189

Chapter 10

Exercise 10.1 Comparison of FA implementations

(a) using a two-level network (Fig. 10.3(a) of the textbook) the critical path for the circuit has
3 gates. The path connects the input z; (or y; or ¢;) and output z;. The propagation delay of this
path is obtained as:

Tour(wi = z) = tyar(NOT) + tyrg(NAND — 3) + tyur(NAND — 4)
Tonp(zi —) = 0.05+0.017 x 2+ 0.07 + 0.038 x 1+ 0.12 + 0.051L
Torrp(z; — z) = 0.312+0.051L

Torm(zi = %) = tornu(NOT) +tpu(NAND — 3) + ty p(NAND — 4)
Tpru(zi = z;)) = 0.02+40.038 x 2+ 0.09 + 0.039 x 1+ 0.10 + 0.037L
Toru(z; = z;)) = 0.325+0.037L

However, the delay of the path connecting the carry input to the carry output is also important
for carry ripple adders. This path has a worst case delay:

tpa(NAND — 2) + t,u,(NAND — 3)
0.05 + 0.038 + 0.09 + 0.039L

0.18 4 0.039L

tpar(NAND — 2) + t,. i (NAND — 3)
0.08 + 0.027 + 0.07 + 0.038L

0.18 + 0.038L

The number of equivalent gates is:

gate type | number of gates | equivalent gates
NOT 3 3x1=3
NAND-3 5 5% 2=10
NAND-2 3 3x 1=3
NAND-4 1 1x2=2
Total 18

(b) using HA (Fig. 10.3(b) of the textbook)
The critical path for this circuit has 3 gates: XOR-2, AND-2 and OR-2. The path connects the
input z; (or y;) and output ¢; 1. The propagation delay of this path is obtained as:

Tpar(zi = civ1) = tpan(XOR —2) +tyur(AND —2) + tpu(OR — 2)
Tpur(zi = ciy1) = 0.340.021 x 3+ 0.16 4+ 0.017 + 0.2 + 0.019L
Tpur(zi = ciy1) = 0.74+40.019L

Tora(zi = civ1) = tpra(XOR—2) +t,pun(AND —2) 4+ tprg(OR — 2)
Tyru (@i — civ1) = 0.3+ 0.036 x 3 + 0.15 + 0.037 + 0.12 + 0.037L
Tpru(zi = ciy1) = 0.7240.037L

The number of equivalent gates is:

190

Solutions Manual - Introduction to Digital Design - September 24, 2003

gate type

number of gates

equivalent gates

XOR-2
AND-2
OR-2

2
2
1

2x 3 =6
2% 2=4
1x 2=2

Total

12

(c) using XOR and NAND gates (Fig. 10.3(c) of the textbook)

As the NAND gates have smaller propagation delays than XOR gates, the critical path for
this circuit is through the 2 XOR gates. The path connects the input z; (or y;) and output z;.
Observe that when the first XOR gate is connected to the input with higher load factor of the
second XOR gate, the delay of the second XOR gate is reduced. So, two cases must be considered.
The propagation delay of this path is obtained as:

tor(XOR — 2) + t,1 5 (XOR — 2)
maz(0.3 + 0.036 x 3+ 0.16 + 0.036L, 0.3 + 0.036 x 2.1 + 0.3 + 0.036L)
maz(0.568 + 0.036L, 0.6756 + 0.036L)

0.68 + 0.036L

tor (XOR — 2) + tpi(XOR — 2)

maxz(0.3 + 0.036 x 3+ 0.15 + 0.020L, 0.3 4+ 0.036 x 2.1 + 0.3 + 0.021L)
maz(0.558 + 0.02L, 0.6756 + 0.021L)

0.68 + 0.021L

The carry output propagation delay is:

tpur(NAND —2) + t,.y(NAND — 2)
0.08 4 0.027 4 0.05 4 0.038 x L

0.16 + 0.038L

tpa(NAND —2) + tyu(NAND — 2)
0.05 4 0.038 + 0.08 + 0.027L

0.17 4 0.027L

Toru(ci — it

(ci)
rr(ci — ciy1)
ru(ci — ciy1)

)
)
)

(]
aL(c = cit1
aL(c = cip1
Tprr(ci = ciq1

Tp
Ip
Tp
Ip

The number of equivalent gates is:

This last implementation is the one with the least number of gates. It also has less propagation

gate type | number of gates | equivalent gates
XOR-2 2 2x 3 =6
AND-2 3 3x 1=3
Total 9

delay for the carry than case (a).

Solutions Manual - Introduction to Digital Design - September 24, 2003 191

Exercise 10.3 The BCD to Excess-3 converter using 4-bit binary adder is shown in Figure 10.1.

BCD
code 0011
not used Binary , 0
—jcout Adder cinf—-

Excess-3
Code

Figure 10.1: BCD to Excess-3 converter - Exercise 10.3

192 Solutions Manual - Introduction to Digital Design - September 24, 2003

Exercise 10.7

Input: A, B €{0,1,2,3} and C;, € {0,1}
Output: Z € {0,1,2,3} and C,,; € {0,1}
Function:

Z = (A+B+Cji,) mod4

{ 1 if (A+B+Cy) >4

Cour = 0 otherwise

A function table is shown in Table 10.1.
The Kmaps for the cases c¢;;, = 0 and ¢;;, = 1 are shown next:

cin =20
bo bo bo
olofo]o 0|o|@] o[\ [/] o
oo |m)oll, 0 @] o (W], ™ol
ao@@’jﬁo o @) o " a/ﬂooh\o
oo N Ao o [o ol o

Clout: b1 21t b1 2p: by

193

Solutions Manual - Introduction to Digital Design - September 24, 2003

Outputs

Cout | 21

20

Inputs

bo

(10|b1

Cin | ai

10
11

12
13
14
15
16
17
18
19
20
21

22
23
24
25
26

27
28
29
30
31

Table 10.1: Function table of a 2-bit adder

194

Solutions Manual - Introduction to Digital Design - September 24, 2003

cin =1
bo bo bo
olo]1)o o1 o|® oo\
00{\1\% QQ)OO@Q 0(}0@0
e QD alO\L)/O
0o N\ V/ W of)o 0|01
Clout: b1 21: b1 20: by

The following logic expressions are obtained from the K-maps.

Cout = (a1b1 + aragbg + aoblbo)cgn + (a161 + agby + a1bg + b1by + alao)cm

21 = (bibpa) + dlajbr + araghiby + a’agb by + arapb) + a1biby)ch,
+(a'1a6b1b6 + a1a6b’156 + a1biby + ajapby + a'laob'l + a'lb'lbo)cm
20 = (agbo + aghy)ch, + (apby + ahby)cin,

Using boolean algebra we reduce the expressions to:

Cout

20

= a1b1 + aoblbo + a1a0b0
~+ cinb1bo + cinaobi + cinaiag + cinaibg

= a'1a6b1b6 + alla()bllb() + a1agbi1by + alaf)b'lbf)
+ Cinallbllbo + Cinalla()bll ~+ cinai1agbt + cirnarbiby
+ cinaiaghy + cipaybibg + cipaibi by + cipaiagh

1B ! / / !
= cinapby + cinaobo + c;,a0by + ¢ a0bo

From the equations, we count 26 NAND gates, with a maximum fan-in of 12 inputs. We assume
that NOT gates are used to obtain the complement of the input variables, so 5 NOT gates are also
used in the network. The network has one level of NOT gates, and two levels of NAND gates.
Internally, all NAND gates in the intermediate level are connected to only one input of the next
level, all loads are 1. The loads of the input signals and their complements (generated by the NOT

gates) are:

Signal | Load
a1 11
a} 6
b1 11

A 6
ag 11
ajg 6
bo 11

0 6
c 11
d 6

Solutions Manual - Introduction to Digital Design - September 24, 2003 195

Exercise 10.11:
Fixed-point number representation: (zgr5z4.23T2%1%¢)
(a) Sign-and-magnitude: the most significant bit corresponds to the sign

6 _
Tmar = 0111111 = =y = 3.9375
—(26 -1
Tmin = 1111111 — % = —3.9375
(b) Two’s Complement
261
Tmar = 0111111 = =~ = 3.9375
—27 4 26
Tmin = 100.0000 — Tj — 40
(c) One’s Complement
6 _
Tmar = O1L1111 — = — = 3.9375
—(27—1) 4+ 26
Tmin = 100.0000 — —@-D+2 —3.9375

24

196 Solutions Manual - Introduction to Digital Design - September 24, 2003

Exercise 10.13:

(a) to show that the addition in one’s complement can be performed by two steps let us consider
two numbers z and y represented by zgr = z mod C and yg = y mod C, where C' = 2" — 1. We
want to obtain sp = wg mod C, where wgp = xr + yg is the result of the addition, represented by
the vector wg = {wp, wp—1,...,wi,wp). The most significant bit of wg is the carry out bit of the
n—bit addition performed with £z and yg. Since zr,yr < C, wr < 2C. We must consider the
following 3 cases:

1. If wg < C then wg mod C = wg and w, =0
2. If wg = C then wg mod C =0 and w, =0
3. If 2C > wg > C then wgmod C =wg — C=wgr — 2"+ 1 and w, =1

Consequently, if w, = 0, the result is equal to wg, and if w, = 1 the result is obtained discarding
wy, (subtracting 2") and adding 1. Note that case (2) produces a result vector (1,1,...,1), which
is correct since this is another representation of 0 in the one’s complement system.

(b) To verify that the operation of the adder with the carry output connected to the carry-in
is combinational we consider the following cases:

e there is a combination 00 or 11 for one particular bit position. In that case the carry chain
is broken by this combination. No active loop.

e there is no combination 00 or 11, that means, all bit positions have the combination 01. In
that case, there is an active loop. To have a stable result all carries have to be reset to zero
before the operation starts.

Figure 10.2 shows examples of both cases.

Some position with 00 or 11 All positions with 01 or 10

011011010 cout 1 =cin
100110101 011001010
PPPPEPPPP 100110101 *
- 1111111110
[1 _
spureous carry! ‘
. P C 0
carry bit —"011001010
100110101
0111101111
carry chain carry chain

no active loop

Figure 10.2: Example of carry chains for One’s complement adder - Exercise 10.13 (part b)

active loop

Solutions Manual - Introduction to Digital Design - September 24, 2003 197

Exercise 10.15: Consider the following table for the most significant bits of the operands a,_1
and b,_1 and the sum bit s,,_1, during the addition of n-bit two’s complement operands a and b.:

Ovf

S
7
—
=
i
-
»
i
-
o
S
o
i
—

e el i =A== == N en]
= —_ 0 O == OO
_ O RO, OO
—_ O O O = O
=00 M= O OO
2
o]

From the table one can see that the overflow cases are related to the cases when ¢, ®c,_1 = 1.

For the one’s complement system the test doesn’t work properly in the case of adding (—0) +
(—2"~1 4+ 1), which corresponds to the addition of the vectors (111...11) and (100...00). If the
addition is performed in two stages (no end-around-carry), the first stage will generate ¢, = 1 and
cn—1 = 0, detecting an overflow condition that does not exist.

198 Solutions Manual - Introduction to Digital Design - September 24, 2003

Exercise 10.17: A 4-bit ALU for ADD and NAND operations is shown in Figure 10.3. A
carry-ripple adder was implemented. By the use of a multiplexer, the output of the adder, or the
NAND gate is selected as circuit output.

xi yi

x3 y3 x2 y2 x1 yl x0 y0

cin

cout

M M M M

e el B el

i | ' | ' T an
i ADD/NAND 23 ” 2 Lo FADD/NAND

Figure 10.3: 4-bit ALU for ADD/NAND

Solutions Manual - Introduction to Digital Design - September 24, 2003 199

Exercise 10.19: Figure 10.4 shows the iterative structure to be designed. Each cell has one
bit of each of the operands (a; and b;), one carry-in (CIN), and one carry-out (COUT). These
carries have three values: Equal, Greater, and Smaller. The comparator output is obtained from
the carry-out of the last cell. The high-level description of the cell is:

CIN if a; = bi
COUT ={ GREATER if ((a; > b;) and CIN = EQUAL) or (CIN = GREATER)
SMALLER if ((a; < b;) and CIN = EQUAL) or (CIN = SMALLER)

with the initial condition CIN = EQU AL (applied to the leftmost cell).

ap1 bpg ap by ag by
0 — & Iterative 8 [—> ©®oe —> .S Iterative g > S lterative 8 " COMPARATOR
> : = = . N . 3
£ Bit < & Bit < E Bit < OUTPUT
0 ——5| SComparator g I eee | SComparator g »| SComparator g I

Figure 10.4: Iterative network to compare two numbers - Exercise 10.19

Considering the following encoding;:

Condition | Code
EQUAL 00
SMALLER | 01
GREATER | 10

the implementation of each module is done as a combinational circuit that has the following switch-
ing function table:

aibiCINlchO COUTlCOUTO
0000 00
0001 01
0010 10
0011 -
0100 01
0101 01
0110 10
0111 -
1000 10
1001 01
1010 10
1011 -
1100 -
1101 -
1110 -
1111 -

200 Solutions Manual - Introduction to Digital Design - September 24, 2003

Observe that the code 11 is a don’t care condition.
Based on K-maps for each COUT; and COUT, we get the expressions:

coury, = CIN1+G¢CIN(’)
couTty = CIN()—i—bz'CIN{

These expressions are easily implemented by gate networks.

Solutions Manual - Introduction to Digital Design - September 24, 2003 201

Exercise 10.23: The values of the outputs of each module in the array multiplier is shown in
Figure 10.5.

C¢*0T oINSt

€2°0T 9S1OIOX

x_bit x_bit

sum_in y_bit } y_bit

b I

c_out # Half | Halt
Adder Adder | c_in
[OR {
sum_out sum_out
Module MH

x_bit

sum_in ybit (@)

N MF ol | MF o] | MF lo| | MF o| | MF lo] | MF Lol MF o] | MH
L | L
c_out /) 0 1 = 0 o / 11 0 1
77 = T G]] I : j
Adder | c_in [— 1T T T—t — Tt Tt T
! sum_ou) MF MF |, || ME ||| ME || | ME || | MF MF MH
Module MF R R BB BR PR]

Pr3 P2 P Pio

(b)

Py

P3

P2

Py

Po

¢0¢

([®}SI(] 03 uorgoNpoOIIUT - [eNURJ SUOIIN[OS

- uSIso

£00¢ ‘Fg Ioquoydog

Solutions Manual - Introduction to Digital Design - September 24, 2003 203

Exercise 10.24 The implementation of the 8 x4-bit multiplier is shown in Figure 10.6.

y6 5 y4 y3 y2 yl yo
y7 y6 yS y4 : : y3 y2 l 0 : : : : :
L1 || “
a3 a2 al a0 b3 b2 bl b0 a3 a2 al a0 b3 b2 bl b(}n 0
cout 4-bit Binary adder cinp——jcout 4-bit Binary adder o
s3 s2 sl s0 s3 s2 sl s0
y7 y6 y5 y4 3 y2 yl y0
|| I I >
a3 a2 al a0 b3 b2 bl b0 a3 a2 al a0 b3 b2 bl b0, 0
cout 4 bit Binary ; adder cir cout 4-bit Binary adder =
s3 52 sl s0
y7 y6 y5 y4 y3 y2 I yO
I || .
a3 a2 al a0 b3 b2 bl b0 a3 a2 al a0 b3 b2 bl bO
cout 4-bit Binary adder cin_feout 4 bit Bmary adder —0
s3 s2 sl s0
zll z10 29 z8 72 zl 70

Figure 10.6: 8x4-bit multiplier - Exercise 10.24

