The
StudentWorld object can pass in this (x,y) location when constructing the object.

2. A Citizen has a direction of right.
3. A Citizen has a depth of 0.
4. A Citizen has an infection status of false.
5. A Citizen has an infection count of 0.
6. A Citizen starts out alive.

	
What a Citizen Must Do During a Tick

A citizen must be given an opportunity to do something during every tick (in its
doSomething() method). When given an opportunity to do something during a tick, the
citizen must do the following:

1. The citizen must check to see if it is currently alive. If not, then its doSomething()
method must return immediately – none of the following steps should be
performed.

2. If a citizen is infected (because of previously being vomited on by a zombie), it
must increase its infection count by one. If the citizen’s infection count reaches
500, it must:

a. Set its state to dead (so that it will be removed from the game by the
StudentWorld object at the end of the current tick).

b. Play a SOUND_ZOMBIE_BORN sound effect.

 44

c. Decrease the player’s score by 1000 for failing to save this citizen (the
player’s score could go negative!)

d. Introduce a new zombie object into the same (x,y) coordinate as the
former citizen by adding it to the StudentWorld object:

i. There’s a 70% chance a dumb zombie object will be introduced.
ii. There’s a 30% chance a smart zombie object will be introduced.

e. Immediately return (since the citizen is now dead!)
3. Otherwise, the citizen will become paralyzed every other tick trying to figure out

what to do. The 2nd, 4th, 6th, etc., calls to doSomething() for a citizen are the
“paralysis” ticks for which doSomething() must return immediately – none of the
following steps should be performed.

4. The citizen must determine its distance to Penelope: dist_p
5. The citizen must determine its distance to the nearest zombie: dist_z
6. If dist_p < dist_z or no zombies exist in the level (so dist_z is irrelevant), and the

citizen's Euclidean distance from Penelope is less than or equal to 80 pixels (so
the citizen wants to follow Penelope):

a. If the citizen is on the same row or column as Penelope:
i. If the citizen can move 2 pixels in the direction toward Penelope

without being blocked16 (by another citizen, Penelope, a zombie, or
a wall), the citizen will

1. Set its direction to be facing toward Penelope.
2. Move 2 pixels in that direction using the GraphObject

class's moveTo() method.
3. Immediately return and do nothing more during the current

tick.
ii. Otherwise, the citizen would be blocked. Skip to step 7.

b. If the citizen is not on the same row or column as Penelope, determine the
one horizontal and the one vertical direction that would get the citizen
closer to Penelope. Then

i. Choose one of those two directions at random. If the the citizen
can move 2 pixels in that direction without being blocked (by
another citizen, Penelope, a zombie, or a wall), the citizen will

1. Set its direction to that chosen direction.
2. Move 2 pixels in that direction using the GraphObject

class's moveTo() method.
3. Immediately return and do nothing more during the current

tick.
ii. If the citizen would be blocked by moving in that chosen direction,

then choose the other of the two directions that get the citizen
closer to Penelope. If the the citizen can move 2 pixels in that
other direction without being blocked (by another citizen,
Penelope, a zombie, or a wall), the citizen will

1. Set its direction to that other direction.
2. Move 2 pixels in that direction using the GraphObject

class's moveTo() method.

16 See the Determining Blocking of Movement section of this document.

 45

3. Immediately return and do nothing more during the current
tick.

iii. If the citizen would be blocked in both of the two directions,
continue to step 7.

7. If there is a zombie whose Euclidean distance from the citizen is less than or
equal to 80 pixels, the citizen wants to run away, so:

a. For each of the four directions up, down, left and right, the citizen must:
i. Determine if the citizen is blocked from moving 2 pixels in that

direction. If the citizen is blocked from moving there, it ignores
this direction.

ii. Otherwise, the citizen determines the distance to the nearest
zombie of any type if it were to move to this new location.

b. If none of the movement options would allow the citizen to get further
away from the nearest zombie (e.g., right now it’s 20 pixels away from the
nearest zombie, but if it were to move in any of the four directions it
would get even closer than that to some zombie), then doSomething()
immediately returns – there is no better place for the citizen to move to
than where it is now.

c. Otherwise:
i. Set the citizen’s direction to the direction that will take it furthest

away from the nearest zombie.
ii. Move 2 pixels in that direction using the GraphObject class's

moveTo() method.
iii. Immediately return and do nothing more during the current tick.

8. At this point, there are no zombies whose Euclidean distance from the citizen is
less than or equal to 80 pixels. The citizen does nothing this tick.

What a Citizen Must Do In Other Circumstances

• A citizen can be damaged by flames. If a flame overlaps17 with a citizen, it will
kill the citizen. The citizen must:

o Set its own state to dead (so that it will be removed from the game by the
StudentWorld object at the end of the current tick).

o Play a sound effect to indicate that the citizen died:
SOUND_CITIZEN_DIE.

o Decrease the player’s score by 1000 points.
• A citizen can be infected by vomit. When vomit overlaps with a citizen, the

citizen's infection status becomes true.
• A citizen blocks other objects from moving nearby/onto it. A citizen's bounding

box must never intersect with that of any other citizen, Penelope, dumb zombie,
or smart zombie).

• A Citizen does not block flames.

17 See the discussion of overlap in the Determining Object Overlap section.

 46

Object Oriented Programming Tips

Before designing your base and derived classes for Project 3 (or for that matter, any other
school or work project), make sure to consider the following best practices. These tips
will help you not only write a better object oriented program, but also help you get a
better grade on Project 3!

Try your best to leverage the following best practices in your program, but don’t be
overly obsessive – it’s rarely possible to make a set of perfect classes. That’s often a
waste of time. Remember, the best is the enemy of the good (enough).

Here we go!

1. You MUST NOT use the imageID (e.g., IID_ZOMBIE, IID_PLAYER,
IID_WALL, etc.) or any value somehow related/derived from the imageID to
determine the type of an object, or store such a value inside any of your
objects as a member variable. Doing so will result in a score of ZERO for this
project.

2. Avoid using dynamic cast to identify common types of objects. Instead add
methods to check for various classes of behaviors:

Don’t do this:

void decideWhetherToAddOil(Actor *p)
{

if (dynamic_cast<BadRobot *>(p) != nullptr ||
 dynamic_cast<GoodRobot *>(p) != nullptr ||
 dynamic_cast<ReallyBadRobot *>(p) != nullptr ||
 dynamic_cast<StinkyRobot *>(p) != nullptr)
 p->addOil();

}

Do this instead:

void decideWhetherToAddOil (Actor *p)
{
 // define a common method, have all Robots return true, all
 // biological organisms return false

if (p->requiresOilToOperate())
 p->addOil();

}

3. Always avoid defining specific isParticularClass() methods for each type of
object. Instead add methods to check for various common behaviors that
span multiple classes:

 47

Don’t do this:

void decideWhetherToAddOil (Actor *p)
{
 if (p->isGoodRobot() || p->isBadRobot() || p->isStinkyRobot())
 p->addOil();
}

Do this instead:

void decideWhetherToAddOil (Actor *p)
{
 // define a common method, have all Robots return true, all
 // biological organisms return false
 if (p->requiresOilToOperate())
 p->addOil();
}

4. If two related subclasses (e.g., SmellyRobot and GoofyRobot) each directly

define a member variable that serves the same purpose in both classes (e.g.,
m_amountOfOil), then move that member variable to the common base class
and add accessor and mutator methods for it to the base class. So the Robot
base class should have the m_amountOfOil member variable defined once,
with getOil() and addOil()functions, rather than defining this variable
directly in both SmellyRobot and GoofyRobot.

Don’t do this:

 class SmellyRobot: public Robot
 {
 …
 private:
 int m_oilLeft;
 };

 class GoofyRobot: public Robot
 {
 …
 private:
 int m_oilLeft;
 };

Do this instead:

 class Robot
 {
 public:
 void addOil(int oil) { m_oilLeft += oil; }
 int getOil() const { return m_oilLeft; }
 private:
 int m_oilLeft;
 };

5. Never make any class’s data members public or protected. You may make

class constants public, protected or private.

 48

6. Never make a method public if it is only used directly by other methods

within the same class that holds it. Make it private or protected instead.

7. Your StudentWorld methods should never return a vector, list or iterator to
StudentWorld’s private game objects or pointers to those objects. Only
StudentWorld should know about all of its game objects and where they are.
Instead StudentWorld should do all of the processing itself if an action needs
to be taken on one or more game objects that it tracks.

Don’t do this:

class StudentWorld
{
 public:
 vector<Actor*> getActorsThatCanBeZapped(int x, int y)
 {

 … // create a vector with a actor pointers and return it
 }
};

class NastyRobot
{
 public:
 virtual void doSomething()
 {
 …
 vector<Actor*> v;
 vector<Actor*>::iterator p;

 v = studentWorldPtr->getActorsThatCanBeZapped(getX(), getY());
 for (p = actors.begin(); p != actors.end(); p++)
 p->zap();

 }
};

Do this instead:

class StudentWorld
{
 public:
 void zapAllZappableActors(int x, int y)
 {
 for (p = actors.begin(); p != actors.end(); p++)
 if (p->isAt(x,y) && p->isZappable())
 p->zap();
 }
};

class NastyRobot
{
 public:
 virtual void doSomething()
 {
 …
 studentWorldPtr->zapAllZappableActors(getX(), getY());
 }
};

 49

8. If two subclasses have a method that shares some common functionality, but

also has some differing functionality, use an auxiliary method to factor out
the differences:

Don’t do this:

class StinkyRobot: public Robot
{
 …
 public:
 virtual void doDifferentiatedStuff()
 {
 doCommonThingA();
 passStinkyGas();
 pickNose();
 doCommonThingB();
 }
};

class ShinyRobot: public Robot
{
 …
 public:
 virtual void doDifferentiatedStuff()
 {
 doCommonThingA();
 polishMyChrome();
 wipeMyDisplayPanel();
 doCommonThingB();
 }
};

Do this instead:

class Robot
{
 public:
 virtual void doSomething()
 {
 // first do the common thing that all robots do
 doCommonThingA();

 // then call a virtual function to do the differentiated stuff
 doDifferentiatedStuff();

 // then do the common final thing that all robots do
 doCommonThingB();
 }

 private:
 virtual void doDifferentiatedStuff() = 0;
};

class StinkyRobot: public Robot
{
 …
 private:
 // define StinkyRobot’s version of the differentiated function
 virtual void doDifferentiatedStuff()

 50

 {
 // only Stinky robots do these things
 passStinkyGas();
 pickNose();
 }
};

class ShinyRobot: public Robot
{
 …
 private:
 // define ShinyRobot’s version of the differentiated function
 virtual void doDifferentiatedStuff()
 {
 // only Shiny robots do these things
 polishMyChrome();
 wipeMyDisplayPanel();
 }
};

Yes, it is legal for a derived class to override a virtual function that was declared
private in the base class. (It's not trying to use the private member function; it's just
defining a new function.)

Don’t know how or where to start? Read this!

When working on your first large object oriented program, you’re likely to feel
overwhelmed and have no idea where to start; in fact, it’s likely that many students won’t
be able to finish their entire program. Therefore, it’s important to attack your program
piece by piece rather than trying to program everything at once.

Students who try to program everything at once rather than program incrementally
almost always fail to solve CS32’s project 3, so don’t do it!

Instead, try to get one thing working at a time. Here are some hints:

1. When you define a new class, try to figure out what public member functions it

should have. Then write dummy “stub” code for each of the functions that you’ll fix
later:

class Foo
{
 public:
 int chooseACourseOfAction() { return 0; } // dummy version
};

Try to get your project compiling with these dummy functions first, then you can
worry about filling in the real code later.

 51

2. Once you’ve got your program compiling with dummy functions, then start by
replacing one dummy function at a time. Update the function, rebuild your program,
test your new function, and once you’ve got it working, proceed to the next function.

3. Make backups of your working code frequently. Any time you get a new feature
working, make a backup of all your .cpp and .h files just in case you screw
something up later.

BACK UP YOUR .CPP AND .H FILES TO A REMOVABLE DEVICE OR TO
ONLINE STORAGE EVERY TIME YOU MAKE A MEANINGFUL CHANGE!

WE WILL NOT ACCEPT EXCUSES THAT YOUR HARD DRIVE/COMPUTER
CRASHED OR THAT YOUR CODE USED TO WORK UNTIL YOU MADE
THAT ONE CHANGE (AND DON’T KNOW WHAT CAUSED IT TO BREAK).

If you use this approach, you’ll always have something working that you can test and
improve upon. If you write everything at once, you’ll end up with hundreds of errors and
just get frustrated! So don’t do it.

Building the Game

The game assets (i.e., image and sound files) are in a folder named Assets. The way
we’ve written the main routine, your program will look for this folder in a standard place
(described below for Windows and macOS). A few students may find that their
environment is set up in a way that prevents the program from finding the folder. If that
happens to you, change the string literal "Assets" in main.cpp to the full path name of
wherever you choose to put the folder (e.g., "Z:/CS32Project3/Assets" or
"/Users/fred/CS32Project3/Assets").

To build the game, follow these steps:

For Windows

Unzip the ZombieDash-skeleton-windows.zip archive into a folder on your hard drive.
Double-click on ZombieDash.sln to start Visual Studio.

If you build and run your program from within Visual Studio, the Assets folder should be
in the same folder as your .cpp and .h files. On the other hand, if you launch the program
by double-clicking on the executable file, the Assets folder should be in the same folder
as the executable.

 52

For macOS

Unzip the ZombieDash-skeleton-mac.zip archive into a folder on your hard drive.
Double-click on ZombieDash.xcodeproj to start Xcode.

If you build and run your program from within Xcode, the Assets directory should be in
the directory yourProjectDir/DerivedData/yourProjectName/Build/Products/Debug (e.g.,
/Users/fred/ZombieDash/DerivedData/ZombieDash/Build/Products/Debug). On the
other hand, if you launch the program by double-clicking on the executable file, the
Assets directory should be in your home directory (e.g., /Users/fred).

What to Turn In

Part #1 (20%)

Ok, so we know you’re scared to death about this project and don’t know where to start.
So, we’re going to incentivize you to work incrementally rather than try to do everything
all at once. For the first part of Project 3, your job is to build a really simple version of
the Zombie Dash game that implements maybe 15% of the overall project. You must
program:

1. A class that can serve as the base class for all of your game’s actors (e.g.,
Penelope, all types of zombies, goodies, projectiles, etc.):

i. It must have a simple constructor.
ii. It must be derived from our GraphObject class.

iii. It must have a member function named doSomething() that can be
called to cause the actor to do something.

iv. You may add other public/private member functions and private data
members to this base class, as you see fit.

2. A wall class, derived in some way from the base class described in 1 above:
i. It must implement the specifications described in the Wall section

above.
ii. You may add any public/private member functions and private data

members to your wall class as you see fit, so long as you use good
object oriented programming style (e.g., you must not duplicate
functionality across classes).

3. A limited version of your Penelope class, derived in some way from the base
class described in 1 above (either directly derived from the base class, or
derived from some other class that is somehow derived from the base class):

i. It must have a constructor that initializes Penelope – see Penelope
section for more details on where to initialize Penelope.

ii. It must have an Image ID of IID_PLAYER.

 53

iii. It must have a limited version of a doSomething() method that lets the
user pick a direction by hitting a directional key. If the player hits a
directional key during the current tick and this will not cause Penelope
to move to a location that is blocked (by a wall), it updates Penelope’s
location appropriately. All this doSomething() method has to do is
properly adjust Penelope’s x,y coordinates using the GraphObject
class’s moveTo() method, and our graphics system will automatically
animate its movement it around the level!

iv. You may add other public/private member functions and private data
members to your Penelope class as you see fit, so long as you use good
object oriented programming style (e.g., you must not duplicate
functionality across classes).

4. A limited version of the StudentWorld object.
i. Add any private data members to this class required to keep track of

all game objects (right now all of those game objects will just be walls,
but eventually it’ll also include zombies, pits, projectiles like
vomit/flames, etc.) as well as your Penelope object. You may ignore
all other items in the game such as dumb zombies, projectiles, goodies,
etc. for Part #1.

ii. Implement a constructor for this class that initializes your data
members.

iii. Implement a destructor for this class that frees any remaining
dynamically allocated data, if any, that has not yet been freed at the
time the StudentWorld object is about to destroyed.

iv. Implement the init() method in this class. It must create Penelope and
insert her into the level at the proper starting location (as specified by
the level 01 data file). It must also create all of the walls and add them
to the level (as specified by the level 01 data file). Your init() method
may ignore any exits and other objects in the level - it must only deal
with Penelope and walls.

v. Implement the move() method in your StudentWorld class. During
each tick, it must ask Penelope and other actors (just walls for now) to
do something. Your move() method need not check to see if Penelope
has died or not; you may assume for Part #1 that Penelope cannot die.
Your move() method does not have to deal with any actors other than
Penelope and the walls.

vi. Implement a cleanup() method that frees any dynamically allocated
data that was allocated during calls to the init() method or the move()
method (i.e., it should delete all your allocated walls and Penelope).
Note: Your StudentWorld class must have both a destructor and the
cleanUp() method even though they likely do the same thing (in which
case the destructor could just call cleanup()).

As you implement these classes, repeatedly build your program – you’ll probably start
out with lots of errors… Relax and try to remove them and get your program to run.
(Historical note: A UCLA student taking CS 131 once got 1,800 compilation errors when

 54

compiling a 900-line class project written in the Ada programming language. His name
was Carey Nachenberg. Somehow he survived and has lived a happy life since then.)

You’ll know you’re done with Part #1 when your program builds and does the following:
When it runs and the user hits Enter to begin playing, it displays a level with Penelope in
its proper starting position and a bunch of walls surrounding the level. If your classes
work properly, you should be able to move Penelope around the level using the
directional keys so long as she doesn’t move into a wall.

Your Part #1 solution may actually do more than what is specified above; for example, if
you are making good progress, try to add exit objects to your program. Just make sure
that what you have builds and has at least as much functionality as what’s described
above, and you may turn that in instead.

Note, the Part #1 specification above doesn’t require you to implement any dumb
zombies, smart zombies, goodies, projectiles like vomit or flames, pits, exits, etc. (unless
you want to). You may do these unmentioned items if you like but they’re not required
for Part #1. However, if you add additional functionality, make sure that your
Penelope, wall, and StudentWorld classes still work properly and that your program
still builds and meets the requirements stated above for Part #1!

If you can get this simple version working, you’ll have done a bunch of the hard design
work. You’ll probably still have to change your classes a lot to implement the full
project, but you’ll have done most of the hard thinking.

What to Turn In For Part #1

You must turn in your source code for the simple version of your game, which must
build without errors under either Visual Studio or Xcode. We may also devise a simple
test framework that runs under g32; if we do, your code must build without errors in
that framework. If it does not also run without errors, that indicates some fundamental
problem that will probably cost you a lot of points. You will turn in a zip file containing
nothing more than these four files:

Actor.h // contains base, Penelope, and Wall class declarations
 // as well as constants required by these classes
Actor.cpp // contains the implementation of these classes

 StudentWorld.h // contains your StudentWorld class declaration
StudentWorld.cpp // contains your StudentWorld class implementation

You will not be turning in any other files – we’ll test your code with our versions of the
the other .cpp and .h files. Therefore, your solution must NOT modify any of our files
or you will receive zero credit! (Exception: You may modify the string literal
"Assets" in main.cpp.) You will not turn in a report for Part #1; we will not be

 55

evaluating Part #1 for program comments, documentation, or test cases; all that matters
for Part #1 is correct behavior for the specified subset of the requirements.

Part #2 (80%)

After you have turned in your work for Part #1 of Project 3, we will discuss one possible
design for this assignment. For the rest of this project, you are welcome to continue to
improve the design that you came up with for Part #1, or you can use the design we
provide.

In Part #2, your goal is to implement a fully working version of Zombie Dash game,
which adheres exactly to the functional specification provided in this document.

What to Turn In For Part #2

You must turn in your source code for your game, which must build without errors
under either Visual Studio or Xcode. We may also devise a simple test framework that
runs under g32; if we do, your code must build without errors in that framework. If it
does not also run without errors, that indicates some fundamental problem that will
probably cost you a lot of points. You will turn in a zip file containing nothing more than
these five files:

Actor.h // contains declarations of your actor classes
 // as well as constants required by these classes
Actor.cpp // contains the implementation of these classes

 StudentWorld.h // contains your StudentWorld class declaration
StudentWorld.cpp // contains your StudentWorld class implementation

report.docx, report.doc, or report.txt // your report (10% of your grade)

You will not be turning in any other files – we’ll test your code with our versions of the
the other .cpp and .h files. Therefore, your solution must NOT modify any of our files
or you will receive zero credit! (Exception: You may modify the string literal
"Assets" in main.cpp.)

You must turn in a report that contains the following:

1. A high-level description of each of your public member functions in each of
your classes, and why you chose to define each member function in its host
class; also explain why (or why not) you decided to make each function
virtual or pure virtual. For example, “I chose to define a pure virtual version
of the sneeze() function in my base Actor class because all actors in Zombie
Dash are able to sneeze, and each type of actor sneezes in a different way.”

 56

2. A list of all functionality that you failed to finish as well as known bugs in
your classes, e.g. “I didn’t implement the Flame class.” or “My smart zombie
doesn’t work correctly yet so I treat it like a dumb zombie right now.”

3. A list of other design decisions and assumptions you made; e.g., “It was not
specified what to do in situation X, so this is what I decided to do.”

4. A description of how you tested each of your classes (1-2 paragraphs per
class).

FAQ

Q: The specification is silent about what to do in a certain situation. What should I do?
A: Play with our sample program and do what it does. Use our program as a reference.
If neither the specification nor our program makes it clear what to do, do whatever seems
reasonable and document it in your report. If the specification is unclear, but your
program behaves like our demonstration program, YOU WILL NOT LOSE
POINTS!

Q: What should I do if I can’t finish the project?!
A: Do as much as you can, and whatever you do, make sure your code builds! If we can
sort of play your game, but it’s not complete or perfect, that’s better than it not even
building!

Q: Where can I go for help?
A: Try TBP/HKN/UPE – they provide free tutoring and can help your with your project!

Q: Can I work with my classmates on this?
A: You can discuss general ideas about the project, but don’t share source code with your
classmates. Also don’t help them write their source code.

GOOD LUCK!

