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Introduction 
 
Did you read the text in red on the previous page?  
 
Before writing a single line of code, you must first read and then re-read the 
Requirements and Other Thoughts section. Print out that page, tape it to your wall or on 
the mattress above your bunk bed, etc. And read it over and over (it’s nearly as exciting 
as Carey’s novel, The Florentine Deception). 
 
The NachenSmall Software Corporation has been contacted by the U.S. Centers for 
Disease Control (CDC) and asked to create a software program to help its researchers 
better search through and compare the DNA of bacteria responsible for common 
illnesses. The thought is that if the CDCs researchers have better tools to process the 
DNA of various organisms, they can more quickly identify new bacterial strains and 
create cures. 
 
Virtually all organisms on the face of the earth (except for perhaps RNA-based viruses) 
are DNA-based. DNA, which stands for deoxyribonucleic acid, is a chemical strand 
comprised of long sequences of just four different chemical units: adenine, cytosine, 
thymine, and guanine. These four chemical units (called bases or nucleotides) are usually 
referred to by their letter abbreviations, A, C, T and G. Organisms from viruses and 
bacteria to humans have long strands of DNA, comprised of thousands to billions of these 
simple DNA bases. Each organism is uniquely defined by its particular strand of DNA, 
and with the exception of identical twins and organisms that clone themselves, no two 
organisms share the same sequence of A, C, T and G bases. 
 
The DNA of a particular organism is called its genome. Each genome is comprised of up 
to tens of thousands of different genes, and each gene is made up of hundreds or 
thousands of these individual A, C, T and G DNA bases. You can think of each gene as a 
paragraph made up of only As, Cs, Ts and Gs. Each gene is responsible for one or more 
aspects of the organism’s biological processes such as the organism’s eye color, its 
height, how the organism produces energy from its food sources, etc.  
 
For example, here are the first 60 DNA bases (of the nearly 3 million total DNA bases) of 
the organism Halobacterium jilantaiense: 
 
			GGTTCTCAATGAATGGCAAGAGCTTCAACCCGACAACTCCGTCCTCACCGGCCGACAAT	
 
Imagine how complex even a single-celled organism is if its genetic code is made up of 
nearly 3 million of these bases. 
 
Different organisms (even of different species) often share many of the same or related 
genes. For example, humans and some ape species share up to 99% of the same DNA! 
Even humans and mice have many genes in common. This is important for a number of 
reasons: 
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• We can test drugs on an organism (e.g., a mouse) with similar genetics to ours and 
predict whether the drugs will be toxic or likely work in humans. 

• We can deduce how a drug will work on one infection that is closely related to 
another infection. 

• We can understand how two different types of organisms are related and how they 
may be related to a common ancestor. 

 
While organisms of the same species share 99+% of the same basic genetic code, each 
individual has unique mutations in their genes that cause them to differ slightly from 
others. For example, David may have a slightly different sequence of As, Cs, Ts and Gs 
in a gene responsible for eye color than Carey, causing David’s eyes to be brown and 
Carey’s eyes to be green. 
 
If two sequences of DNA bases differ by only a single DNA base, this is called a SNiP or 
single nucleotide polymorphism. For example, consider our original DNA sequence from 
Halobacterium jilantaiense: 
 
			GGTTCTCAATGAATGGCAAGAGCTTCAACCCGACAACTCCGTCCTCACCGGCCGACAAT	
 
Here are four different SNiPs of our original sequence: 
 
			GGTTCTCTATGAATGGCAAGAGCTTCAACCCGACAACTCCGTCCTCACCGGCCGACAAT	
			GGTTCTCAATGAATGGCAAGAGCCTCAACCCGACAACTCCGTCCTCACCGGCCGACAAT	
			GGTTCTCAATGAATGGCAAGAGCTTCAACCCGACAACTCCGTCCTCACCTGCCGACAAT	
			GGTTCTCAATGAATGGCAAGAGCTTCAACCCGACGACTCCGTCCTCACCGGCCGACAAT	
 
As you can see, each of the four sequences above differ by just one base from our 
original DNA sequence. A SNiP in a gene responsible for hair color might change one’s 
hair from brown to blonde, or a SNiP in a gene responsible for metabolism might impact 
how quickly you put on weight. Or in many cases, a SNiP might have no observable 
impact on an organism.  
 

What Do You Need to Do? 
 
In this project, you’re going to build three classes that can be used to process genetic 
data. These three classes will be used together to enable the following use cases: 
 

• Maintain a library of genomes from multiple organisms; the user can add new 
genomes to this library. 

• Allow the user to search the library for a specified DNA sequence and identify all 
genomes in the library that contain that DNA sequence or any SNiP of it. 

• Allow the user to present the genome/DNA of a new organism and quickly 
identify all genomes in the library that have a high percentage of matching DNA 
with the presented genome. 
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Here is an overview of the classes you must build: 
 
Class #1: You need to build a class named Trie that implements a templated, Trie-
based multi-map: 
 
You need to create a new template-based multi-map class, based on the Trie data 
structure (which we’ll explain in more detail in the Trie section below). It can be used to 
map any C++ string of characters to one or more values (of the templated type). Unlike 
the STL map and STL multi-map which require you to specify the types of both the key 
and the value, as in: 
 
 std::multimap<string,	int>	someVariable;	
 
the type of the key in our Trie-based multi-map is always (implicitly) a C++ string:  
 

Trie<int>	someVariable;		//	Like	std::multimap<string,	int>	above	
 
The challenging thing about this multi-map class is that when the user searches for a key 
string (e.g. “ACTGGTCA”), not only must the object provide all values associated with 
the exact, searched-for key string, but it must also be able to return all values associated 
with any string in the multi-map which differs by at most one character from the searched 
for key string. So, when searching a Trie, the user can request that the class return either 
(a) only exact matches, or (b) both exact matches AND matches that differ by exactly one 
character (except that the first character of the search string may not differ)! 
 
So suppose our multi-map object holds the following mappings: 
 
 “ABCD” à {1, 2, 3} 
 “AXCD” à {4, 5} 
 “AXYD” à {6, 7} 
 
If we were searching for exact matches, then: 
 

• Searching for “ABCD” would return {1, 2, 3} 
• Searching for “ABCE” would return {} 

 
If we were searching in a mode that allows both exact matches and mismatches, then: 
 

• Searching for “ABCD” would return the following values: {1, 2, 3, 4, 5} since 
our search term matches ABCD exactly (yielding 1,2, and 3), and differs from 
AXCD by exactly one letter (yielding 4 and 5). Our search term is two letters 
away from AXYD so its results would not be returned. 

• Searching for “AXYQ” would return the following values: {6, 7} since our search 
term differs from AXYD by exactly one character, but differs from the other 
strings in the multi-map by at least two characters. 
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• Searching for “AXCD” would return the following values: {1, 2, 3, 4, 5, 6, 7} 
because our search term exactly matches AXCD and mismatches by exactly one 
character the other two strings. So results from all three keys would be returned. 

• Searching for “QBCD” would match none of the above strings, because we 
require that the first character of the searched-for string must always match 
exactly (no mismatches are allowed on the first character).   

 
You must not use any STL containers other than the STL string, vector, or list classes to 
implement your Trie class. 
 
Class #2: You need to build a class named Genome: 
 
You’ll have to build a class named Genome that can be used to load organisms' genomes 
from a data file and, once loaded, allow a user of the class to (a) obtain an organism’s 
name, and (b) extract any subsequence of an organism’s DNA genome. 
 
The user can call a function declared in the Genome class to load genome data from a 
specially-formatted genomic data file (we’ll provide a number of these data files for you 
to test with). The genomic data file contains both the name of the organism (e.g., 
Ferroglobus_placidus) and DNA sequences of the organism, consisting of millions of As, 
Cs, Ts and Gs.  The function returns a vector of Genome objects, one for each DNA 
sequence specified in the file. 
 
Once the user has loaded the genomic data into Genome objects, the user of a Genome 
object can ask the object to extract various subsequences of the DNA from that genome 
for processing. For example, let’s assume you have Genome object into which was 
loaded a genome like this: 
 

ATAGGTACACATATGTATATATATATATATA…3 million more bases... 
 
You could then ask the Genome object to give you the DNA sequence starting at position 
3 that is 12 bases long (positions start at 0). Your object would return 
“GGTACACATATG”.  
 
The object also enables its user to request the name of the organism the genome is 
associated with, e.g., “Ferroglobus_placidus”. 
 
We’ll provide you with genome data files in a pre-defined format and tell you how to 
open, read and interpret the DNA data from those files to enable you to implement this 
class. 
 
You may use any STL container classes you like to implement your Genome class. 
 



  7 

Class #3: You need to build a class named GenomeMatcher: 
 
You’ll build a class called GenomeMatcher that maintains a library of Genome objects 
and allows the user of the class to: 
 

• Add a new organism’s Genome to the library    
• Search all the genomes held in the library for a given DNA sequence, e.g. “Find 

the names of all genomes in the library whose DNA sequence contains 
‘ACCATGGATTACA’ or some SNiP of that sequence such as 
ACCATGAATTACA’, and tell me at what offset(s) these located sequences were 
found in each genome.”  

• Search the library to identify all genomes in the library whose DNA contains at 
least T% overlap with a given Genome, where the threshold T is specified by the 
user (e.g., T = 15%). This might be used to identify organisms whose genomes 
are closely related to a queried organism’s genome. 

 
You may use any STL container classes you like to implement your GenomeMatcher 
class.  However, your GenomeMatcher class MUST use your Trie class to index and 
search through the DNA bases of the genomes in its library. 

 

What Will We Provide? 
 
We’ll provide you with a number of text files containing genomes of common archaea1.  
 
We’ll also provide you with a simple main driver program in file main.cpp which allows 
you to run some simple tests on your project as you build it. 
 
Finally, we’ll provide you with a header file named provided.h that will declare and 
implement the two classes Genome, and GenomeMatcher.  Stop and think about that 
sentence.  Is it saying that we're writing most of this project's code for you?  Well, no.   
 
Here’s what we’re doing in a nutshell: 
 

1. We provide a Genome class in provided.h and all it does is forward all method 
calls you make to it to a class called GenomeImpl that you will write. 

a. Our Genome class holds a pointer to a GenomeImpl object as its only data 
member. 

b. When the user calls a method like Genome::name(), our Genome class’s 
name() method just forwards that call to the name() function in the 
GenomeImpl class that you write. 

                                                
1 Archaea are single-celled organisms with no cell nucleus.  Archaea are one of the three domains of life, 
the other two being Eukarya (which includes animals, plants, fungi, and protozoa) and Bacteria.  
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2. We provide a GenomeMatcher class in provided.h and all it does is forward all 
method calls you make to it to a class called GenomeMatcherImpl that you will 
write. 

a. Our GenomeMatcher class holds a pointer to a GenomeMatcherImpl 
object as its only data member. 

b. When the user calls a method like 
GenomeMatcher::findGenomesWithThisDNA(), our GenomeMatcher 
class’s findGenomesWithThisDNA() method just forwards that call to the 
findGenomesWithThisDNA() function in the GenomeMatcherImpl class 
that you write. 

 
So, to summarize, the code in each of these provided classes simply delegates work to a 
corresponding class that you will write.  Let's see how this will work, and then explain 
why we're doing it this way. 
 
The provided.h file that we give you will have the following code (edited to make this 
example simpler) and that you MUST NOT modify: 
 
class	GenomeImpl;			
 
class	Genome	
{	
public:	
				Genome(const	std::string&	nm,	const	std::string&	sequence);	
				~Genome();	
				...	
				std::string	name()	const;	
				bool	extract(int	position,	int	length,	std::string&	fragment)	const;	
				...	
private:	
				GenomeImpl*	m_impl;	
};	
...	
 
Notice how our provided Genome class declaration in provided.h contains only one data 
member, a pointer to a GenomeImpl object, which is a class that you must write yourself 
in the Genome.cpp file; you’ll similarly implement a GenomeMatche class in of a file 
named GenomeMatcher.cpp. You will submit the Genome.cpp and GenomeMatcher.cpp 
files as part of your solution to this project.   
 
Below is a skeleton version of Genome.cpp that you will need to modify and turn in; 
you’ll do the same thing with a GenomeMatcher.cpp file. Notice that the skeleton file has 
two parts: The first part is the definition of your new GenomeImpl class that you will 
write. The second part of the file contains the implementations of our Genome class 
member functions, which you shouldn’t modify. Our Genome member functions simply 
delegate their work to your corresponding GenomeImpl functions2: 
 

                                                
2 This is an example of what is called the pimpl idiom (for "pointer-to-implementation"). 
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		//	Genome.cpp	file,	skeleton	version	that	we	provide	
#include	"provided.h"	
#include	<string>	
using	namespace	std;	
	
//	Part	#1:	You	must	modify	the	code	below	to	implement	your	GenomeImpl	class.	
//	You	may	add	additional	headers,	using	statements,	functions	(including	a	
//	destructor	if	necessary),	classes,	etc.	
 
class	GenomeImpl	
{	
public:	
				GenomeImpl(const	std::string&	nm,	const	std::string&	sequence);	
				...	
				string	name()	const;	
				bool	extract(int	position,	int	length,	string&	fragment)	const;	
				...	
						//	You	may	implement	this	however	you	want,	provided	that	Genome	objects	
						//	behave	as	required	by	our	spec.	
};	
	
//	Part	2:	Implementation	of	our	provided	Genome	class	that	delegates	everything		
//	to	GenomeImpl.	You	shouldn’t	change	anything	below	this	line.	
	
Genome::Genome(const	std::string&	nm,	const	std::string&	sequence)	
{	
				m_impl	=	new	GenomeImpl(nm,	sequence);		//	create	a	new	implementation	object	
};	
	
Genome::~Genome()	
{	
				delete	m_impl;		//	destroy	the	implementation	object	
}	
	
...	
	
string	Genome::name()	const	
{	
						//	delegate	work	to	the	implementation	object	
				return	m_impl->name();	
}	
	
bool	Genome::extract(int	position,	

							int	length,	
							string&	fragment)	const	

{	
						//	delegate	work	to	the	implementation	object	
				return	m_impl->extract(position,	length,	fragment);			
}	
	
...	
 
There's an important restriction we will place on you:  Other than Genome.cpp itself, no 
source file that you turn in may contain the name GenomeImpl class or that of any new 
helper functions/classes/structs you might introduce in your Genome.cpp class.  So some 
other file whose code wants to use a genome object must not have: 



  10 

 
	 void	f()	
	 {	
	 				GenomeImpl	g(...,	...);		//	No!	Other	files	must	not	use	the	name	
	 																													//	GenomeImpl	
	 				...	
	 }	
 
but instead should have: 
 
	 void	f()	
	 {	
	 				Genome	g(...,	...);	
	 				...	
	 				string	s	=	g.name();	
	 				...	
	 }	
 
When the second snippet of code above constructs a Genome object, the Genome class 
code that we provide creates a GenomeImpl object for itself and has code you write 
construct yet.  When the above code calls Genome::name(), the code that we provide in 
Genome::name() calls the GenomeImpl::name() function that you write and returns the 
value that your GenomeImpl::name() function returns. So all that our class does is call 
your class’s methods! 
 
Why are we having you implement a separate GenomeImpl class instead of just 
implementing the Genome class directly? And why can’t your other code use your 
GenomeImpl class directly, but instead must use our Genome class to delegate work to 
your GenomeImpl class? For two reasons: one that restricts you and one that helps you. 
 
How this restricts you:  We want to make sure you don't introduce a public function into 
one of the required classes, e.g. Genome, that you then call in another, e.g. 
GenomeMatcher; we want you to use the interface we provided. By having none of your 
implementation go in Genome, we can put the Genome class in a file provided.h that you 
will not turn in. We will build our tester using the provided.h we gave you, so it's useless 
for you to modify it, since we'll never use or even see those modifications. All of your 
implementation related to Genome will go into Genome.cpp. By forbidding you to 
mention GenomeImpl outside of Genome.cpp (which is easy for us to detect), code in 
other files can't use a GenomeImpl (whose interface you might have extended) instead of 
a Genome.  (Of course, your not being able to change the interface for Genome means 
you can't introduce changes that might keep our test framework from being able to work 
with your code.) 
 
How this helps you:  Suppose you cannot figure out how to write a correct GenomeImpl 
class and your implementation has some bugs. If your GenomeMatcherImpl class would 
work correctly if it used a correctly implemented Genome, but fails with your incorrectly 
implemented one, woud you lose points on GenomeMatcher too?  No, because to test 
your GenomeMatcherImpl implementation, we will build your implementation together 
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with our correct implementations of the other classes.  This is much easier for us to do 
when a class's interface and implementation are separated the way we're doing it. 
 
The Trie class template isn't subject to this separation, since template implementations 
aren't put in a separate .cpp file; they go in the header file.  Your other classes will use the 
Trie class template directly; there's no need for a separate implementation class. 
 

Details: The Classes You MUST Write 
 
You must write correct versions of the following classes to obtain full credit on this 
project. Your classes must work correctly with our provided code, and you must not 
modify our provided main.cpp or provided.h to make them work with your code. Doing 
so will result in a zero score on that part of the project. 
 

Trie Class Template  
 
You must write a class template named Trie that implements a multi-map ADT using a 
trie data structure. You read that right – we said trie! A trie is a tree-based data structure 
which we will explain in more detail below. Your Trie class must be implemented using 
a trie to get credit for this part of the project.  
 
Your Trie multi-map class template must have the following public interface: 
 
template	<class	ValueType>	
class	Trie	
{	
public:	
				Trie();	
				~Trie();	
				void	reset();	
				void	insert(const	std::string&	key,	const	ValueType&	value);	
				std::vector<ValueType>	find(const	std::string&	key,	bool	exactMatchOnly)	const;	
};	
 
You must not add any additional public member functions or data members to this class. 
You may add as many private member functions or data members as you like. 
 
You must not use any STL containers other than the STL string, vector, or list classes to 
implement your Trie class. 
 
With a standard STL map or multimap, when you instantiate the template you must 
specify both the type of the key and the type of the value, e.g.: 
 

std::multimap<std::string,	int>	myMap;			//	maps	strings	to	ints	
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In contrast, when you instantiate our Trie class template, you specify only the type of the 
value. The key is always implicitly an std::string. Here’s an example of how you might 
use our Trie class template to define a variable: 
 

Trie<int>	trie;		//	This	is	like	std::multimap<std::string,int>	trie;	
 

What	is	a	Trie?	
 
A trie is a special type of tree in which each node can have zero or more values and zero 
or more children (potentially hundreds of children). Unlike a regular tree node which 
simply contains a value and a pointer to each child, in a trie node, each child pointer 
comes with an associated label (e.g., typically a character like ‘h’ or ‘a’): 
 

 
 
When we search through a trie for a string, we search one character at a time by 
following the labeled child pointers from the root node until we reach the proper node in 
the trie, or find that a node does not have a child pointer with the proper label (which 
means that the string we’re searching for was not in the trie).  
 
For example, let’s consider the diagram above. If we want to find the value(s) associated 
with the string “hip”, we would start at the root node and take the child pointer labeled 
‘h’. This leads us to the leftmost node on the second row. From there, we’d take the child 
pointer labeled ‘i’ to the leftmost node on the third row. Finally, we’d take the child 
pointer labeled ‘p’ to the second node on the last row of the diagram. Here we reach the 
end of our searched-for string, and find that the values associated with “hip” are {10, 20}. 
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Imagine if we were to search instead for “at”. In this case, we’d again start at the root, 
and then take the child pointer labeled with an ‘a’ leading us to the second node on the 
second row. From here we’d like to find a child pointer labeled with a ‘t’ but no such 
child pointer exists, so we’ve hit a dead end and the word “at” is discovered not to be in 
our trie.  
 
Finally, what if we search for the word “hi”. Again, we would start at the root node and 
take the child pointer labeled ‘h’. This leads us to the left-most node on the second row. 
From there, we’d take the child pointer labeled ‘i’ to the left-most node on the third row. 
Since we’ve hit the end of our searched-for string, we’ve found our matching node. This 
node contains the values {9, 17} associated with the string “hi”, even though the node is 
not a leaf node.  
 
Tries are useful when we have a situation where many of our keys share the same 
common prefixes. For example, there are probably thousands of DNA sequences within a 
typical genome that begin with the string “ACTAAG” such as “ACTAAGAAT…”, 
“ACTAAGGTA…”, “ACTAAGTCA…” and so on. A trie data structure exploits this 
prefix repetition in order to reduce the amount of storage needed to store the complete set 
of data. In contrast, with a traditional binary tree, we’d end up repeatedly storing the 
same repetitive prefix string multiple times across multiple nodes.  
 
There are a number of different ways to represent children (remember each child of a 
node has both a label and a pointer to a child node) in trie nodes, and you can use any 
approach that you like for this project. Some approaches optimize space at the expense of 
runtime, while other approaches optimize runtime at the expense of space. As with 
regular trees, you’ll use some sort of struct or class to represent your trie nodes. 
 
Similarly, there are many ways to store the multiple values that might be held within a 
given trie node. For instance, you could have each trie node point to a (potentially empty) 
linked list of values, simply store a vector in each node, etc. 

Trie()	and	~Trie()	
	
You must implement a constructor and destructor for your Trie class. It should create a 
root trie node with no children and no values, and set the root pointer (if any) to point to 
this root node. This method must run in O(1) time. 
 
The destructor must free all memory associated with trie. This method must run in O(N) 
time where N is the number of nodes in the trie. 

void	reset()	
 
Your trie’s reset() method must free all of the memory associated with the current trie, 
then allocate a new empty trie with a single root node (with no children or values). This 
method must run in O(N) time where N is the number of nodes in the trie. 
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void	insert(const	string&	key,	const	ValueType&	value)	
 
The insert() method associates the specified key with the specified value in your trie, e.g. 
“GATTACA” à 42 by adding the appropriate nodes (if any are required) to the trie, and 
then adding the specified value (e.g., 42) to the existing set of values in the appropriate 
node. A given key inserted in the trie may map to one or more values, e.g., “GATTACA” 
à {42, 17, 32, 42, 42, 19, 17}, and those values may include duplicates. Here’s how you 
might define a trie variable that maps strings to ints and insert a few items: 
 
Trie<int>	trie;		//	This	is	like	std::multimap<std::string,int>	trie;	
	
trie.insert("GATTACA",	42);		//	GATTACA	à	{42}	
trie.insert("GATTACA",	17);		//	GATTACA	à	{42,	17}	
trie.insert("GATTACA",	42);		//	GATTACA	à	{42,	17,	42}	
...	
trie.insert("GCTTACA",	30);		//	GCTTACA	à	{30}	
 
There are a number of ways you can associate a given trie node with one or more values, 
including having a vector or list of values associated with each trie node. You can choose 
any approach you wish. 
 
Your insert() function must run in O(LC) time where L is the length of the inserted key 
and C is the average number of children per node in your trie. With a clever approach, 
you may be able to get your insert() function to run in O(L) time, but this is not required. 
 
Hint: Don’t try to deal with mismatch-handling in your insert() method – just insert 
strings into your trie exactly as they are passed into your insert() method. Instead deal 
with searching for mismatches in your find() method. 

std::vector<ValueType>	find(const	std::string&	key,	
bool	exactMatchOnly)	
const	

 
The find() method is used to search for the values associated with a given key string, e.g., 
“GATTACA”. 
 
If exactMatchOnly is true, the find() method must return a vector containing all of the 
values associated with the exact key string specified. There is no required ordering of the 
returned values. If no values are associated with the specified key, then the find() method 
should return an empty vector.  
 
In the tree depicted in the diagram several pages above, searching for “hit” with an 
exactMatchOnly of true would return values of {1, 2} in any order you choose: 
 
std::vector<int>	result1	=	trie.find("hit",	true);		//	returns	{1,	2}	or	{2,	1}	
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If exactMatchOnly is false, the find() method must return a vector containing all of the 
values associated with both the exact search term as well as all values associated with 
keys in the trie that: 
 

1. Match the first character of the search term exactly, and 
2. Have a single mismatching character (i.e., are a SNiP) of the specified key 

anywhere past the first character. 
 

There is no required ordering of the returned values. If no values are associated with the 
specified key or SNiPs of that key, then the find() method should return an empty vector. 
 
In the tree depicted in the diagram above, searching for “hit” with an exactMatchOnly of 
false would return values of {1, 2, 10, 20, 7, 8, 9} in any order you choose: 
 
std::vector<int>	result2	=	trie.find("hit",	false);		//	returns	{1,	2,	10,	20,	7,	8,	9}	
 
Why {1, 2, 10, 20, 7, 8, 9}? The {1, 2} are associated with the exact match, “hit”, the 
{10, 20} are associated with the SNiP of “hip”, and the {7, 8, 9} are associated with the 
SNiP of “hat”.  (If instead of  {7, 8, 9} “hat” were associated with {10, 2, 5, 10}, then the 
resulting vector would be {1, 2, 10, 20, 10, 2, 5, 10} in any order. 
 
In the tree depicted in the diagram above, searching for “sit” with an exactMatchOnly of 
false would return an empty vector: 
 
std::vector<int>	result3	=	trie.find("sit",	false);		//	returns	{}	
 
Why? Because no nodes in our trie begin with ‘s’, and the find() method must only 
returns (a) exact matches or (b) SNiPs where the first letter of the searched for string is an 
exact match with some string in the trie. So even while “sit” is technically a SNiP of “hit” 
since the first letters differ, the results associated with “hit” in the trie would not be 
returned. 
 
If exactMatchOnly is true, your find() function must run in O(LC+V) time where L is the 
length of the searched-for key, C is the average number of children per node in your trie, 
and V is the size of the returned vector.  If exactMatchOnly is false, your find() function 
must run in O(L2 C2+V) time. 
 
Hint: Recursion is your friend! With some clever coding you can easily find exact 
matches and single-character mismatches with the same code! 
 

Genome Class  
 
You must implement a class named Genome that can be used to hold an organism's 
complete genome and allow you to extract DNA subsequences from various positions in 
the genome.  Your Genome class must have the following public interface: 
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class	Genome	
{	
public:	
	 Genome(const	std::string&	nm,	const	std::string&	sequence);	
	 ~Genome();		//	Declare	a	destructor	if	you	need	to	write	one	
	 static	bool	load(std::istream&	genomeSource,	std::vector<Genome>&	genomes);		
	 int	length()	const;	
	 std::string	name()	const;	
	 bool	extract(int	position,	int	length,	std::string&	fragment)	const;	
}; 
 
You must not add any additional public member functions or data members to this class 
other than a destructor, should you need one. You may add as many private member 
functions or data members as you like. 

Genome(const	std::string&	nm,	const	std::string&	sequence)	
 
The Genome constructor must initialize a new Genome object with the indicated name 
and DNA sequence. Your implementation may assume the sequence contains at least one 
character, and all characters in the sequence are upper case A, C, T, G, or N (we'll explain 
N later).  It should run in O(S) time, where S is the length of the longer string.  

~Genome()	
 
If the compiler-generated destructor would not do the right thing, you must declare and 
implement a destructor.  This spec imposes no requirements on its time complexity.  

static	bool	load(std::istream&	genomeSource,	
std::vector<Genome>&		genomes)	

 
The Genome::load() method is responsible for loading the genomic data from one of our 
provided genome text files. Notice that you pass in to this method an istream object, 
which is associated with a genomic data file.  (For more information on what an istream 
is and how to open data files in C++, see the File I/O writeup on the class web site.)  This 
function fills the vector second parameter with Genome objects, one for each genome 
specified in the data file. 
 
This method is a static member function, which means that it is not generally called for a 
particular Genome object (e.g., g.load(...) or gp->load(...)), but instead is called for 
the class itself, on no particular object (i.e., Genome::load(...)).  Static member 
functions are never passed a this pointer that would point to one particular object.3  
Static member functions are often used when you have some functionality that might 
otherwise be an ordinary global function, not a member of any class, that bears a strong 
relationship with one particular class.  Loading genomes seems pretty tightly associated 
with the Genome type, so making it a static member function of Genome is appropriate. 

                                                
3 C++ actually allows you to say g.load(...) or gp->load(...), but it ignores the g or gp (since there's 
no this pointer to pass it to) and acts as if you said Genome::load(...). 
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Here’s how a user might use your class’s load() method: 
 
#include	<iostream>	
#include	<fstream>		//	needed	to	open	files	
#include	<string>	
#include	<vector>	
	
void	somefunc()	
{	
	 		//	Specify	the	full	path	and	name	of	the	gene	data	file	on	your	hard	drive.	
	 string	filename	=	"c:/genomes/Ferroplasma_acidarmanus.txt";	
	
	 		//	Open	the	data	file	and	get	a	ifstream	object	that	can	be	used	to	read	its	
	 		//	contents.	
	 ifstream	strm(filename);		
	 if	(!strm)	
	 {	
	 	 cout	<<	"Cannot	open	"	<<	filename	<<	endl;	
	 	 return;	
	 }	

	
vector<Genome>	vg;	

	 bool	success	=	Genome::load(strm,	vg);		//	Load	the	data	via	the	stream.	
	
	 if	(success)	
	 {	
	 	 cout	<<	"Loaded	"	<<	vg.size()	<<	"	genomes	successfully:"	<<	endl;	
	 	 for	(int	k	=	0;	k	!=	vg.size();	k++)	
	 	 	 cout	<<	vg[k].name()	<<	endl;	
	 }	
	 else	
	 	 cout	<<	"Error	loading	genome	data"	<<	endl;	
	
}		//	destructor	for	ifstream	closes	the	file		
	
	
Hint: Don’t worry about the complexities of C++ input streams! The only input function 
your load() method needs is std::getline()! 
 

Genomics	Data	File	Format	
 
Your load() method must load genetic data from a genomics data file in the FASTA 
format universally used in the bioinformatics field.  The customary filename suffix for 
these files is .fna (for FASTA Nucleic Acids), but for our data files, we replaced .fna with 
.txt for ease of use on some operating systems. 
 
A FASTA file is a text file that contains genetic information for an organism, with one or 
more entries for portions of that organism's DNA (often each corresponding to a gene); 
the information for each portion is a name (e.g., Halorubrum chaoviator NODE 103) and 
a long sequence of DNA bases (made up of As, Cs, Ts and Gs) for that organism. These 
genomics data files are produced by research labs around the world. 
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You can find hundreds of FASTA files documenting hundreds of different genomes on 
ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/bacteria/. We’ve provided eight of them 
for you to work with (which should be enough for you to get the project working, so 
there’s no need to go to the website unless you’re curious).  
 
Should you go to the website, you can browse the various folders on the site for all files 
with an extension of .fna.gz, e.g., Ferroglobus_placidus.fna.gz.  (Note: You might have 
to click down a few folder levels to find these fna.gz files.) The “gz” means that the file is 
compressed to save disk space. You must first decompress these gz files (e.g., using a 
decompression tool like Winzip in Windows, or just by double clicking on the file on 
your Mac desktop) and this will produce the full genome file, e.g., 
Ferroglobus_placidus.fna, which is the file containing the raw genetic information for 
each organism. 
 
FASTA files have the following general format: 
 
>One	genome	name	
Up	to	80	DNA	bases,	e.g.,	GGTTCTCAATGAATGGCAAGAGCTTCAACCCGACAACTCCGTCCTCACCGGCCGACAATCGTTCGCGCAGTCCCAACACG	
Next	up-to-80	DNA	bases,	e.g.,		ACCGAATCGTCGGGGGAGAGATACTCGATTCCCTGATGATCCATCGCGAATTCCCGGGAGAAGGTTACGGGTCCACGCTG	
Next	up-to-80	bases	
…		//	thousands	of	more	lines	of	up	to	80	bases	
>Another	genome	name	
Up	to	80	bases	
Next	up-to-80	bases	
Next	up-to-80	bases	
…		//	thousands	of	more	lines	of	up	to	80	bases	
>Yet	another	genome	name	
Up	to	80	bases	
Next	up-to-80	bases	
…		//	thousands	of	more	lines	of	up	to	80	bases	
	

The file consists of one or more occurrences of 
1. A line starting with a greater-than sign (>) with the name, followed by 
2. One or more lines consisting of between 1 and 80 upper or lower case letters A, 

C, T, G, or N (we'll explain N later). 
 
Here’s an actual example from the FASTA file for Halobacterium jilantaiense, which we 
provide to you in our project zip file: 
 
>NZ_FOJA01000002.1	Halobacterium	jilantaiense	strain	CGMCC	1.5337,	whole	genome	shotgun	sequence	
GGTTCTCAATGAATGGCAAGAGCTTCAACCCGACAACTCCGTCCTCACCGGCCGACAATCGTTCGCGCAGTCCCAACACG	
ACCGAATCGTCGGGGGAGAGATACTCGATTCCCTGATGATCCATCGCGAATTCCCGGGAGAAGGTTACGGGTCCACGCTG	
GGTTTCGGCACCAGTCTCTGAGAGCGACGCTGGCAGGAAGACATCATACAGCTGGTTACCACGCTTCTCAAGGCGCCCAC	
CGAAAGCTTCCAACCCCCGCTCGACAAAGGCCCGGATATCGGCTTCCGTCCCAAACACGTCGGCCGATTCATCCATTATA	
TCCTGAATCCGCTCGCGACTCTCAGCGTCGAACGTGCTTGGATCGATCAGGCTACGGTCGTACCACTCAAGCAGAGTCTG	
CTCACGCTCTTCCATGAGCTCCTCTAACTCCGCCGCGGTCGCTTCGGGGGGCTCCTCGTTCTGGAGCGACCGCATGATCA	
GGTCGTCGATGTTGATGTCGTCAAGCATCCCCAGCACGTCTGCGGTCGACCCAACCTGGGAGCGAATATTCTCGACCTTG	
//	thousands	more	lines	just	like	those	above	
>NZ_FOJA01000001.1	Halobacterium	jilantaiense	strain	CGMCC	1.5337,	whole	genome	shotgun	sequence	
ATTTTGCCGCCGCTCCAGCAGTTCGGCATCATCACCGGACTCACCATCATCTACGCGTTCCTCGCCAGCGTGCTCGTACT	
CCCCAGCCTGCTCGTCATCTGGACGAGGTACCTCGGTCCGAGCGTCGACGAGTCCACGACGAACGTCGACGCAGCGACGC	
CCACACCGGAGGACTGACCGATGGACGAAACTGACGCGATAGACGCGATGGGGGAACTCGGCCTCACCCAGTACGAGGCC	
CAGGTGTTCATCGCGCTCCAGCAGTTGGGTGTCGCGTCAGCGAGCGAAATCGGTCAGGCGACCGACGTTCCCCGGTCGCA	
GGTGTACGGCACCGCGGAGTCGCTCGAAGAACGCGGCCTCGTCGAAGTGCAGCAGTCGAACCCGATTCGGTACCGTCCGG	
TCGGACTAGAGGAGGCACAGCAGACGCTCCGCGAGCAGTACGAGACGCACCAGCGCAACGCCTTCGACTACCTGGAGTCG	
GTCCAGCAGCAGCCACACAGTGCGGAACAGCAAGAAGACATCTGGACCGTCCGCGGGTCGGACCACATCGACACGCGGGT	
CGAGCAGCTGGCCGCCGACGCGACCGAGCGCGTCGTCTACGGCTGTGGCGGCGCGCTGTTCGACGAGCGGACCGCCGAGA	
//	thousands	more	lines	just	like	those	above	
	
When your load() method runs, it must repeatedly: 
 



  19 

1. Extract the genome name from a line in the file that begins with a greater than 
sign; everything following the greater-than sign (and excluding the newline at the 
end of the line) is the name, so for the line 

	
	 	 >NZ_FOJA01000002.1	Halobacterium	jilantaiense	strain	CGMCC	1.5337,	whole	genome	shotgun	sequence	
	 	

the name would be 
 

					NZ_FOJA01000001.1	Halobacterium	jilantaiense	strain	CGMCC	1.5337,	whole	genome	shotgun	sequence	
	

2. Extract the sequence of DNA bases for that name from the file into one 
concatenated string.  The bases are on the lines following the name up to but not 
including the next line starting with a greater-than sign (or the end of the file).  So 
if a file started with 

	
	 	 >Caenorhabditis	elegans	
	 							AGGATGCAGGAGAAATCCAGGCCCAGTAGCATTT	
	 							TGTTCAGTAGCAAGATCAGCAAAC	
	 							GGCAGCACCACACAGTGACTGAGATGTGAAA	
	 							>Dictyostelium	discoideum	
	 							CCCATGCATACATACGCACAGCGCATTCAACGACTCAGCATCACAGCAAGGTTTAGTAT	
	 							...	
	

the concatenated sequence corresponding to the name Caenorhabditis elegans 
would be 

	
	 							AGGATGCAGGAGAAATCCAGGCCCAGTAGCATTTTGTTCAGTAGCAAGATCAGCAAACGGCAGCACCACACAGTGACTGAGATGTGAAA	
	 							...	
	

In the concatenated sequence, every base letter must be upper case, even if the 
letter appeared in lower case in the file. 
 

3. Create a Genome object with the extracted name and DNA sequence, and add it to 
the vector of Genomes that is the second parameter. 

 
You’ll notice that in addition to As, Cs, Ts and Gs, you’ll also occasionally see ‘N’ 
characters in some genomes, e.g.: 
 
	 GCTCGGNACACATCCGCCGCGGACGGGACGGGATTCGGGCTGTCGATTGTCTCACAGATCGTCGACGTACATGACTGGGA	
 
The real meaning of the N character is that in this specific spot of the genome, any of the 
bases (A, C, T or G) may be found in typical organisms. For the purpose of this project, 
we'll simply treat N as if it were just another possible base, treating it no differently from 
A, C, T, or G. 
 
If the FASTA file is properly formatted, this method must return true, and regardless of 
the orginal contents of the second vector parameter, the vector must end up containing all 
and only the Genome objects corresponding to the genomes specified in the file.  If the 
FASTA file is improperly formatted, the function must return false, and the vector may 
be in any state you like: unchanged, empty, containing some of the genomes from the 
file, or whatever.  Improper formatting includes things like not starting with a name line, 
non-name lines containing any characters other than upper or lower case A C T G N, no 
base lines after a name line, empty lines, or a line starting with a greater-than character 
but containing no other characters. 
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The method must run in O(N) time where N is the number of characters in the loaded 
genome file.	

int	length()	const;	
 
The length() method returns the complete length of the DNA sequence, specifically the 
total count of As, Cs, Ts, Gs (and Ns) found in the sequence held by the object. This 
method must run in O(1) time. 

std::string	name()	const;	
 
This method returns the name of the genome, e.g.,  
 

NZ_FOJA01000001.1	Halobacterium	jilantaiense	strain	CGMCC	1.5337,	whole	genome	shotgun	sequence	

 
It must run in O(S) time, where S is the length of the name. 

bool	extract(int	position,	int	length,	std::string&	fragment)	const;	
 
The extract() method must set fragment to a copy of a portion of the Genome's DNA 
sequence:  the substring length characters long starting at position (where the first 
character of the sequence is at position 0). For example, if a Genome object were created 
with an 80-base DNA sequence: 
 
	 Genome	g("oryx",	
	 "GCTCGGNACACATCCGCCGCGGACGGGACGGGATTCGGGCTGTCGATTGTCTCACAGATCGTCGACGTACATGACTGGGA");	
 
Then calling the extract() method would produce the following results: 
 
	 string	f1,	f2,	f3;	
	 bool	result1	=	g.extract(0,	5,	f1);		//	result1	=	true,	f1	=	“GCTCG”;	
	 bool	result2	=	g.extract(74,	6,	f2);	//	result2	=	true,	f2	=	“CTGGGA”;	

bool	result3	=	g.extract(74,	7,	f3);	//	result3	=	false,	f3	is	unchanged	
 
The extract() method must return true if it successfully extracts a string of the specified 
length, and false otherwise (e.g., you try to extract a string that goes past the end of the 
genome); if extract returns false, fragment must remain unchanged. 
 
This method must run in O(S) time where S is the length of the extracted sequence. 
 

GenomeMatcher Class 
 
A GenomeMatcher object is responsible for maintaining a library of genomes and 
allowing you to search through these genomes for DNA sequences, or identify genomes 
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in the library that are related to a queried genome.  Your GenomeMatcher class must 
have the following public interface: 
 
class	GenomeMatcher	
{	
public:	
	 GenomeMatcher(int	minSearchLength);	
	 ~GenomeMatcher();		//	Declare	a	destructor	if	you	need	to	write	one	
	 void	addGenome(const	Genome&	genome);		
	 int	minimumSearchLength()	const;	

bool	findGenomesWithThisDNA(const	std::string&	fragment,	
int	minimumLength,	
bool	exactMatchOnly,	
std::vector<DNAMatch>&	matches)	const;	

bool	findRelatedGenomes(const	Genome&	query,	
int	fragmentMatchLength,	
bool	exactMatchOnly,	
double	matchPercentThreshold,	
std::vector<GenomeMatch>&	results)	const;	

};		
 
You must not add any additional public member functions or data members to this class 
other than a destructor, should you need one. You may add as many private member 
functions or data members as you like. 
 
Your GenomeMatcher implementation must use your Trie class template in the 
implementation of all data structures that hold DNA sequences. It may use any other STL 
container classes so long as these are not used to hold DNA sequence data (i.e., strings of 
As, Cs, Ts, Gs, or Ns), except that it may maintain a list or vector of Genomes so that the 
Trie may contain pointers to or indexes of the Genomes in that vector or list instead of the 
Trie containing the Genomes itself. Your GenomeMatcher methods may also use any 
functions from <algorithm>.   

GenomeMatcher(int	minSearchLength)		
 
The GenomeMatcher constructor takes a single argument which specifies the minimum 
length of a DNA sequence that the user can later search for within the genome library. 
(Your constructor should save this into a data member for later use.)  For example, if the 
user were to pass in a value of six for the minimum search length, then the shortest DNA 
sequence the user could search for using the findGenomesWithThisDNA() method would 
be six bases long, e.g. “GATTAC”. Attempting to search for shorter sequences like 
“GATTA” or “ACTG” would result in  findGenomesWithThisDNA() returning false. 
 
This method must run in O(1) time. 
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~GenomeMatcher()	
 
If the compiler-generated destructor would not do the right thing, you must declare and 
implement a destructor.  This spec imposes no requirements on its time complexity.  

void	addGenome(const	Genome&	genome);	
 
The addGenome() method is used to add a new genome to the library of genomes 
maintained by your GenomeMatcher object. Once a genome has been added, any time the 
user searches for a DNA sequence using the findGenomesWithThisDNA() method or 
searches for related genomes using the findRelatedGenomes() method, your 
GenomeMatcher object must search through the genomes in the library for matches. 
 
This method must do two things: 
 

1. Add the genome to a collection of genomes (e.g., a vector or list) held by the 
GenomeMatcher object.   

2. Index the DNA sequences of the newly-added genome by adding every substring 
of length minSearchLength (the value that was passed into your constructor) of 
that genome's DNA sequence into a Trie maintained by the GenomeMatcher. 

 
Every GenomeMatcher object must maintain a Trie that maps every DNA sequence of 
length minSearchLength from every added genome to a list of all those genomes that 
contain that sequence, and the position of every match in each such genome.   
 
For example, imagine the user added the following (really short) genomes using the 
addGenome() method: 
 

Genome 1: ACTG 
Genome 2: TCGACT 
Genome 3: TCTCG 

 
And further assume that minSearchLength was set to 3 during construction.  Then your 
addGenome() method would put the following strings into its Trie. 
 
For Genome 1: 
 
 ACT à (Genome 1, position 0) 

CTG à (Genome 1, position 1) 
 
For Genome 2: 
 
 TCG à (Genome 2, position 0) 

CGA à (Genome 2, position 1) 
GAC à (Genome 2, position 2) 
ACT à (Genome 2, position 3) 
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For Genome 3: 
 
 TCT à (Genome 3, position 0) 

CTC à (Genome 3, position 1) 
TCG à (Genome 3, position 2) 

 
And your completed Trie would look like this: 

 

 
 
This method must run in O(L* N) time where L is the GenomeMatcher's 
minSearchLength and N is the length of the added Genome's DNA sequence. 

int	minimumSearchLength()	const;	
 
This method must return the minimum search length passed to the constructor so the user 
of the class can determine the minimum length of strings that can be searched for. It must 
run in O(1) time.  
 

bool	findGenomesWithThisDNA(const	std::string&	fragment,	
int	minimumLength,	
bool	exactMatchOnly,	
std::vector<DNAMatch>&	matches)	const;	

 
The findGenomesWithThisDNA() method is used to find all genomes in the library that 
contain a specified DNA fragment (e.g., “GATTACA”), or potentially one or more of its 
SNiPs (e.g. “GCTTACA”, “GATTATA”), which are minimumLength or more bases 
long. The method must pass back an STL vector of the longest match found from each 
matching genome, and if more than one match for the fragment is found in a particular 
genome, then only the longest match must be returned for that genome. If two or more 
matches from the same genome have the same length, then the match that is found 
earliest in the genome must be returned. This function is case-sensitive, so searching for 
“GaTtAca” will not match “GATTACA”.  
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We say that a match exists between fragment and a segment of a genome's DNA 
sequence when 

1. The segment in the genome is identical to the first N characters of fragment, for 
some N ≥ minimumLength, or 

2. The exactMatchOnly parameter is false, and the segment in the genome is a SNiP 
of the first N characters of fragment, for some N ≥ minimumLength.  For our 
purposes, one sequence is a SNiP of another if 
• they are the same length, and 
• except for one position, the corresponding characters at that position of the 

two sequences are identical, and 
• the position of the sole mismatch is not the first position (position 0). 
Examples:  If exactMatchOnly is false, minimumLength is 4, and fragment is 
"ACTG", then "ATTG" would be a SNiP of that fragment, as would "ACTA" (the 
mismatch could occur at the last position).  However, "ATTA" would not be a 
SNiP (more than one mismatch in the first minimumLength characters), and 
"TCTG" would not be (the mismatch can't be in the first position). 

 
The findGenomesWIthThisDNA() method must return false if 

1. fragment's length is less than minimumLength, or 
2. minimumLength is less than the minSearchLength value passed to the 

GnomeMatcher's constructor, or 
3. There are no matches between fragment and any segment of any genome in the 

GenomeMatcher object's library. 
Otherwise, the method must return true (indicating that at least one match was found). 

 
Note that the searched-for fragment might be longer than the minSearchLength used to 
build the Trie that holds your DNA prefixes. Your findGenomesWithThisDNA() method 
therefore MUST be able to return both exact (and potentially SNiP) matches that are 
longer than those held in the Trie, and SNiP mismatches may be found anywhere (except 
for the first DNA base of the fragment), not just in the portion of the match within the 
Trie. This means that you’ll have to use your Trie to locate the proper locations in your 
Genomes where there may be potential matches (of just the fragment’s prefix of length 
minSearchLength), but then extract() more bases from each Genome from those 
location(s) to verify that you can match minimumLength or more characters. 
 
For example, in the example above for addGenome(), Genome 2 is "TCGACT", and the 
trie shown in the diagram was built for a minSearchLength of 3.  Suppose we call 
findGenomesWithThisDNA with minimumLength being 4, and exactMatchOnly being 
false.  Then searching for CGACT, CTACT or CGACG should all return Genome 2, 
Position 1, since: 
 

1. If fragment is "CGACT", we have an exact match of length 5, with “CGA” found 
in the trie as an exact match, and the remainder of the letters “CT” matching 
exactly. 
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2. If fragment is "CTACT", we have a SNiP of length 5 (with the mismatch on the 
second character), with “CTA” found in the trie (as a partial match with “CGA” 
in the trie), and the remainder of the letters “CT” matching exactly. 

3. If fragment is "CGACG", we have a SNiP of length 5 (with the mismatch on the 
fifth character), with “CGA” found in the trie as an exact match, and the 
remainder of the letters “CG” being identical except in one position. 

 
If the findGenomesWithThisDNA() method returns true, it must set the parameter 
matches, a vector containing exactly one DNAMatch struct for each of and only the 
genomes containing a match, where the DNAMatch struct looks like this: 
 
struct	DNAMatch	
{	
	 std::string	genomeName;	
	 int	position;	
	 int	length;	
}; 
 
If findGenomesWithThisDNA() returns false, the matches vector may be in any state you 
like: unchanged, empty, or whatever. 
  
This method must run in O(H*F) time, where F is the length of fragment, and H is the 
number of distinct hits across all genomes where the prefix of length minSearchLength of 
fragment (or a SNiP of the fragment, if exactMatchOnly is false) was found.  So if 
fragment were “ACTGTTTT”, F would be 8. If, when we searched our trie (supposing 
that minSearchLength were 4), we found that the prefix sequence of length 4, “ACTG”, 
existed at 3 different places in Genome 1, at 10 different places in Genome 2, and at 5 
different places in Genome 3, then H would be 18 (3+10+5). 
 
Given the following Genomes added to a GenomeMatcher object with a 
minSearchLength value of 4 (meaning your Trie only indexes sequences of length 4): 
 

Genome	1:	CGGTGTACNACGACTGGGGATAGAATATCTTGACGTCGTACCGGTTGTAGTCGTTCGACCGAAGGGTTCCGCGCCAGTAC	
Genome	2:	TAACAGAGCGGTNATATTGTTACGAATCACGTGCGAGACTTAGAGCCAGAATATGAAGTAGTGATTCAGCAACCAAGCGG	
Genome	3:	TTTTGAGCCAGCGACGCGGCTTGCTTAACGAAGCGGAAGAGTAGGTTGGACACATTNGGCGGCACAGCGCTTTTGAGCCA	
	

	 		01234567890123456789012345678901234567890123456789012345678901234567890123456789	
																				1									2									3									4									5									6									7	

 
Our findGenomesWithThisDNA() method would return the following results: 
 
std::vector<DNAMatch>	matches;	
bool	result;	
	
result	=	findGenomesWithThisDNA("GAAG",	4,	true,	matches); 
 

result: true; matches: 
 Genome 1 of length 4 at position 60 
 Genome 2 of length 4 at position 54 
 Genome 3 of length 4 at position 29 
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result	=	findGenomesWithThisDNA("GAATAC",	4,	true,	matches); 
 

result: true; matches: 
 Genome 1 of length 5 at position 22 
 Genome 2 of length 5 at position 48 

 
result	=	findGenomesWithThisDNA("GAATAC",	6,	true,	matches);	
	

result: false; matches: none 
 
result	=	findGenomesWithThisDNA("GAATAC",	6,	false,	matches);	
	

result: true; matches:  
 Genome 1 of length 6 at position 22 
 Genome 2 of length 6 at position 48 

 
result	=	findGenomesWithThisDNA("GTATAT",	6,	false,	matches);	
	

result: true; matches:  
 Genome 1 of length 6 at position 22 
 Genome 2 of length 6 at position 48 
 

result	=	findGenomesWithThisDNA("GAATACG",	6,	false,	matches);	
	

result: true; matches:  
 Genome 1 of length 6 at position 22 
 Genome 2 of length 7 at position 48 
 

result	=	findGenomesWithThisDNA("GAAGGGTT",	5,	false,	matches);	
	

result: true; matches:  
 Genome 1 of length 8 at position 60 
 Genome 3 of length 7 at position 35 
 Genome 2 of length 5 at position 54 
 

result	=	findGenomesWithThisDNA("GAAGGGTT",	6,	false,	matches);	
	

result: true; matches:  
 Genome 1 of length 8 at position 60 
 Genome 3 of length 7 at position 35 
 

result	=	findGenomesWithThisDNA("ACGTGCGAGACTTAGAGCC",	12,	false,	matches); 
	

result: true; matches:  
 Genome 2 of length 19 at position 28 
 

result	=	findGenomesWithThisDNA("ACGTGCGAGACTTAGAGCG",	12,	false,	matches)	
	

result: true; matches:  
 Genome 2 of length 19 at position 28 
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result	=	findGenomesWithThisDNA("GAAG",	3,	true,	matches);	
	

result: false; matches: none 
 
result	=	findGenomesWithThisDNA("GAAG",	5,	true,	matches);	
	

result: false; matches: none 

bool	findRelatedGenomes(const	Genome&	query,	
int	fragmentMatchLength,	
bool	exactMatchOnly,	
double	matchPercentThreshold,	
std::vector<GenomeMatch>&	results)	const;	

 
The findRelatedGenomes() method compares a passed-in query genome for a new 
organism against all genomes currently held in a GenomeMatcher object’s library and 
passes back a vector of all genomes that contain more than matchPercentThreshold of the 
base sequences of length fragmentMatchLength from the query genome. It returns true if 
one or more genomes in the library were close enough matches, and false if no close 
matches were located. The method also must return false if the value 
fragmentMatchLength is less than the value of minSearchLength passed into the 
GenomeMatcher constructor. 
 
The method MUST use the following algorithm to get full credit: 
 

We will consider sequences of length fragmentMatchLength from the query 
genome starting at positions 0, 1* fragmentMatchLength,2* fragmentMatchLength, 
etc. (e.g., if fragmentMatchLength were 12, the start positions would be 0, 12, 24, 
36).  If the length of the query genome is not a multiple of fragmentMatchLength, 
we ignore the final sequence that is shorter than fragmentMatchLength.  Let S be 
the number of sequences we will consider.  For example, if the query genome 
were 800 bases long and fragmentMatchLength were 12, then since 800/12 is 
66.6667, S will be 66 (since we ignore the final 8 base long sequence). 
 
For each such sequence: 

1. Extract that sequence from the queried genome. 
2. Search for the extracted sequence across all genomes in the library (using 

findGenomesWithThisDNA()), allowing SNiP matches if exactMatchOnly 
is false). 

3. If a match is found in one or more genomes in the library, then for each 
such genome, increase the count of matches found thus far for it. 

 
For each genome g in the library that contained at least one matching sequence 
from the query genome: 

1. Compute the percentage p of sequences from the query genome that were 
found in genome g by dividing the number of matching sequences found 
in genome g by S (e.g., if S is 66, and 15 of the 66 sequences were found 
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in the genome, then 15/66 or 22.73% of the sequences from the query 
genome were found in that genome, so p will be 22.73). 

2. If p is greater than or equal to the matchPercentThreshold parameter (a 
percentage in the range 0 though 100), then g is a matching genome. 

 
Return from the function with the results vector containing all matching genomes, 
ordered in descending order by the match proportion p, and breaking ties by the 
genome name in ascending alphabetical order.  The results vector contains 
GenomeMatch objects, where the GenomeMatch structure looks like this: 

	 	
	 struct	GenomeMatch	
	 {	
	 	 std::string	genomeName;	
	 	 double	percentMatch;				//	0	to	100	
	 }; 

 
This method must run in O(Q * X) time, where Q is the length in DNA bases of the query 
sequence (e.g., 3 million bases), and X is the function in the big-O of your 
findGenomesWithThisDNA() method. 
 

Test Harness 
 
We have graciously provided you with a simple test harness (in main.cpp) that lets you 
test your overall Gee-nomics implementation. You can compile this main.cpp file with 
your source files to build a complete working test program.  You can then run this 
program from the Windows command line or the shell running in a macOS Terminal 
window or under Linux. 
 
Our test harness lets you: 
 

• Add a genome a GenomeMatcher's library by typing a name and a DNA 
sequence. 

• Load a genome data file into the library 
• Load all of our demonstration genomes into the library at once to save you 

time J 
• Search for an exact DNA match like CGTTAGAG without any mismatching 

bases 
• Search for an DNA match like CGTTAGAG allowing one mismatching base, 

e.g., searching for CGTTAGAG could match CGTTAGGG within a genome 
• Type a DNA sequence and identify all genomes in the library that are close 

matches of that genome. 
• Specify a genome data file and identify all genomes in the library that are 

close matches to that genome. 
 
When you run our test harness, it might look like this: 
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Welcome	to	the	Gee-nomics	test	harness!	
The	genome	library	is	initially	empty,	with	a	default	minSearchLength	of	10	
								Commands:	
									c	-	create	new	genome	library						s	-	find	matching	SNiPs	
									a	-	add	one	genome	manually								r	-	find	related	genomes	(manual)	
									l	-	load	one	data	file													f	-	find	related	genomes	(file)	
									d	-	load	all	provided	data	files			?	-	show	this	menu	
									e	-	find	matches	exactly											q	-	quit	
Enter	command:	a	
Enter	name:	yeti	
Enter	DNA	sequence:	ACGTACGTAAAACCCCGGGGTTTTNANANANANA	
Enter	command:	e	
Enter	DNA	sequence	for	which	to	find	exact	matches:	AAAACCCCGGGGTTNN	
Enter	minimum	sequence	match	length:	12	
1	matches	of	AAAACCCCGGGGTTNN	found:	
		length	14	position	8	in	yeti	
Enter	command:	e	
Enter	DNA	sequence	for	which	to	find	exact	matches:	CCCCAAAATTTT	
Enter	minimum	sequence	match	length:	10	
No		matches	of	CCCCAAAATTTT	were	found.	
Enter	command:	s	
Enter	DNA	sequence	for	which	to	find	exact	matches	and	SNiPs:	AAAACCTCGGGGTTNN	
Enter	minimum	sequence	match	length:	12	
1	matches	and/or	SniPs	of	AAAACCTCGGGGTTNN	found:	
		length	14	position	8	in	yeti	
Enter	command:	c	
Enter	minimum	search	length	(3-100):	4	
Enter	command:	a	
Enter	name:	sasquatch	
Enter	DNA	sequence:	GGGGTTTTAAAACCCCACGTACGTACGTNANANANA	
Enter	command:	r	
Enter	DNA	sequence:	AAATCCCTGGGGTTTTNANA	
Enter	match	percentage	threshold	(0-100):	20	
Require	(e)xact	match	or	allow	(S)NiPs	(e	or	s):	s	
				1	related	genomes	were	found:	
		50.00%		sasquatch	
Enter	command:	c	
Enter	minimum	search	length	(3-100):	10	
Enter	command:	d	
Loaded	1	genomes	from	Ferroplasma_acidarmanus.txt	
Loaded	2	genomes	from	Halobacterium_jilantaiense.txt	
Loaded	105	genomes	from	Halorubrum_chaoviator.txt	
Loaded	83	genomes	from	Halorubrum_californiense.txt	
Loaded	55	genomes	from	Halorientalis_regularis.txt	
Loaded	121	genomes	from	Halorientalis_persicus.txt	
Loaded	1	genomes	from	Ferroglobus_placidus.txt	
Loaded	1	genomes	from	Desulfurococcus_mucosus.txt	
Enter	command:	e	
Enter	DNA	sequence	for	which	to	find	exact	matches:	ACGAATCACGTGCGAGA	
Enter	minimum	sequence	match	length:	11	
2	matches	of	ACGAATCACGTGCGAGA	found:	
		length	17	position	568	in	NZ_AOJK01000080.1	Halorubrum	californiensis	DSM	19288	
contig_80,	whole	genome	shotgun	sequence	
		length	12	position	1977	in	NZ_FOCX01000065.1	Halorientalis	persicus	strain	IBRC-
M	10043,	whole	genome	shotgun	sequence	
Enter	command:	q	
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Requirements and Other Thoughts 
 
Make sure to read this entire section before beginning your project! 
 

1. You should backup your code to a flash drive or an online repository like 
Dropbox or Google drive frequently (e.g., after successfully creating a new 
function).  
If you come to us and complain that your computer crashed 

and you lost all of your work, we’ll ask you where your 
backups are. 

2. In Visual C++, make sure to change your project from UNICODE to Multi Byte 
Character set, by going to Project à Properties à Configuration Properties à 
General à Character Set 

3. No matter what you do, and how much you finish, make sure your project builds 
and at least runs (even if it crashes after a while).  WHATEVER YOU DO, don’t 
turn in code that doesn’t build. 

4. Whatever you do, DO NOT MODIFY OUR PROVIDED HEADER FILE IN 
ANY WAY! YOU WILL NOT TURN IT IN, SO ANY MODIFICATIONS 
WILL NOT BE SEEN BY OUR GRADING TOOL! 

5. The entire project can be completed in less than 400 lines of C++ code beyond 
what we've already written for you, so if your program is getting much larger than 
this, talk to a TA – you’re probably doing something wrong. 

6. Be sure to make use of the C++ STL container classes AND algorithm functions 
where we permit it – it can make things much easier for you!  

7. If you need to define your own comparison functions, feel free to do so! However 
you MUST place these functions within one of your own source files that you will 
submit as part of the project. You MUST NOT modify our provided header file!! 

8. Before you write a line of code for a class, think through what data structures and 
algorithms you’ll need to solve the problem. Plan before you program!  

9. Don’t make your program overly complex – use the simplest data structures 
possible that meet the requirements. 

10. You MUST NOT modify any of the code in the files we provide you that you will 
not turn in; since you're not turning them in, we will not see those changes.  We 
will incorporate the required files that you turn in into a project with special test 
versions of the other files.   

11. Make sure to implement and test each class independently of the others that 
depend on it. Once you get the simplest class coded, get it to compile and test it 
with a number of different unit tests.  Only once you have your first class working 
should you advance to the next class.  

12. Try your best to meet our big-O requirements for each method in this spec.  If you 
can’t figure out how, then solve the problem in a simpler, less efficient way, and 
move on. Then come back and improve the efficiency of your implementation 
later if you have time. 
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If you don’t think you’ll be able to finish this project, then take some shortcuts. For 
example, implement the Trie class first by using the STL’s map or unordered_map class 
to do all of the hard work for exact matching. Then use it to get your GenomeMatcher 
class working. Once you get your genome matcher working, then go back and implement 
your full Trie class. 
 
You can still get a good amount of partial credit if you implement most of the project. 
Why? Because if you fail to complete a class (e.g., Trie), we will provide a correct 
version of that class and test it with the rest of your program.  If you implemented the rest 
of the program properly, it should work perfectly with our version of the class you 
couldn’t get working, and we can give you credit for those parts of the project you 
completed correctly. 
 
But whatever you do, make sure that ALL CODE THAT YOU TURN IN BUILDS 
without errors with both g32 and either Visual C++ or clang++!  For full credit, your 
code must run correctly under both g32 and either Visual C++ or clang++. 
 

What to Turn In 
 
You will turn in four files: 
 

Trie.h    Contains your trie map class template implementation 
Genome.cpp    Contains your Genome class implementation 
GenomeMatcher.cpp   Contains your GenomeMatcher class implementation 
report.docx, report.doc, or report.txt Contains your report   

 
You must submit a brief (You're welcome!) report that describes: 
 

1. Whether any of your classes have known bugs or other problems that we should 
know about. For example, if you didn’t finish the 
GenomeMatcher::findRelatedGenomes() method or it has bugs, tell us. 

2. Whether or not each method satisfies our big-O requirements, and if not, what 
you did instead and what the big-O is for your version. 

3. How two of your methods work — use high-level pseuocode to describe them: 
• Trie's find() method 
• GenomeMatcher's findGenomesWithThisDNA() method 

Grading 
 

• 95% of your grade will be assigned based on the correctness of your solution. 
• 5% of your grade will be based on your report. 

 
Good luck! 


