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Chapter 8

Exercise 8.1: A minimum clock width of 5 ns and a latch delay of 2 ns are considered in this
problem.

(a) The minimum delay of the combinational network (t,) considered in this problem is obtained
by the following equation

tp +2ns > dns — t, > 3ns

(b) If the delay of the combinational network can decrease by 30% and the latch delay can
decrease by 10%, the maximum clock pulse width (7},4;) is calculated by the following equation:

0.7t + 0.9 x 2ns = 0.7 x 3 + 1.8 = Thjae — Tinaz = 3.9ns
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Exercise 8.3

(a) There are no races because of the nonoverlapping nature of the two clocks. This assures
that in each clock cycle only one state change occurs.

(b) The number of states depends on the mode of operation of the network. We consider two
modes.

i) The clock period of the system corresponds to one of the phases (say phase 1). In this case,
the gated latch loaded during the phase two clock acts just as a temporary buffer to prevent
races. The state register corresponds to the register loaded during phase 1. Consequently,
the number of states is 2". The division of the combinational network into two can, in some
cases, make sense because of implementation restrictions. For example, if the combinational
network is implemented using pass transistors, there is a limitation on the number of them
that can be connected in series; in such a case the division in two networks might help.

ii) The clock period is the time between both clocks (phase 1 and phase 2). This results in a
system that has a smaller period than that in (i) (and, therefore, in a faster system). In this
case each register stores part of the state and the number of potential states is 227, but these
states cannot be utilized in general. The state can be described by two components s; (stored
in register 1) and so (stored in register 2). Each component changes in alternate clock cycles.

The output is a combination of two components z; and z, expressed as:

z1(t) = Gi(si(t), z1(2))
2(t) = Ga(s2(t),z2(t))

(c) Using the first model, the implementation of the system of Exercise 8.4 (Figure 8.40 of
the textbook) is straightforward if we only replace the D-type cells for two gated latches in a
master/slave configuration, as shown on page 203 of the textbook. Doing this modification, the
new design will behave the same way as the one shown in Exercise 8.4, with a slower clock. One
way to improve this design would be to split the combinational network, reducing the propagation
delay between latches, as shown in Figure 8.1. Observe that one more latch is used in this case.

x1—
B
x0 —] J
YO y0
S
XO’__J |
phase 1 phase 2 z

Figure 8.1: Redesign of system in Exercise 8.4 using latches - Exercise 8.3
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Exercise 8.5

The state diagram of the pattern recognizer for the sequence 0101011 is shown in Figure 8.2
and has seven states. Each state was labeled with the sequence that it “recognizes”. We encode
these states using three state variables (y2,y1,90) so that the state assignment of state S; is the
radix-2 representation of i. The correspondence between the state assignment and sequence that
it detects is shown in the next table.

Figure 8.2: State diagram for system in Exercise 8.5

State | Sequence

So start

S1 0

So 01

S3 010

Sy 0101

Sx 01010
Se 010101

The state and transition table is:
PS Input

Yyayiyo | =0 z=1
So 000 001,0  000,0
S1 001 001,0 010,0
So 010 011,0 000,0
S3 011 001,0 100,0
Sy 100 101,0  000,0
Sx 101 001,0 110,0
Se 110 101,0 000,1
Y2Y1Y0, z
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The switching expressions for the next state and output are:

Yo = youyox' + y2y0z + v1yox
Y1 = yiyor + yoyiyor’

Yo = 2

2 = Yy1r

These expressions are implemented by AND-OR networks and the state is stored in a 3-bit
register. The corresponding sequential network is shown in Figure 8.3.

.

V! yl |_

Y0 y0

X —

B

[ RN v X
__/ —J/ L y2

-

kel

Figure 8.3: Network for Exercise 8.5
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Exercise 8.7

The state diagram for this system is presented in Figure 8.4. State S; represents a 1 followed
by a EVEN block of zeros, and state S5 indicates that the system received the required sequence.
The corresponding state table is:

S1 - block of zeros of EVEN length
@ S5 - block of zeros of ODD length

(after correct prefix)

Figure 8.4: State diagram for Exercise 8.7

Input

PS|z=0 z=1

So So Sy 0
S1 So Ss 0
So St S 0
Ss So Sy 0
Sy S5 Sy 0
Ss Sy S1 1

NS output(z)

We use the state code ¢ (in binary) for the state S;. The PS is represented by the 3-bit vector
(y2y1y0) and the NS by the vector (Y2Y1Yy). The output switching expression is:

Z =1Y2Y0
The K-maps for the next state bits are shown next.
olofo]o of1}1)o ofofof1)
nN1]-1- 5 ofof-1- 5 1)10(|-[- 9
y y y
1] o[-\ olo]-]- of1)-]-
X X X <
ofolrjfo of1yo|o (1 1)o |1
YQI yl Y1: yl Y(): y]-
The switching expression for Y5,Y7, and Y; are:
Yo = yoyp+ 2'ye + zy170
Vi = yyivo +2'yay0
Yo = zysyi +zyiyo +yiyo +2'yeu0

The corresponding sequential network is shown in Figure 8.5.
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Y2

>0

y2
Y1 -
yl

yo
>o

<
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yO

CK

Yo y2 DO y2'
>o

yl yU

>

g S

Figure 8.5: Network for Exercise 8.7
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Exercise 8.9:

Direct application of K-maps is not possible for this problem. To design this network it is
important to decompose it into smaller parts, as shown in Figure 8.6. The NOTBCD module
detects when the input code, or the stored minimum value is not a valid BCD code. The input
vector is represented by the vector z = (x3,2,21,7¢), and the state vector is y = (y3,y2,y1,%0)-
Input z (y) is not a valid BCD code if z > 9 (y > 9). This condition is represented by the
expression z_is not_BCD = x3x9 + x3x1 (y-is-not_BCD = ysys +ysy1). The NOTBCD module is
implemented by an expression that combines both cases:

NOTBCD = z_isnot_BCD + y_isnot_BCD = x3x9 + 321 + Y3y2 + Y31

The MIN module is specified as:
Inputs: z,y € {0,1,2,---,15}
Output: z € {0,1,2,---,15}
Function:

R ifz<y
| y otherwise

» NOTBCD

MIN Y | Mem. y
Cells

CLK

Figure 8.6: Network for Exercise 8.9

The MIN module may be implemented as an iterative array, comparing bits from most-significant
to least-significant. Each bit slice has two “data” inputs z; and y; and two “carry” inputs e; (equal)
and s; (zj < y; for some j < i), and the outputs: m;, e;_1, and s;_1. The folllowing expressions
are used for each output:

eic1 = ei(zi@y)
sic1 = si+ (ziyi)es
mi = $_1Ti + S;_Yi
€4 = 1
S84 = 0

The final gate network for the system is shown in Figure 8.7.
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x3
x2 —|
x3 —
x1 — NOTBCD
y3
y2
y3 —
yl
1 0 MIN slice
EmDEu
) j MIN slice I_ v
I I
x1 l ®
yl MIN slice | y0
I I
x0 j
yo MIN slice ?

T T
CLK

Figure 8.7: Minimum detector for Exercise 8.9
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Exercise 8.11

To perform subtraction it is necessary to have a representation of negative integers, since the
result can be negative. Several of these representations are given in Chapter 10. Here we simplify
the problem by assuming that the result is positive.

Given two n-bit integers represented in the binary number system by z = (z,,_1,...,2o) and
Yy = (Yn—1,---,%0), and the result represented by (s,_1,...,50), the function to be performed
gerially in each bit position, for addition and subtraction, is described by the following tables:

Addition Subtraction
Ti Yi G| Cit1  Si Ti Y bi | biy1 s
0O 0 O 0 0 0 0 O 0 0
0O 0 1 0 1 0 0 1 1 1
0O 1 O 0 1 0 1 0 1 1
0O 1 1 1 0 0 1 1 1 0
1 0 0 0 1 1 0 0 0 1
1 0 1 1 0 1 0 1 0 0
1 1 0 1 0 1 1 0 0 0
1 1 1 1 1 1 1 1 1 1

where ¢; is the carry-in bit at position 7, and b; is the borrow-in bit.
Let the variable k indicate the operation to be performed as follows:

b= 1 forx+y
- 0 forz—y

Since we want to combine both operations in the same module, let us make ¢ = b. A switching
expression for the result s; is:

$i = Dz PDe fori=1,...,n—1

Sp = Cp

providing that a, = b, = 0.
A switching expression for c;;1 is

civ1 = ciyi + (k@ z) (¢ + i)

The initial condition ¢y = 0 is set with INIT = 1.
The sequential network is given in Figure 8.8.
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i+l

INIT >o

D+
k‘ P)Do*
) ) :

Figure 8.8: Adder/subtractor, Exercise 8.11

Another implementation of this sequential adder/subtractor is possible using complementation
and addition. This approach will become clear after the discussion in Chapter 10.
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Exercise 8.13

In order to simplify the design of this system, we decompose the state (S(t)) into two compo-
nents: the number of digits being inserted (Si(t)), and the correctness of the input (S2(¢)). The
first component is implemented by a modulo-4 counter with states Si(¢t) € {0,1,2,3}, and the
second component by a two-state machine with states Sa(t) € {Y, N}. The output is generated as
a function os these states.

The initial state is S(¢) = (0,Y), and the combination (0, N) never happens. The state transi-
tion table for the two-component system is:

Inputs
S1(t)Se(t) |z =0 z=5 =6 others
1)' 1Y 1IN 1IN 1IN
1Y 2N 2Y 2N 2N
1IN 2N 2N 2N 2N
2Y 3N 3N 3Y 3N
2N 3N 3N 3N 3N
3- 0Y 0y 1) 1)
S1(t+1)S2(t+ 1)

The state diagram for the lock is shown in Figure 8.9. We consider that the counter state

Figure 8.9: State diagram for lock — Exercise 8.13

S1(t) is represented by the vector (c1,cp), and S2(t) assumes the values 1 for Y and 0 for N. The
expression for the next state of the two-state component and the outputs are:

SQ(t + 1) = doCIICBSQ(t) + d56116052(t) + d6C1C652(t) + C1C

where d; = 1 when z = i. Thus,

So(t+1) = So(t)(zhabhaizhcicy + zhzor! zoc)co + ThzoziTHC1Cy) + C1c0
zZ9 (t) = C1C0(52(t) (.%‘3.1‘6)’ + Sg(t)l) = C1C) (iL‘g +xo + SQ(t)I)
Al (t) = 610052 (t)$3$6

The gate network that implements the locker is shown in Figure 8.10.
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—0
—d \_do —
—J cl’
o/ 0’ _/ s2(t)
L im®
x3 | ds ol \ s2(t+1) b 0
x2 ':2 / c0 J/
x1
X0 ::f \ cl ) CLk___ | o L2V
i de6 0’ _/
4/
CLK > i< >o<l <l | 2
Modulo-4 <0 %

Counter 0
-

CN’
o
|
o
<

x3 ds — 21
x0 -

Figure 8.10: Network for lock in Exercise 8.13
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Exercise 8.15 We make use of the concepts presented for the D-latch network on page 200 of
the textbook and the master/slave configuration shown in Figure 8.11 of the textbook. The general
network configuration is shown in Figure 8.11. The slave cell is a D-type latch, as discussed in the
book. A combinational network must be designed to activate the set/reset inputs of an SR latch.
C represents the clock input.

The table for the combinational network is shown next:

C T Q|S R
0 - -10 0
1 0 0|0 -
1 0 1|- 0
1 1 01 0
1 1 1 1
It is easy to see that
S = QCT
R = QCT

The combinational network is composed of two 3-input AND gates.

SR
Cell

T Comb.
Circ.

Figure 8.11: Gate implementation of a master-slave T flip-flop
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Exercise 8.17

The expression for the flip-flop inputs are

Ja=zQc Jp=@Q%4 Jo=12Q8

Ki=2Q% Kp=Qa Kc=1Q%

From the characteristic expressions of the JK flip-flop we get the following expressions for the
transition functions:

Qalt+1) = Qat)(='+Qs(t) +2QU)Qc(?)

Qp(t+1) = Qp(1)QU() +Qp(1)QU(®)

Qc(t+1) = Qo) (Qs(t) + ) + Qc(t)zQp(t)
z = Qclt)

The corresponding transition table is

PS Input Input Output
QaQBRc | =0 r=1 r=0 z=1
000 00,10,01  01,10,00 010 010
001 00,10,01  11,10,00 010 111
010 00,10,00  00,10,10 010 011
011 00,10,00  10,10,10 011 111
100 00,01,01  01,01,00 100 000
101 00,01,01  11,01,00 100 001
110 00,01,00  00,01,10 100 101
111 00,01,00  10,01,10 101 101
JaKa,JgKpg,JoKc NS

N

O R O R OO

To get a high-level description we define the following code:

QaQBQc | state
000 So
001 S
010 So
011 S3
100 Sy
101 S5
110 Se
111 S7

The resulting state table is
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PS Input Output
z=0 z=1 z

So So So
St | 52 S7
Sy | S S3
S3 | S3 S7
Sy | S So
Ss | Sa S1
Se | S S5
S7 S5 S5
NS

O R O R O O

The state diagram is shown in Figure 8.12.
A timing diagram can be obtained from the following input/output sequence pairs (the input
is arbitrary):
z(t) [0 1 0 1 1
s(t) |10 2 3 3 7
z [1 1 0 0 0

o oy o

0 1 0 1
4 4 0 2
1 1 1 1

S W=
S g~
o o o

10 0 0 1 1
4 0 2 2 2 3 7
11 1 1 1 0 1
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S0/1

Figure 8.12: State diagram for Exercise 8.17
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Exercise 8.19
The expressions for the flip-flop inputs and for the output are

Jg = 1 Ky =1
Jg = Q¢ Kg =1
Jo = @B Ke =1

z = QLQEQC
The sequential network does not have any input; therefore, the state register changes in each
clock pulse depending only on the previous state. The transition table is

PS FF inputs NS Output
Qameswecw | Ja)Ka(t) Jp(t)Kp(t) Jo(t)Kc(t) | Qat+1)Q@p(E+1)Qc(t+1) | 2(?)
000 11 11 01 110 1
001 11 01 01 100 0
010 11 11 11 101 0
011 11 01 11 100 0
100 11 11 01 010 0
101 11 01 01 000 0
110 11 11 11 001 0
111 11 01 11 000 0

Let us define the following encoding:

QaQBQc | state
000 A
001 B
010 C
011 D
100 E
101 F
110 G
111 H
The resulting transition table is
PS | NS | z
Al G |1
B|E|O
C|F |0
D|E|O
E| C|O
F | A|O
G| B |0
H|A|O
Let us try to reduce the number of states:
1 2
P = @ (B, ¢, D, E, F, G, H)
2 2 2 2 2 1 2 1
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p_ L 2 3
27 @ (F H (B, ¢ D, B G
33 1 1 3 2 3 3 3
p_ L 2 3 4
37 @ (F H (© (B D, E G
4 11 4 4 3 4
b1 2 3 4 5
T @ = B © ® B D G
5 1 1 2 3 4 4 5
1 2 4
Py = — 3 4 5 6

Py =P5; = {(A)a (E)’ (C)’ (F’H)’ (G)’ (B7D)}

The reduced state table is

PS | NS | z
(A)=Sy | S1 |1
(E)=51]S52 |0
(C)=82 |83 |0

(F,H)=S35| Sy | 0
(G)=84| S5 | 0
(B,D)=S5| 1 |0

The state diagram is shown in Figure 8.13.

®\@ ©

Figure 8.13: State diagram for Exercise 8.19

The network in its equilibrium state produces a 1 every six clock pulses, that is, it implements
a modulo-6 frequency divider.
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Exercise 8.21
The expressions for the flip-flop inputs and for the output are

Sy = zQ +zQ3Qq
Ry = Qo
Ji = Qu@'+Q2)
Ki = Qo+Q2
To = (2" + Q2+ Q1)(Q)+ Q1 + Qo)(z + Q5 + Q1 + Qp)
z = (Q®Q1)(z'Qp) + Q1(z'Qo) + (Q2 @ Q1) (xQ) + Q1(xQo)

The transition table is

PS Input Input
Q2Q1Q0 z=0 r=1 r=0 z=1
000 00 00 1|10 00 O] 001,1 100,0
001 00 11 110 01 0| 010,1 101,0
010 00 00 1|10 00 1]011,0 1111
011 00 11 1|00 01 1] 0000 0001
100 00 01 1(10 01 1]101,0 1011
101 00 11 0|10 11 1 111,1 110,0
110 01 01 0|01 01 0] 000,1 000,0
111 0r 11 1}01 11 1| 000,0 000,

SoRy J1 K1 Ty NS,Z

Let us define the following encoding;:

Q2Q1Q0
000 A
001 B
010 C
011 D
100 E
101 F
110 G
111 H
The resulting state table is
PS Input
r=0 x=1
A | B,1 E,0
B C1 F,0
C D,0 H,1
D A0 Al
E F,0 F.1
F H,1 G,0
G Al A0
H A0 Al
NS,z
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Let us try to reduce the number of states.

P, | groupl group 2
(A’B’F7G) (C7D7E7H)
0 ‘ 1221 ‘ 2111
1

2111 2111

P, | group 1 ‘ group 2 ‘ group 3 ‘ group 4 ‘ group 5
(A) (B,F) (G) (©) | (O,EH)
0 2 45 1 5 121
1 5 23 1 ) 121
P; | group 1 ‘ group 2 ‘ group 3 ‘ group 4 ‘ group 5 ‘ group 6 ‘ group 7
(A) (B) (F) (G) (©) (E) (D,H)
0 2 ) 7 1 7 3 11
1 6 3 4 1 7 3 11

Py =P = {(A)a (B)a (F)v (G)7 (0)7 (E)a (DvH)}

The reduced state table is

PS Input
=0 z=1
(A) = S() Sl, 1 54,0
(B) = 51 SQ, 1 55,0
(C) = SQ S3,0 Sg, 1
(D,H)=S5 | So,0 So,1
(E) = 54 S5,0 S5, 1
(F) ES5 53,1 56,0
(G) = 56 S(), 1 So,O
NS,z

The state diagram is shown in Figure 8.14.

We now show that the network performs a serial conversion from BCD to Excess-3. Assume that
the initial state is Sy and that the BCD digit (z3, z2,%1,%0) is applied with the least significant
bit (zo) first. From the state diagram (following the corresponding paths) we get the following
table (since after a sequence of length four the state is again Sy, we only consider sequences of that
length):

TL3TL2T1LQ | 232220
0000 0011
0001 0100
0010 0101
0011 0110
0100 0111
0101 1000
0110 1001
0111 1010
1000 1011
1001 1100
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This corresponds to the desired converter. A timing diagram is

Figure 8.14: State diagram for Exercise 8.21

139

X o o o0 o0(O0 OO0 1 O}1 0 O 1,1 1 0 O
State S() Sl SQ 53 SO Sl SQ Sg S() S4 55 Sg S() 54 S5 53
Z 1 1 0 0|1 1 1 00 O 1 110 1 1 0
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Exercise 8.23
To recognize a sequence with two consecutive 1’s followed by one 0 we need to distinguish be-

tween the following cases:

Sy:  z(t—-2)=z(t—-1)=1
Sy Not Sy and z(t —1) =1
So: None of the above

The corresponding state table is

PS Input
z=0 z=1
So | So,0 51,0
S1 | So,0 52,0
Se | So,1  S2,0
NS,z

To implement these states we need at least two flip-flops. Let us define the following state
assignment:

The resulting state table is

PS Input
Q1 |z2=0 z=1
00 00,0 01,0
01 00,0 10,0
10 00,1 10,0
NS,z

Since the excitation function of a JK flip-flop is

PS| NS
0 1
0 [0- 1-
1 [-1 -0
| JK

the inputs Ji, K1, J2, and Ky to the JK flip-flops are

PS Input
Q1 |r=0 z=1
00 0-,0- 0-,1-
01 | 0--1 1--1
10 -1,0-  -0,0-
Jo Ko, J1 K
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Switching expressions for these flip-flop inputs are
Jo = Qhz Ji = Qyx

KQZ.’III K1:1

An expression for the output is
2z = Qox'

The sequential network is shown in Figure 8.15.

Ql
O B ey

—CK1 K 2

Figure 8.15: Network for Exercise 8.23
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- Exercise 8.25

We have to store the last input to be able to recognize the sequence 11; therefore, we need:

So: z(t—1) = 0
S oz(t—1) = 1

The state table is

PS Input
=0 x=1
So | So,0 51,0
S1 | So,0 51,1
NS,z

Coding Sy as 0 and S; as 1, the resulting state table is

PS Input
Qlz=0 z=1
0 0,0 1,0
1] 00 1,1

NS,z

We only need one JK flip-flop. Since its excitation function is

PS NS
0 1
1 10 1-
1 (-1 -0
JK
the inputs are
J =
K = 7o
The output is described by
z2=Qzx

The sequential network is shown in Figure 8.16.

CK

>0 K QF—

Figure 8.16: Network for Exercise 8.25
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Exercise 8.27

a) To design a cyclic counter with the output sequence 0,1,3,7,6,4,0,1,... we need six states.
In this first part, we select the coding so that the output corresponds to the state. The state table
is

PS Input
=0 x=1
000 | 000 001
001 | 001 011
011 | 011 111
100 | 100 000
110 | 110 100
111 | 111 110
NS ==z

Since the excitation function of a JK flip-flop is

PS NS
0 1
0 |0 1-
1 (-1 -0
JK
we get the following flip-flop inputs
PS Input

Q20100 z=0 z=1
000 0- 0- 0-]10- 0O 1-
001 0- 0 -0|0- 1- -0
011 0o- -0 -0(1- -0 -0
100 0 0 O0-]-1 0- O-
110 -0 -0 0-{-0 -1 O-
111 -0 -0 -0(-0 -0 -1

Jo Ko J1 K1 JoKy

From K-maps we obtain

Jo =z Ky =zQ)
J1 = zQo K, =zQ;
Jo = z@5 Ky =zQ2

The sequential network is shown in Figure 8.17. Recall that the output z = (22, 21, 2z0) corre-
sponds to the state vector (Q2, Q1,Qo)-

b) In this second case, the state table is
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z2

z1

O] 4D
CK 0 CK 1 CK2
CaDOfl O

Figure 8.17: Network for Exercise 8.27

I Q I Q 70

CK:

PS Input
z=0 z=1

So So S1 0

S1 S1 Sy 1

So So Ss 3

S Ss Sy 7

Sy | S S5 6

Ss Ss So 4
NS Output

with the following encoding for the state:

Q2Q1Q0
So 000
S 001
Sy 010
S3 011
Sy 100
S5 101

Using the previously given excitation function for a JK flip-flop, the flip-flops inputs are

PS Input Output
Q2Q1Q0 z=0 z=1 2(t)
000 0- 0- 0-({0- 0O- 1- 000
001 0- 0- 0|0 1- -1 001
010 o- 0 0-{0- -0 1- 011
011 o- -0 0|1- -1 -1 111
100 -0 0- 0-|-0 0- 1- 110
101 0 0- 0|-1 0- -1 100
JoKsy J1 K1 JyKy

From K-maps we obtain
Jo = 2Q1Qo K3 = 2Qo

J1 = 2Q5Q0 Ki =zQo
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For the output,

22=0Q2 + Q1Qo
=01 + Q2Qp
20=0Q1 + Q5Qo

The sequential network is shown in Figure 8.18.

—CK 0 CK 1 CK2
L I
CK !
Ql Q2 Q
Qo0 n Q L, "
Q—— Ql Ql

Figure 8.18: Network for Exercise 8.27 (b)

A comparison of the networks of Figures 8.17 and 8.18 indicates that solution (a) results in a
simpler network.
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Exercise 8.29
To recognize the sequence z(t — 3,¢) = 0101 or 0110 we need to distinguish among the following
cases:

Se:  z(t—3,t—1) =011
S : z(t—3,t—1) =010
Se:  z(t—2,t—1)=01
Sy Not S3 and z(t —1) =0
So: None of the above
The corresponding state table is
PS Input
z=0 z=1
So | S1,0  S0,0
St | 51,0 52,0
Sy | 83,0 84,0
S3 | 51,0 So,1
Sy | S1,1 8,0
NS,z

Assigning to each state the binary value of its subindex the resulting state table is

PS Input
@Q2Q1Qo |z=0 z=1
000 | 001,0 000,0
001 001,0 010,0
010 011,0 100,0
011 001,0 010,0
100 001,1  000,0

NS,z

Since the excitation function of a JK flip-flop is

PS NS
0 1
S0 [0- 1-
1 (-1 -0
] K
we determine the inputs Jo, Ko, J1, K1, J1, and K; to be
PS Input
Q2Q1Q0 z=0 z=1
000 0- 0- 1-|0- 0- O-
001 0- 0- 0|0 1- -1
010 0- -0 1-|1- -1 0
011 0- -1 -0|0- -0 -1
100 -1 0- 1-|-1 0- O-
JoKy J1 K1 JoKy




Solutions Manual - Introduction to Digital Design - November 12, 2002

Using K-maps we get the following switching expressions:

Jo
K,
J1
K,
Jo
K,

The output expression is:

Q1 Q)

1

zQo

:L‘Q6 +2'Qy
:L'I

T

z=12'Qs+ 2Q1Qo

The sequential network is shown in Figure 8.19

X 0
EDaT
Q0 X’
K2
. Q
X_DO_X K Q
x —
Q0—
X Ql
D e
Q0
X K
Q0 K Q Qr
X
Q0
Q0
I Q
CK K
K Q Q

Figure 8.19: Network for Exercise 8.29
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Exercise 8.31 To implement Example 8.9 using JK flip-flops we use the following state tran-
sition table and output, that already includes the appropriate input functions for the flip-flops:

PS Input Input
Q1Qo | 01 10 11 01 10 11
00 01,0 10,1 10,0 | 0-1- 1-0- 1-0-
01 0o,0 11,1 11,0 0-1 10 10
10 11,0 10,0 00,1 | -01- -00- -10-
11 10,0 00,0 11,1 |-0-1 -1-1 -0-0
NS, z J1K1 J()K()

The Kmaps for the combinational circuit that activates the JK inputs of the flip-flops are:

xo Zo
_ m I I I I
- 1 1 - - - —
o Qo
Qi ——— Qi = O\
1 _ _ _ / _ 0
Ji: T1 Ky T1
Zo Zo
- } olo /\ - -
=l - -(1101]0
—T— T |@o <T@
Q1 = oo Q1| - ol
J(): T K(): T

which result in the following expressions:

J1 = I
! !
ki = zizoQy+ z5Qo
!
J() = I

K() = $11+.’E6Q1

The gate network for this exercise is shown in Figure 8.20. This network has fewer gates than
that of Figure 8.29 of the text.
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x1
x0

Q0

x0’
Q0

x0

x1 !

x0’

Ql

x0’

—o0—

x1’

x1’ J Q

CK Ko

Figure 8.20: Network for Exercise 8.31

QU

x1
x0
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Exercise 8.33 Each state is represented by one flip-flop. Consider that the input of these FF's
are represented as NA,NB,NC,ND,NE, and NF respectively. The switching expressions for
these variables are:

NA = Fz'+ Bz

NB = A2 +Cz
NC = Bi'+Cz
ND = Cz'+ Ex
NE = D2’ +Fz

NF = Ei' + Az

For the following output encoding

Z120

the switching expressions for the output are:

20 = D'+ Ax+Cz+ E
21 = Bzx+Dx+ F

The network that corresponds to these expressions is shown in Figure ?7.
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B
x—T—< F NA D Q
y FFO
—
C4]
q NB
D Q
*~—>
C
q NC
D Q
*— >
E
q ND|
D Q
*— >
F
q NE]
D Q
*~—>
A
NF|
D Q
E FF2
$:j> >

% 20
B

m > QO »>* O

oy)

m o= O

Figure 8.21: Network for Exercise 8.33



