249

Chapter 12

Exercise 12.1:
The controller has 6 states, and we are going to use the one-flip-flop per state appoach for the
design. The inputs are:

Input condition
GO
A DIST > 10

B (DIST <10) and (COUNT = 3)
C | (DIST <10) and (COUNT # 3)

Calling the inputs of the flip flops for each state as N.S;, we generate the following expressions:

NSy = 5,.GO'
NS = 850.GO+ 53

NS, = §5,.C
NS3 = S+ 54
NS, = S;.A4

NS; = S51.B+ S5

These expressions are implemented in a PSA as shown in Figure ?7.

250 Solutions Manual - Introduction to Digital Design - September 24, 2003

T

AvAvivAVAVAV

R (U (R S D SR A o
AND Array NSo| NS1|NS2 [NS3 [NS4 [NS5

X - programmable connection CK + State Register |

® - connection made l

SO St S2 S3 S4 S5

Figure 12.1: PSA implementation of a controller - Exercise 12.1

Solutions Manual - Introduction to Digital Design - September 24, 2003 251

Exercise 12.3:

The number of address lines should be 4, since a BCD digit is the single input. The maximum
value to be stored in the ROM is 92 = 81, which requires [log281] = 7 bits to be represented in
binary. Thus, at least a 16 x 7 ROM is required to implement the function.

252 Solutions Manual - Introduction to Digital Design - September 24, 2003

Exercise 12.5:

For this implementation we need a 2'2 x 6 ROM. Twelve address lines receive the input bits
from a, b, and ¢ € {0,1,...,15}. Six bits are required to represent 0 < s < 45. The block diagram
of the component is shown in Figure ?7?.

ROM
0000000
11000001
21000010

& —0 3000011

a —1

L —2 4095

3343

by —4 5

b, —5 %

b246 o

by —{7

€ —8

¢ —9

c, —10

c; —{11

101101
S4| S2| So
S5 S3 8

Figure 12.2: ROM implementation - 3-input 4-bit adder - Exercise 12.5

Solutions Manual - Introduction to Digital Design - September 24, 2003 253

Exercise 12.7:
Part (a) - using one decoder and ROM modules of eight 4-bit words. Figure 77

al |b
1 0
decoder
0 1 2 3
] B —
ROM | E ROM | g ROM | E ROM | E
00110 0] 0001 0] 1000 0] 0001
o« 11000 -1, 1j0010(1, 1100101 |, 1{0010
4 200001 120000 | 20000}] 2/1000
. — 3/0100 . — 3/0100 . — 3] 0001 . — 3| 0000
4] 1000 40001 0400010 0400000
5| 1000 50010 510010 510100
6| 0001 6] 1000 6| 1000 6] 1010
7| 0000 7| 0000 70100 7| 0000
£0 fl 2 3

Figure 12.3: Implementation of switching function using one decoder and ROM- Ex. 12.7

COST =4 x (ROM)+ DEC =4 x (ROM) + 4 x (AND-2) + 2 x (NOT)
F#interconnections = 13
delay = §(ROM) + 6(AND-2) + §(NOT)

where ¢ represents the component delay.
Part (b) - using ROM modules and a multiplexer. Figure ??.

COST =4 x (ROM)+ MUX =4 x (ROM) + 16 x (AND-3) + 4 x (OR-4) + 2 x (NOT)
F#interconnections = 29
delay = 6(ROM) + 6(MUX) = 6(ROM) + 6(AND-3) + 6(OR-4)

Thus, the first design is better than the second one in all aspects.

254 Solutions Manual - Introduction to Digital Design - September 24, 2003

ROM | E ROM | E ROM | E ROM | E
0/0110 0| 0001 0| 1000 0| 0001
1/ 1000 1/ 0010 1| 0010 1/ 0010
¢ 2{o000] €2 2/0000| ¢ 2 200000 €2 21000
d—1 3fotoo| d 1 3lotoo| d {1 3looor| 9|1 3|0000
e o 4{1000] €0 4/o0001| ¢ o 4loot0| € o 40000
5| 1000 s{ o010 s{ o010 s{ o100
6| 0001 6| 1000 6| 1000 6| 1010
7 K 7l 0000 7l 0100 7l 0000
— 0123 0123 0123 0123
a

4x4-input MUX

I Y

Figure 12.4: Implementation of switching function using ROM and MUX - Ex. 12.7

Solutions Manual - Introduction to Digital Design - September 24, 2003 255

Exercise 12.9:

For the ROM implementation of the function we need 2% words of 2 bits. Thus, a complete
switching function table should be implemented, with 64 entries.

For the PLA implementation, it is important to notice that z; = 1 when @ = b, and z5 = 1
when a = (b — 1) mod 8. The minterms used to generate z; are shown in the following table:

asaiag | bobiby | product terms to generate zq
000 000 aba apby by b
001 001 aba agblyb by
010 010 ahayapbyb bf
011 011 aéalaobéblbo
100 100 asa apba b by
101 101 a2alla0b2b’1b()
110 110 a2a1a6b2b1b6
111 111 a2a1a0b2b1b0

For PLAs what matters is the number of product terms. It is not possible to reduce the number
of product terms shown in the table since both a and b change one bit from one row to another.
Thus, two literals are different from one minterm to another, making impossible the combination
of two minterms. The number of product terms is already minimal.

Similarly, for zy (the case a = (b — 1) mod 8):

asaiag | bob1by | product terms to generate zy
000 111 a'2a'1a6b2b1bo
001 000 aba aobhb by
010 001 abaq aybhyb by
011 010 a’Qalaob'lebf)
100 011 asa ayblybiby
101 100 a2alla0b2b’1b6
110 101 agalai)bgbllb()
111 110 a2a1a0b2b1b6

where again the number of product terms is minimal.
Thus, the PLA would need to have 16 products, 6 inputs, and 2 outputs.

256

Solutions Manual - Introduction to Digital Design - September 24, 2003

Exercise 12.11:
Size of state register and ROM for:

(a)

(d)

(e)

Moore sequential system with 512 states, 3 inputs and 2 outputs. For 512 states, a minimum
of 9 bits are required to represent each state. The ROM needs to have as many address lines
as the number of state bits plus the number of inputs, which corresponds to a total of 12 bits.
Since this is a Moore machine the total number of ROM bits is reduced by using separate
ROMs to generate the next state and to generate the outputs. The ROM for the next state
will have 2'2 x 9 bits. The ROM to generate the output will be a 2° x 2 bits ROM. Thus, the
implementation will require a 2!2 x 9 ROM, a 2% x 9 ROM, a and a 9-bit register. Of course,
the implementation can use only one ROM, resulting the same as for the Mealy case.

For a Mealy model, the system will have only a single 2'2 x 11 ROM, and a 9-bit register.
This time the output values are stored with the next state bits.

When the state transition depends only on one input, a multiplexer (in this case a network of
multiplexer would be required, since the number of inputs is quite large). The multiplier is
used to select the correct input among the possible system inputs, depending on the present
state of the system. The output of the multiplexer is used as an address line for the ROM
which will have a size of 2! x 9 bits, and generates the next state bits. Since this is a Moore
machine, another ROM is used to generate the outputs. Same way as done in part (a), a
29 x 2 ROM is required for the outputs. A 9-bit register is used to store the state values. A
block diagram of the system is shown in Figure ?7.

system —]

inputs ___|

active o MUX > ?)
in each . > % ROM
state hd S

/Y
Present
State CLK

outputs

Figure 12.5: Block diagram for Exercise 12.11(c)

For a Mealy system, with the same conditions of the one considered in part (c), a 2!9 x 11
ROM, a network of muxes to select the input (same as in part (c)), and a 9-bit register are
used. The ROM stores both the next state bits and the output values.

Since the system in part (c) is implemented as a Moore machine, the output doesn’t depend
on the input values, and for this reason, this question doesn’t make sense. If we apply this
idea to the system in part (d), then the output should be generated by a separate ROM with
11 addressing lines and 2-bit words. The generation of the next state would be done by a
210 % 9 ROM. The network of muxes to select the inputs would be used, and a 9-bit register
would store the state bits.

Solutions Manual - Introduction to Digital Design - September 24, 2003 257

Exercise 12.13:

Observe that each state has transitions to another state based on only one input among 3
possible inputs € {a,b,c}. A multiplexer can be used to select the desired input, and the diagram
can be modified to have only one input, let’s call it . The new transition table would be:

PS Inputs

z=0|xz=1
S0 | S3/10 | S1/01
S1 | S1/00 | S2/01
S2 | S3/00 | S4/01
S3 | S1/00 | S0/00
S4 | S4/00 | S3/11
NS,21Z0

Next P t
Assume that the state S; is represented by the vector 7 smiy2, y1,Y0)- Thgigjts(gtnwork that imple-

ments the state diagram i% given in Figure ?7.

3 y2
1) 1 ROM Reg vl
IE 0| 01110 Y2 y0
0 00100 Y1
01100 YO
00100
10000

XXXXX *

MUX J
yl —
yO —]

o o & 0 ®

XXXXX CK

~N N L AW N = O

9}

XXXXX
00101
01001
10001
00000
01111
XXXXX

N R - NV I VS SR

(present state)

—
[\

—_
(O8]

—_
~

XXXXX

—_
V)]

XXXXX

==
zl

Y2Y1YO0
(next State)

Figure 12.6: Network for Exercise 12.13

258 Solutions Manual - Introduction to Digital Design - September 24, 2003

Exercise 12.15:

For this design we use a ROM that receives as input lines the values of the present state,
and 2 input bits. In fact, there are 3 conditions that are used as inputs, but making use the the
multiplexer we are able to select among two inputs: GO and DIST > 10. The third input is
inserted directly as an address signal to the ROM. The ROM contains the information on the next
state and the outputs (CLEAR,CHECK ,TURNLEFT90,COUNTUP,MOV E ,STOP). Thus 9
bits are required per ROM word. The design is shown in Figure ?7.

GO —0
DIST>10 — 1
0 —2
0 —3
0 —4 MUX
0 —5
0 —6
0 —7
210

COUNT=3

Reg.

ROM
0 [000100000
1000100000
2 001100000
3 001100000
4{010010000
5 101010000
6 100010000
7 100010000
8 [011001000
9 011001000
10 -==-———-
B p—
12001000100
13001000100
0 g
; RNT f—
2 £ 19011000010
17011000010
4 T P—
T p—
20101000001
21{101000001
P —
PSS [—
b [—
P [—
P p—
b —
P fo—
P f—
K[| p———
By p—
]
STOP
MOVE
COUNTUP
TURNLEFT90
CHECK
CLEAR

Figure 12.7: Circuit for Exercise 12.15

Solutions Manual - Introduction to Digital Design - September 24, 2003 259

Exercise 12.17:

The ROM implementation of the system is shown in Figure ??. The complete contents of the
ROM that generates (222, 221, 220) (using decimal notation) is given in the next table:

0040
0looo
1looo
21000
3l 000 0100
| - 1| oo
35 o 2100
X — | 6 . 3 -- o o
Xz?—? 71000 4100 X0 1| 0
Xp — {5 8/001 X 0 5101 Yoo 1 2[0
Yo —13 9/010 1 <7’ 1o 3| 1
Yo —{4 10 011 yi(l)_ 2 T
e A KA Nt R !
13 10 01 00
14 -
15 12
. . 13
o o 14
40 - - - 15
H ||
. Z1Zy
27912 5
Figure 12.8: ROM implementation of Exercise 12.17
Y2 T2 | 22 || Y2 T2 | 22| Y2 T2 | 22 || Y2 T2 | 22
0O 0] O0 2 010 4 010 6 0 |dc
0O 1|0 2 1 2 4 11| 4 6 1 |dc
0O 210 2 2| 4 4 21| 3 6 2 |dc
0 3]0 2 3 1 4 3| 2 6 3 |dc
0O 4]0 2 4| 3 4 4|1 6 4 | dc
0 5 |dc||l 2 5 |dc|| 4 5 |dc| 6 5 |dc
0 6 |dc||l 2 6 |dc|| 4 6 |dc| 6 6 |dc
0 7 |dcy|| 2 7 |dc|| 4 7 |dc}| 6 7 |dc
1 010 3 010 5 0 |dc| 7 0 |dc
1 1 1 3 1 3 5 1 |de|l 7 1 |dc
1 2 2 3 2 1 5 2 |de|| 7 2 |dc
1 3|3 3 3|4 5 3 |dc|| 7 3 |dc
1 4| 4 3 4 2 5 4 |dc|| 7 4 |dc
1 5 |dc||3 5 |dc| 5 5 |dec| 7 5 |dc
1 6 |de|| 3 6 |dc| 5 6 |[de|| 7 6 |dc
1 7 |de||3 7 |dc| 5 7 |dc| 7 7 |dc

The PLA implementation of the system needs the representation of the output functions as a
sum of product terms. The switching expressions in sum-of-products form for the various outputs

260 Solutions Manual - Introduction to Digital Design - September 24, 2003

are:

222 (Y22, Y21, Y20, T22, T21, T20)
221 (Y22, Y21, Y20, T22, T21, T20)
220 (Y22, Y21, Y20, T22, T21, T20)
211 (Y11, Y10, T11, Z10)
210(y11, Y105 T11, T10)
200 (yoo, 9600)

Since the outputs zo; depend on the same

= mo(12,18,27,33)

(
= mgy(10,11,17,20, 25, 28, 34, 35)
= my(9,11,19,20, 25,26, 34, 36)
= m (679)

m(5,10)

= ooyoo = mo(3)

set of inputs, they should be mapped to the same

PLA. If more inputs and products are available in the component, functions z1; and zgy could also
be implemented in the same PLA. A total of 21 products were listed in the expressions above,
however, it is possible to reduce this number of products to 20. Using ESPRESSO we were able to
reduce the number of products to generate zo from 16 to 15 (the others cannot be reduced). One
possible solution is to combine m2(9) and m2(25) on the generation of 29y and obtain the single
product term yhoyo0xhexh z20. ESPRESSO also reduces the number of literals in each product
term, however, this feature is not important for PLA implementation.

