85

Chapter 6

Exercise 6.1 From Exercise 5.11, we know that the single-error detector for a 2-out-of-5 code
(a,b,c,d, e) is implemented by the expression:

E(a,b,c,d,e) = abc + abd + acd + bed + abe + ace + ade + bee + bde + cde + a'b' e’ + a'b/d'e’ +
adde +vdde

Using only gates from Table 4.1 of the textbook we can generate all product terms but the
OR operation of all 14 product terms must be implemented by a tree of gates. To minimize the
delay in the implementation, we should use NAND gates. The generation of the product terms is
done using 3 and 4-input NAND gates from Table 4.1. A 14-input NAND however is not available
and should be obtained combining smaller gates. The large NAND gate may be decomposed into
smaller ones as follows (for a 4-input NAND to 2-input NANDs):

(abed)' = (ab)' + (cd)’

The possibilities are:

Network Delay

tyLH tyHL

A - First Level: 1 NAND-6, 1 NAND-8, Second Level: 1 OR-2 | 0.4040.037L | 0.64+0.019L
B - First Level: 1 NAND-4, 2 NAND-5, Second Level: 1 OR-3 | 0.3740.038L | 0.70+0.022L
C - First Level: 2 NAND-3, 2 NAND-4, Second Level: 1 OR-4 | 0.27+0.038L | 0.62+0.025L

Even though the LH transition delay of network C is less than the one for network A, the HL
transition delay of network C becomes worse when the output load is greater or equal to 3. For this
reason we consider network A as the implementation of the 14-input NAND, since it is going to be
less susceptible to output load values. The resulting circuit is presented in Figure 6.1, on page 86.

The delay of the network is obtained from the critical paths NAND-4 — NAND-6 — OR-2 or
NAND-3 —+ NAND-8 — OR-2:

Toru(net) = maz(typr (NAND-4) + t,1 g (NAND-6) + tp, 5 (OR-2),
tpr(NAND-3) + t,1.i (NAND-8) + ¢, ;7 (OR-2))
= mazr(0.12 4 0.051 x 1 +0.24 + 0.037 x 1 + 0.12 4+ 0.037 x L,
0.09 + 0.039 + 0.24 + 0.038 + 0.12 + 0.039L)
= maz(0.57 4+ 0.037L,0.53 4+ 0.037L) = 0.57 + 0.037L
Tpur(net) = maz(tyrr(NAND-4) + t, 5, (NAND-6) + ¢y (OR-2),
tor1(NAND-3) + t, 1, (NAND-8) + £, 71, (OR-2))
= maz(0.10 + 0.037 x 1 +0.36 + 0.019 x 1 + 0.20 + 0.019 x L,
0.07 4+ 0.038 4+ 0.42 + 0.019 + 0.2 + 0.019L)
= maz(0.72 +0.019 x L,0.75 + 0.019L) = 0.75 + 0.019L

86

Solutions Manual - Introduction to Digital Design - September 24, 2003

MJ

f(a,b,c.d,e)

OO0 TOACDOATNIOOTR oA 0AT 00T 0AD 0O 00D 0T AOD ATS O T

B
B
B
B
B
}
Dg
-

Figure 6.1: Single-error detector for 2-out-of-5 code

Solutions Manual - Introduction to Digital Design - September 24, 2003

Exercise 6.3 A high-level specification for this system is:

Input: z is a decimal digit represented in BCD.

Output: two BCD digits y and z.

Function: 10y + z = 3z.

From this specification we define the following switching functions:

T3T2T1T0 | Y3Y2Y1Yo 23222120
0000 0000 0000
0001 0000 0011
0010 0000 0110
0011 0000 1001
0100 0001 0010
0101 0001 0101
0110 0001 1000
0111 0010 0001
1000 0010 0100
1001 0010 0111

The simplified switching expressions are obtained from K-maps (not shown):

ys = y2=20

Y1 = T3+ T2T1Z0

Yp = :vgwll + x2x6

z3 = .’L'2£171.T6 + IIQ.Il.’L'Q

2o = I3+ :cgac'lxo + xéxle)

21 = zorimy + THT X0 + THT1 TG
2y = Iy

The (NAND, N AN D) network is shown in Figure 6.2.

88

S

x2
x1
x0

x2
x1’

x2

x0’

x2
x1
x0’
x2’
x1
x0
x2
x1’
x0
x2’
x1
x0’

Solutions Manual - Introduction to Digital Design - September 24, 2003

0

3

9y 9y g

x3

2

YTt

e

y3
y2

x2
x1’
x0’
x2’
x1’
x0

B .

x2’

x0’

z0

x0

Figure 6.2: Network of Exercise 6.3

Solutions Manual - Introduction to Digital Design - September 24, 2003 89

Exercise 6.5: The modification of the network of Example 4.6 is shown in Figure 6.3. Since
we are asked to use 4 complex gates 2-AND/NOR2, the best solution is to use them on the level
that has y; and w; as inputs. The fourth one should not be used to generate z5 since this output
is composed of 3 products and the complex gate is able to handle only 2. More logic is required
to generate the third product and combine it with the output of the complex gate (that would
take care of 2 products). For this reason, it is more interesting to use the fourth complex gate
to generate z; and keep the same structure of gates that was used in Example 4.6 to generate zs.
Although the output of AN3 corresponds to zp we didn’t use its output as the network output to
avoid the influence of the zy output load on the delay of the other outputs.

y2 w2 yl wl y0 w0

v — 00 |—{>o 2-AND/NOR2

AN1 AN2 AN3

lAI% A2)\ A3) | AN4

z1
z2

Figure 6.3: Network for Exercise 6.5
The network characteristics are:

e Load factor: 1

Fanout factor: considering F' = 12 we have F(z9) = F(z1) = F(z) = 12

Network size: The NOT gates have size 1 and all others have size 2, thus the network has 23
equivalent gates. The size of the network on Example 4.6 was 38 equivalent gates.

Number of levels: 6

Network delays: consider the following table for gate delays:

90 Solutions Manual - Introduction to Digital Design - September 24, 2003

gate Identifier | Output Load tprr (ns) tprr(ns)
OR3 01 4 0.27 0.43
NOT N1/N4 3 0.13 0.10
2. AND/NOR2 | AN2/AN3 3 0.40 0.18
2-AND/NOR2 AN4 1 0.25 0.13
2-AND/NOR2 AN1 2 0.32 0.16
NOT N2/N3 2 0.10 0.08
NOT N5 Ly 0.02 4+ 0.038Ly | 0.05 4+ 0.017L4
AND3 A3 1 0.24 0.20
OR3 02 Lo 0.12 4 0.038L2 | 0.34 + 0.022L,

The first critical path we may consider is O1 - N1 - AN1 — N2 — A3 — O2 that results
in the following delays:

TpLH(.’El,ZQ) = tpHL(Ol) —I—tpLH(Nl) —I—tpHL(ANl) +tpLH(N2) —I—tpLH(A3) +tpLH(O2)
= 0.428 + 0.134 + 0.156 4+ 0.096 + 0.24 + 0.12 + 0.038Lo = 1.17 + 0.038Ls
Typur(z1,22) = tpru(01) +tprr(N1) +tpra(AN1) + tpar(N2) + tprrn(A3) + tpar(02)

= 0.272 + 0.101 + 0.32 + 0.084 + 0.2 4+ 0.34 + 0.022L9 = 1.32 4+ 0.022Lo

Another path that may be considered is O1 - N1 — AN2 — N3 - AN4 — N5, that
results in the following delays:

TpLH(acl, Zl) = tpHL(Ol) + tpLH(Nl) + tpHL(ANQ) + tpLH(N3) + tpHL(A4) + tpLH(N5)
0.428 + 0.134 + 0.184 + 0.096 + 0.128 + 0.02 4 0.038L1 = 0.99 + 0.038L4
TpHL(ivl, z1) = tpLH(Ol) + tpHL(Nl) + tpLH(AN2) + tpHL(N?)) + tpLH(A4) + tpHL(N5)

= 0.272 +0.101 + 0.395 + 0.084 + 0.245 + 0.05 + 0.017L; = 1.15 + 0.017L4

We can see that the path from z; to 2z is still the critical path in this circuit, however, the
delay was reduced when compared to Example 4.6.

Solutions Manual - Introduction to Digital Design - September 24, 2003 91

Exercise 6.7 Using XOR gates it’s possible to get the expressions for equality or difference:

SAME =19y
DIFFERENT =z &y

Using these expressions, we obtain the expression for each output, zo(GREATER), 21 (EQUAL)
and zo(LESS) as:

zg = DIFFERENT.x+ SAME.c,
zZ1 = SAME.61
20 = DIFFERENT.y+ SAME.c,

The gate network using XOR and NAND gates is shown in Figure 6.4, on page 91.

X j SAME
z1
DS
cl
2
¢ z2
X —
X jD DIFFERENT
y
Yy /1 z0
c0 —

Figure 6.4: Comparator using XOR and NAND gates

92 Solutions Manual - Introduction to Digital Design - September 24, 2003

Exercise 6.9 The MUX function is defined as:
MUX(z,y,s) = zs + ys’
and using this function we want to represent the following functions using muxes:
e OR(a,b) =a+b=ab +b=MUX(a,1,b)
e NOR(a,b) = (a +b) = d'b' = 0.b+ d'b/ = MUX(0,d,b)

e NAND(a,b,c) = NAND(a, AND(b,c))
AND(b,c) = bc+ 0. = MUX(b, 0, c)
NAND(a, z) = (az) = d + 2’ = d'z 4+ 1.2/ = MUX(d/, 1, 2)
Thus NAND(a, b, ¢) = MUX(d’, 1, MUX (b, 0, c))

e XOR(a,b) =a®b=ad'b+ abl = MUX(d,a,b)
e XNOR(a,b) =a @bV = ab+ a't) = MUX(a,d’,b)

Solutions Manual - Introduction to Digital Design - September 24, 2003 93

Exercise 6.11 Tree of multiplexers:

Part (a) E(a,b,c,d) = a'b+ d'b'd + bd'd + abd' + b'cd
We use Shannon’s decomposition to obtain the following four expressions:

/\/\EA
&
<
o
—_
~— — ' —
I

= db+adbt+ab=db +b=d +b
adb+adb+b=d +b
ab+ab=">

= db+b =d +b = (ab)

From these expressions we obtain the tree of multiplexers as shown in Figure 6.5.

E(a,b,c,1)
MUX 1 E(ab.c,d)
MUX

E(a,b,c,0)

2 | E(a,b,1,1)
MUX E(a,b,0,1)
1 —0
b
a’ 1 b |
MUX
| — E(a,b,0,0)

Figure 6.5: Multiplexer tree for E(a,b,c,d) = a'b+ a't'c’ + bc'd + abd’ + b'cd

Part (b) E(a,b,c,d,e,f) =a®dbdDcdDdded f
Using the same type of decomposition we get the functions shown in the next table:

(C,daeaf) E(aab’c,daeaf)
0000 a®b
0001 (a ®b)
0010 (a®b)
0011 a®b
0100 (a®db)
0101 a®b
0110 a®b
0111 (a ®b)’
1000 (a ®b)
1001 a®b
1010 a®b
1011 (a®db)
1100 a®b
1101 (a®b)
1110 (a ®b)
1111 ad®b

94 Solutions Manual - Introduction to Digital Design - September 24, 2003

The straight implementation of the tree of multiplexers will look like the network shown in Figure
6.6(a). Simplifying the network by removing the repeated terms we obtain the network shown in
Figure 6.6(b), that looks more like a linear array than a tree, but has the same number of levels
and less muxes.

MUX E—
a ! [s=a’b+ab’
S 0 MUX
2 P
< {
¢ —1 b a— s
MUX) MUX
o a’—0
s
c
L b
s 1 MUX
MUX o
s o {
c‘ d
s —1 1 1
MUX —T MUX j MUX
] 0 o
! E(ab.cd.e.f)
{ { { MUX [
c d e b
g —! | —J—I {
MUX MUX MUX f
s —1) 0
< d
¢ s s=a’b+ab’
s —1 ! a ! — 1 1
MUX MUX R s |t MUX
MUX
] b a 0) o 0
{ 1 E(a,b,c.d,e.f)
o [{ MUX [
d b ¢ d ¢ o
s ! a4 $ 1 1 1 I
s MUX MUX MUX MUX MUX £
s ° a’—0 —0 0
I l w w w
b ¢ d e
s I
MUX (a) full multiplexer tree network (b) simplified network

Figure 6.6: Multiplexer network for Exercise 6.11 - part (b) - E(a,b,c,d,e,f) =a®bDcddded f

A better multiplexer tree network is realized considering the implementation of the XOR and
XNOR functions by multiplexers (Exercise 6.9) and the associativity of the XOR function as follows:

aPb®cdd®edf=[(a®b) D (cDd)]® (e f)

The network for this case is presented in Figure 6.7. Observe that it has only 3 levels of multiplexers
in the critical path and 7 multiplexers. The previous implementation had 5 levels and used 9
multiplexers.

Solutions Manual - Introduction to Digital Design - September 24, 2003

E(a,b,c,d.e.f)

a —1 axorb
MUX
a—0
b
a —l (a xor by’
MUX
a
b
c 1 cxord
MUX
c —0
d

MUX
—il
MUX
MUX
e’ —1
MUX | ¢ xor f
e —0
f

95

Figure 6.7: Implementation using XOR property to solve Exercise 6.11(b) - E(a,b,c,d,e, f) =

aDbDcHdDed f

