215

Chapter 11

Exercise 11.1 The register requires the load (LD), clear (CLR), and data inputs that are not
available in the SR flip flop. We need to design a combinational network to generate the correct
SR inputs as shown in the next table:

LD CLR

e e == =]]
=0 O = =O
Ok O = O
O = O O O O O on
RO, OR R~ OHT

From the table we obtain:
S =z.LD.CLR'

CLR
o]
X‘O\L

R: LD

D

0

NE

R=CLR+LD.K

The circuit for the 4-bit register using SR flip flops is shown in Figure 11.1.

x3
__ M — M —a3

X = [x2
K- P & B oM a2

: R i

: 5 x1

x0
CKLD M —q0

CLR

Figure 11.1: 4-bit register using SR flip flops - Exercise 11.1

216 Solutions Manual - Introduction to Digital Design - September 24, 2003

Exercise 11.3

Bit-serial arithmetic for addition/subtraction of 16-bit operands in two’s complement form. The
network for this exercise is shown in Figure 11.2. The two serial inputs ¢ and b are added/subtracted
generating the result s, from least-significant to most-significant bit. When subtraction is requested,
a carry in of 1 in the first clock cycle is applied to the Full-Adder, together with the complementation
of all bits of b. When the 16" bit of the number is being computed, the signal last_bit is 1. Observe
that the serial hardware may compute a different number of bits only changing the counter design.

b
a 16}
*16 1 pareillel input |— Load
Load — parallel input 1 shift 8- g— CK
CK —> shift reg. L [
| Shift
Shift
K — Modulo-16 | i
CLR counter cout FA
4
1
HD Q)
CK —p
—1 shift reg.
subtract —! parallel out[gut J— CK
zero 16\1\ l
Shift
S
\
last_bit

Figure 11.2: Serial addition - Exercise 11.3

Solutions Manual - Introduction to Digital Design - September 24, 2003 217

KO|KI|K2|K3]|z |y]|S;]|ciy1 |shift reg. | FF | 2" adder input | Internal carry | z
(K1+ K2)FF | (serial adder)
1 0 0 0 |1]0]|1 0 0000 0 0 0 0
0 1 0 0 |01 1 0 1000 0 0 0 0
0 0 1 0 |01 1 0 1100 0 0 0 0
0 0 0 1 |1]0]1 0 1110 0 0 0 0
1 0 0 0 |0]1]1 0 1111 1 0 0 1
0 1 0 0 |[1]0]1 0 1111 1 1 1 0
0 0 1 0 |1]0]|1 0 1111 1 1 1 1
0 0 0 1 1]0(0]0 0 1111 1 0 1 0
1 0 0 0 0|0 O 0 0111 0 0 1 0
0 1 0 0 0|0 O 0 0011 0 0 1 0
0 0 1 0 0|0 O 0 0001 0 0 1 0
0 0 0 1 1]0(0]0 0 0000 0 0 0 1
1 0 0 0 0|0 O 0 0000 0 0 0 0

Table 11.1: Circuit behavior - Exercise 11.5

Exercise 11.5: (a) Consider the information provided in Table 11.1, which presents the network
operation for the inputs £ = 01101001 and y = 00010110:

Observe that a new digit begins when Ky = 1. There is a delay of 4 cycles between the input
digits and the output digit. The result of the operation is 85 in decimal. It is correct since z = 69
and y = 16.

(b) The output of the first serial adder is the radix-2 sum of the z and y bit strings. Consider
a group of four bits corresponding to one decimal digit of and y. These bits are applied at the
input of the adder from least significant to most significant at clock cycles when Ky, K;, Ks, and
K3 are active. Consequently, at the time K3 is active, the sum is (cq, 83, S2, 81, S0), as indicated
below:

T3 T2 T1 Xo

+ Y3 Y2 Y1 Yo
C4 83 S22 S1 S0

Bits (s9, s1, 0) are inside the shifter, s3 and ¢4 are outputs of the first adder. Since the result
should be in BCD (radix-10) it is necessary to correct it whenever it is larger than 9. That is:

s if s <9

s—10 if s > 10 (11.1)

z=smod 10 = {
where s = 16¢c4 + E?:o 5;2'. Consequently, it is necessary to detect whether the addition of 2
decimal digits is greater than 9 and then subtract 10 form the result.
Moreover, the carry to be used for the next digit is

1 ifs>10
Cout—{ 0 ifs<9 (11.2)

which can be written as

(11.3)

o _[1 if(s>16) or (10<s<16)
ut =1 () otherwise

218 Solutions Manual - Introduction to Digital Design - September 24, 2003

As BCD digits come in groups of 4 bits, the detection of greater or equal to 10 condition as
presented in Equation 11.3 corresponds to the following expression:

G=c+ 53(82 + 81)

This detection is implemented in the combinational network connected to the outputs of the first
adder and the shift register. The value of G is stored in the FF only when K3 = 1. In any other
cycle the value in the FF doesn’t change (function performed by the FF and MUX circuit).

For the subtraction of 10 (when the addition of the two BCD digits are larger than 9), since
binary adders add modulo-16 instead, the following equation must be considered:

s —10 = (s +6) mod 16

This addition of 6 is performed using the second binary adder. Since the binary representation
of 6 is 0110, it’s necessary to add 1 in two consecutive cycles. The least significant bit of the first
addition reaches the second adder when Kj is active, if the addition of 6 is necessary, the input of
the second adder must have a 1 during the cycles when K; or K, are active.

Note that when the least significant bits of another pair of BCD digits come into the first adder,
the least significant bit of the addition of the previous pair is at the input of the second serial adder.

The analysis finishes when we consider the carry bits of the BCD addition. When the sum
value of the digits of z and y is a value greater than 15, the carry bit is stored in the first adder,
to be used with the next BCD digits. When the value is in the range 10 to 15, the correction step
(addition of 6) executed in the second adder generates a carry which is stored in the second adder
for the next sum value which is the contents of the shifter.

The timing diagram is shown in Figure 11.3.

Solutions Manual - Introduction to Digital Design - September 24, 2003

CK

KO

K1

K2

K3

si

Ci+l

shift reg

1000

110040110 #1011 1101 §111040111 41011 J0101 §0010] 0001

0000

0000

FF in

FF out

Figure 11.3: Timing diagram for Exercise 11.5

219

220 Solutions Manual - Introduction to Digital Design - September 24, 2003

Exercise 11.7:

(a) The implementation of the serial change of sign module (complementer) for a 32-bit number
in two’s complement system is shown in Figure 11.4. After the clear signal the counter is in state
0 and the NOR gate connected to its output forces a 1 input into the half-adder (HA). The other
input of the HA is connected to the complemented serial output of the shift register. The bits are
shifted out least-significant bit first and stored back into the same register. The carry bit of each
bit addition is delayed and inserted back into the HA, as done in serial addition.

clear _ICLR 14 13 12 11 10
complement —|CNT Mod-32 Counter TC[— Done

CK—P 1p g4 3 q2 ql q0

0

X
32
:|>In Shift Register Oull—\
CK ¥

HA

CK —{FF]

Figure 11.4: Serial change of sign (two’s complement system) - Exercise 11.7

(b) When the adder receives two bits each clock cycle, it is necessary to use two shift registers.
One stores the bits of X in even positions, Xeyen = (230, Z28, - - - , 2, Zg)- The other stores the bits
in odd positions, X,qq = (£31,%29,...,23,21). The output is stored back into the registers with
the same organization. Two HAs with extra logic are used to increment X’. Since 2 bits per clock
cycle are processed, a modulo-16 counter is enough. This design is shown in Figure 11.5.

Solutions Manual - Introduction to Digital Design - September 24, 2003

clear

CLR I3 12 11 10
CNT Mod-16 Counter TC

LD g3 g2 ql q0

— Done

complement —
X even CK —>
J o
X CK _>Irl Shift Register out
32 X odd SZ
} o
CK _>In Shift Register Om_¥
HA |- HA
CK
Figure 11.5: Serial complementer (two’s complement system) - Exercise 11.7

221

222 Solutions Manual - Introduction to Digital Design - September 24, 2003

Exercise 11.9: The design is presented in Figure 11.6. A modulo-m divider is implemented
by a counter that loads the value 16 — m every time TC is 1. In two’s complement system, the
computation of 16 —m results in —m. The value of —m is obtained from m by bit complementation
(Compl module) and addition of 1. Another option is to use 15 — m as a loading value and load
the counter with this value when it reaches the state 14. Such operation corresponds to the one’s
complement of m and it is obtained by simple bit complementation (no incrementer).

=

‘ Incrementer ‘

1 Modulo-16 LOAD)
CK. counter TC X z
Q3 Q2 Ql Q0
13 12 I1 10
1 CNT Modulo-16 LOAD
CK counter TC z
Q3 Q2 Ql Q0
J< J< state 14
(a) (b)

Figure 11.6: Programmable modulo-m divider - Exercise 11.9

Solutions Manual - Introduction to Digital Design - September 24, 2003 223

Exercise 11.10: The solution for this exercise is shown in Figure 11.7. The network computes
the next state adding one to the present state value when the value is less than 9, or adding 7 to
the present state when it reaches 9 (forcing the counter to go back to state 0). Using high-level
specification we have:

s(t)_{ s(t) +1 if s(t) <9
] () +7) mod16 =0 ifs(t)=9

l A A 4 A 4
CK —F Register |

0 1

A4 A 4 A4 \ 4 |

- Binary ADDER < 0

Figure 11.7: BCD counter - Exercise 11.10

224 Solutions Manual - Introduction to Digital Design - September 24, 2003

Exercise 11.11: Using a modulo-16 binary counter with parallel inputs

(c) The state diagram is shown in Figure 11.8, with notes associated to the transitions for which
the counter must be loaded. From the diagram we obtain the condition for loading on a Kmap as
follows:

Qo
ofofo]o
0@l-)-

Q2
o100
o lo|®

Q1

that results in the minimal expression:

LOAD = (Q3Q5Q1Q0 + Q5Q2Q0)x

counter loads
the value

counter loads
the value

Figure 11.8: State diagram for Exercise 11.11(c)

We use the fact that LOAD overides CNT input to define:
CNT ==x

Considering the inputs I; as d.c.s for the cases when LOAD = 0 and the appropriate next state
value for when LOAD = 1, and using Kmaps we obtain the expressions:

I = 1
I, = 0

The network for this system is shown in Figure 11.9.

Solutions Manual - Introduction to Digital Design - September 24, 2003 225

1 QL 0

hall

clear —JCLR 3121110

x CNT Mod-16 Counter TC[X
CK—P 1p q3 g2 ql q0
03 Q1 QO
Q2 ,
P — Q2 Q2
W5 B o &
Q33— LOAD
Q2—
Q0

Figure 11.9: Network for Exercise 11.11(c)

226 Solutions Manual - Introduction to Digital Design - September 24, 2003

Exercise 11.13:

Assuming that the module-16 counter has only up-counting feature, the down-counting must
be implemented by loading the next state and a zero must be loaded when up-counting and the
counter state (count) is 10.

The LOAD signal is expressed as:

1 if (countup and count = 10) or countdown

LOAD = { 0 otherwise

The value to be loaded is:

1—1 if countdown and count # 0
) (10)10 if countdown and count =0
10 if countup and count = (10)19
don’t care otherwise

Representing the parallel input ¢ by a vector I = (I3, I, I, Iy) and the count state by a vector
Q = (Q3,Q2,Q1,Qo), the following expression is obtained:

LOAD = countup.Q3.Q1 + countdown

Lets first consider the values to be loaded when counting down.

Q=(Q3,Q2,Q1,Q0) | I = 3,1, 11, 1)
0000 1010
0001 0000
0010 0001
0011 0010
0100 0011
0101 0100
0110 0101
0111 0110
1000 0111
1001 1000
1010 1001
1011 ---
1100 ----
1101 ----
1110 ----
1111 -—-

Qo Qo
(1) ofo]o ofofo
o[ololol,, [T,

C23 o N I\- 4;/ 623 \l/ ol -
13: Ql IQ: Ql

Solutions Manual - Introduction to Digital Design - September 24, 2003 227

I3 = (Q3Q2Q1Q) + Q@3 + Q1Q3).countdown
I = (Q2Qo + Q2Q1 + Q3Q7Qy) .countdown

Qo Qo
Yo|1)o olo]of1)
1fop1¢fo0 INO]O

(2 Q2
Q3 Q3
oo o[-\
Ill Ql I(): Ql

I = (Q1Q4 + Q1Qo).countdown

Ip = (Q2Q4 + Q3Q) + Q1Qp)-countdown

Since when countup = 1 we must have countdown = 0, the value loaded when counting up (at
state count = 10) is I = 0, which is correct.

The network that implements the counter is shown in Figure 11.10. Black boxes were used to
represent the gate networks that implement I3, Is, I, and Ij.

countdown

Q

4 4 4 4

\A \A] \A Yy
CC4 CC3 cC2 CC1

A v A

13 12 11 10

CLEAR clr
CNT Modulo-16 counter
CK > L Q3 Q2 QI QO
countdown \ A A A)
4
Q3] LOAD

countup where CCi means

combinational circuit
for function I
1

Figure 11.10: Modulo-11 up/down counter - Exercise 11.13

228 Solutions Manual - Introduction to Digital Design - September 24, 2003

Exercise 11.15:
There is a mistake on Figure 11.32 of the textbook. The two counters should be configured as
shown in Figure 11.11.

¥4 z
C | | \DO
[]|
S3 S2 SI SO CLR S3 S2 S1 SO CLR
——ITC Module-16 ~ CNT] X —ITC Module-16 CNT] X
Counter | cik Counter | cix
I3 12 11 10 LD 13 12 11 10 LD
[[
1‘ l ‘0 1‘ (‘) ‘0

Figure 11.11: Frequency dividers for Exercise 11.15
The first counter has a load condition given as
LD =9

for which the value loaded is I = (Ss3,1,1,0), and z = S3. Looking at all possible present states we
are able to obtain the following state-transition and output table:

PS | NS | output (z)
0000 | 0110 0
0110 | 0111 0
0111 | 1000 0
1000 | 1110 1
1110 | 1111 1
1111 | 0000 1

This counter implements a modulo-6 frequency divider, with 50%-duty-cycle frequency.
The second counter has LD = S}, z = S3, and I = (S3,1,0,0). The state-transition and output
table for this case is:

PS NS | z
0000 | 0100 | O
0100 | 0101 | O
0101 | 0110 | O
0110 | 0111 | O
0111 | 1000 | O
1000 | 1100 | 1
1100 | 1101 | 1
1101 | 1110 | 1
1110 | 1111 | 1
1111 | 0000 | 1

This counter implements a modulo-10 frequency divider, with 50%-duty-cycle frequency.
The timing diagram for both cases is shown in Figure 11.12.

Solutions Manual - Introduction to Digital Design - September 24, 2003 229

first “ ‘ ‘ ’7

counter

z
secon(ﬁ ‘

counter

Figure 11.12: Timing digram for counters in Exercise 11.15

230 Solutions Manual - Introduction to Digital Design - September 24, 2003

Exercise 11.17:
From the network in Figure 11.33 of the text we get the following expressions for timing behavior:

z(t+1) = [z(t) + COUNT(t)] mod 256
COUNT(t+1) = [COUNT(t)+ 1] mod 256

with the initial condition COUNT(0) = ¢y we get the solution for the second recurrence as:
COUNT(t) = (t + cp) mod 256
The first recurrence equation is transformed to:
z(t+1) = [z(t) + ((t + co) mod 256)] mod 256 = [2(t) + t + ¢g] mod 256

To find a solution for the first recurrence, let us evaluate a few terms, considering the initial
condition z(0) = zp:

z(1) = (z0+ 0+ cp) mod 256
2(2) = ((z20+04c¢o)+1+cp) mod 256 = (29 + 1+ 2¢g) mod 256
Then the general solution is:

t—1
z(t) = (z0 + Zz + tep) mod 256 = (29 + (¢t — 1)t/2 + tcp) mod 256
=0

For zyp = 0 and ¢y = 0 we get:

2(10) = (%-10) mod 256 = 45

Solutions Manual - Introduction to Digital Design - September 24, 2003 231

Exercise 11.19:

We use up-counting for (s(¢)+1) mod 10 function. Since the counter is module-16, it is necessary
to detect when the counter state is 9 and load a 0. Similarly, the count-down feature is used for
(s(t) — 1) mod 8. For this case the value 7 has to be loaded whenever the counter state is 0, and
the value 0 is loaded whenever the count is 9 (since (9 — 1) mod 8 = 0). Consequently, if LOAD
overrides the count signals, we get:

)1 if(z=1)

Count = up = { 0 otherwise (11.4)
1 if(z=2)
Count — down = { 0 otherwise (11.5)
LOAD — 1 if ((z :.1 or z =2) and s(t) =9) or (z =2 and s(t) =0) (11.6)
0 otherwise
The value to be loaded is

0 if s(t) =9

i=4 7 if s(t) =0 (11.7)

don’t care otherwise

For the binary implementation it is necessary to encode z into binary variables. We choose a binary
enconding such that x = 2z + zo. This results in

Count—up = x
Count —down = m
LOAD = Q3Qo(z1+ z0) + 21Q3Q5Q1Q%
Iz = 0

L, = L =I)=Q}

The corresponding network is presented in Figure 11.13.

o<}— @3
clear 0
Q3 —
Q0
x1 X y v
Q3 I DOWN I3 12 11 10
Q0 CK Modulo-16
x0 CK Counter
Q3 — UPLD Q3 Q2 QI QO
Q2
QI'—
Q0
x1

Q3 Q2 Q1 QO

Figure 11.13: Exercise 11.19

232 Solutions Manual - Introduction to Digital Design - September 24, 2003

Exercise 11.20:

The state diagram is shown in Figure 11.14. The state names represent even number of 1s (with
an “e” subscript) and odd number of 1s (with an “0” subscript). From the diagram we obtain the
following expressions for the counter control inputs:

CNT = A +B.x+Cyz+ D,z + Ay’ + Box + Coz + Doz
LOAD = CNT'

0/

when the output is not shown
2 or 3 can be used as output

Figure 11.14: State diagram - Exercise 11.20

Consider the following state codes:

State | code
A, 0
B, 1
Ce 6
D, 3
A, 4
B, 5
C, 2
D, 7

The expressions for the parallel inputs, outputs and CNT are obtained from Kmaps:

L = Q2Q0+Q5Q = (Q29 Qo)

I = 0

In = Q1+Qo

z0 = Q2

21 = 2+ Q1+ Q)

CNT = zQo+zQ1 +2'Q1Q%

Solutions Manual - Introduction to Digital Design - September 24, 2003

The network for this system is shown in Figure 11.15.

Qo0
Ql

X —
Q0 —
X —

Ql —

). G
Ql" —
QU —

Figure 11.15: Network for Exercise 11.20

)P

L]
—ICLR 1312 11 10
CNT Mod-16 Counter TC
CK—Pip 93q2ql q
L

233

234 Solutions Manual - Introduction to Digital Design - September 24, 2003

Exercise 11.23: Using two modulo-16 binary counters we implement cascade and parallel
counters for the cases:

(a) a cascade implementation of a modulo-23 counter is shown in Figure 11.16. The state 22,
@ = 10110 is detected and the counter is loaded with the value 0.

0000 0000
. S L]
I 1T T T I T T 1
clear_| rer B2 110 [jow 31211 10
CNT Mod-16 Counter TC[X X —|CNT Mod-16 Counter TC
CK—P ip g3q2ql q CK—P ip g3q2ql q
Q4 |1
=» -
Q1
Q4 Q3 Q2 Q1 QO

Figure 11.16: Cascade implementation of modulo-23 counter - Exercise 11.23(a)

The parallel implementation of the same counter uses a modulo-8 and a modulo-3 counter that
together form a modulo-24 parallel counter. The counting sequence, considering T = (T17Tp) as the
output of the modulo-3 counter and E = (E2E1 Ey) as the output of the modulo-8 counter is given
by the following table:

state T1 TO E2 E1 EO

0 00 000
1 01 001
2 10 010
3 00 011
4 01 100
) 10 101
6 00 110
7 01 111
8 10 000

9 00 001
10 01 010

11 10 011
12 00 100
13 01 101
14 10 110
15 00 111
16 01 000
17 10 001
18 00 010
19 01 011
20 10 100
21 00 101
22 01 110
23 10 111

The state code is given by the two counters’ output, (T, E). For simplicity we represent the
state code using decimal numbers. To modify this modulo-24 counter to a modulo-23 counter, state

Solutions Manual - Introduction to Digital Design - September 24, 2003 235

22 is detected, which is represented by the code (1,6), and the state 0, coded as (0,0) is loaded, as
shown in Figure 11.17.

0 0 0 0 modulo-8

A— 11{{C.QEmter

CNT Mod-16 Counter TC
CK=SP b g3 q2ql q

clear —CLR BRI |
X T |°NT Mod-16 Counter TCﬁ(
T1 — CK §>LD 93 g2 ql q0 |
e) IC | | i
El } E2 E1 EO
EO—d___/ | | | = TUTTTTTTTTTTmmmmmmmTmmmmmomeeees
________________ ?T(io| modulo-3
: 1 counter
—CLR BRI |
=X

Figure 11.17: Parallel implementation of modulo-23 counter - Exercise 11.23(a)

(b) an 11-t0-29 counter. A total of 19 states are needed. The cascade implementation of this
counter is shown in Figure 11.18. Observe that state 29 (11101) is detected and generates a load
signal. The value loaded corresponds to state 11 (1011).

0000 1011
. L1]|]|
I I | | I .
clear —l—CLR 1312 11 10 I—CLR I3 12 11 10
CNT Mod-16 Counter TC —X X —|CNT Mod-16 Counter TC
CK—P1p 3q2ql q CK—P 1p a3q2qlq
Q4]
Q3 TC
Q2
Q0 4
detects Q Q3 Q2Q1Q0
state 29

Figure 11.18: Cascade implementation of a 11-t0-29 counter - Exercise 11.23(b)

The parallel implementation of this counter uses a modulo-30 parallel counter that is obtained
combining a modulo-5 and a modulo-6 counter. The state sequence, assuming that the state is
composed by (E,T'), where E = (E9E1 Ey) is the state of the modulo-5 counter and T = (T571Tp)
is the state code of the modulo-6 counter, is presented (in decimal) in the following table:

236 Solutions Manual - Introduction to Digital Design - September 24, 2003

state | £ T || state | E T
0 0 0 15 0 3
1 1 1 16 1 4
2 2 2 17 2 5
3 3 3 18 3 0
4 4 4 19 4 1
5 0 5 20 0 2
6 1 0 21 1 3
7 2 1 22 2 4
8 3 2 23 3 5
9 4 3 24 4 0
10 0 4 25 0 1
11 1 5 26 1 2
12 2 0 27 2 3
13 3 1 28 3 4
14 4 2 29 4 5

Thus, to obtain the 11-t0-29 counter we need to detect state 29 (4,5) and load state 11 (1,5).
The network is shown in Figure 11.19.

modulo-5
....................... fTTcounte
clear CLR 3121110
x CNT Mod-16 Counter TC[—
ECK_> LD g3 g2 ql q0
E2lE1 o0

0 0 modulo-6
e l _______ lcoume

CLR I3 12 11 10 :
' CNT Mod-16 Counter TC[|
CK—P b g3 q2ql q0 '
' T2|T1 TO

E2

Figure 11.19: Parallel implementation of a 11-to-29 counter - Exercise 11.23(b)

(c) a frequency divider by 27

For the cascade implementation, the state (11010) is detected and the value 0 is loaded as the
next state. The same load signal (TC) is the output of the frequency divider. The network is shown
in Figure 11.20.

The parallel implementation makes use of a modulo-4 and a modulo-7 counter to obtain a
modulo-28 counter. The state code is represented by two components (E,T), where E = (E1 Ey)
is the state code for the modulo-4 counter and T = (T571T)) is the state code of the modulo-7
counter. When state 26 (2,5) is reached, both counters are loaded with the initial state 0. The

Solutions Manual - Introduction to Digital Design - September 24, 2003 237

0000 0000
. S R [1|
clear | | e 1|3 Bl IIO L jerw 1|3 Bl IIO
—|CNT Mod-16 Counter TC[~X X —|CNT Mod-16 Counter TC
CK—P 1p a3q2ql q0 CK—P 1p a3 q2ql q0
N NR
QI
Q4 Q3Q2Q1Q0
detects
state 26

Figure 11.20: Cascade implementation of a frequency divider by 27 - Exercise 11.23(c)

network shown in Figure 11.21 shows the parallel implementation of this frequency divider. The
circuit output corresponds to the load signal (TC).

modulo-7
....................... F..i)...i’...(i......gqy.@!?r
C)l(eal CIR 312110 E
: CNT Mod-16 Counter TC[
CK—P b g3 q2ql q0
| T2 T1| TO

0000

CLR 3121110

CNT Mod-16 Counter TC[—
CK—P 1p

R g3 g2 ql q0
EO’El _\ TC | | |E1|E0

,T2 —
Tl TO——/ > 7

Figure 11.21: Parallel implementation of a frequency divider by 27 - Exercise 11.23(c)

238 Solutions Manual - Introduction to Digital Design - September 24, 2003

Exercise 11.25:

The counter shown in Figure 11.37 of the text is a mod-24 parallel counter composed of a
modulo-3 counter and a modulo-8 counter (twisted-tail counter). It has the following sequence of
state values:

modulo-3 | modulo-8
R1GQo 90919293
00 0000
01 1000
10 1100
00 1110
01 1111
10 0111
00 0011
01 0001
10 0000
00 1000
01 1100
10 1110
00 1111
01 0111
10 0011
00 0001
01 0000
10 1000
00 1100
01 1110
10 1111
00 0111
01 0011
10 0001

Observe that the output z is 1 when QQ1Qoq0g1¢293 = 100001, that corresponds to the expression
z = Q1Q095g3, and is equivalent to a Terminal Count (TC) signal in a binary counter.

(a) a binary modulo-24 autonomous counter using T flip flops and gates is shown in Figure 11.22.
State 23 (10111) is detected by a network that implements the expression Soz = Q41Q2Q1Qq- Since
the next state from (10111) must be (00000), we need Ty =Ty = T5 = Ty = 1 and T3 = 0. The
values of Ty = T; = T, = 0 are already generated when the present state is (10111). The values
T4 =1 and T3 = 0 must be forced when S33 = 1. The implementation has fewer flip flops, more
gates and more connections than the implementation in Figure 11.37 of the text.

(b) a twisted-tail modulo-24 autonomous counter using D flip flops and gates is shown in
Figure 11.23. Twelve flip flops are needed, instead of the six flip-flops used in Figure 11.37 of the
text. However, no gates are required and besides the clock line, all interconnections can be made
very short. The TC condition is generated when the present state is (000000000001), and that is
the only state when we have a 0 preceding a 1 at the rightmost flip flop.

Solutions Manual - Introduction to Digital Design - September 24, 2003 239

>
ex—4

Figure 11.22: Modulo-24 autonomous counter - Exercise 11.25(a)

I—DQ D Q D Q D Q eee A5 o DZ
l— D— l—> D— l—> D— l—> Q:)— |—> Q:)—
CK

Figure 11.23: Twisted-tail modulo-24 autonomous counter - Exercise 11.25(b)

240 Solutions Manual - Introduction to Digital Design - September 24, 2003

Exercise 11.27: The state diagram for the electronic lock is shown in Figure 11.24. Such a
state diagram is adequately implemented using a modulo-16 counter and a 16-input multiplexer.
In order to generate the required outputs, another counter is used to count the number of times the
buttons were pressed. This counter generates a signal EN D when the keys were pressed 12 times.
We assume that the outputs of the push buttons that generate the inputs are 1s for only one clock

Figure 11.24: State Diagram for the electronic lock - Exercise 11.27

period, each time the user press them. A network for this task is shown in Figure 11.25 together
with the network that implements the lock controller. When a correct sequence is inserted (state
is B4) the output z = 1 is generated, and the controller goes back to the initial state. When a
wrong sequence is inserted the RED output is activated by the condition B4’ - END (END =1
when 12 characters were inserted). The output GREEN is 1 when the controller is at state INIT.
The YELLOW is 1 while the sequence is being inserted, that means, the sequence started to be
inserted and the RED or z output were not generated yet. When z = 0 the top counter goes to
state 15 (ERROR), and the bottom one stays at state 12. Only a reset signal R will remove the
counters from these states, if the wrong sequence is inserted. When z = 1 both counters load the
value 0 and they are ready to start another operation.

Solutions Manual - Introduction to Digital Design - September 24, 2003

QW >

0
1
2
3
4
5
6
7
gMUX
9
10
1 o<}
12 [[[]
13 R —{CLR 13121110
14 CNT Mod-16 Counter TC[—
15 |
3210 cK LD g3 g2 ql 90
1 y
1
0000
R _fcir 1312 11 10
CNT Mod-16 Counter TC[
CK—P1p a3q2ql q
Z Bam

push button

cK+p Q

circuit used to obtain A, B, and C

RED

GREEN

YELLOW

Figure 11.25: Sequential Lock network - Exercise 11.27

241

