
1

Robust GNN-based Representation Learning for HLS
Atefeh Sohrabizadeh, Yunsheng Bai, Yizhou Sun, and Jason Cong

Computer Science Department, University of California - Los Angeles, USA
{atefehsz, yba, yzsun, cong}@cs.ucla.edu

Abstract—The efficient and timely optimization of microarchitecture
for a target application is hindered by the long evaluation runtime of
a design candidate, creating a serious burden. To tackle this problem,
researchers have started using learning algorithms such as graph neural
networks (GNNs) to accelerate the process by developing a surrogate of
the target tool. However, challenges arise when developing such models
for HLS tools due to the program’s long dependency range and deeply
coupled input program and transformations (i.e., pragmas). To address
them, in this paper, we present HARP (Hierarchical Augmentation
for Representation with Pragma optimization) with a novel hierarchi-
cal graph representation of the HLS design by introducing auxiliary
nodes to include high-level hierarchical information about the design.
Additionally, HARP decouples the representation of the program and
its transformations and includes a neural pragma transformer (NPT)
approach to facilitate a more systematic treatment of this process. Our
proposed graph representation and model architecture of HARP not
only enhance the performance of the model and design space exploration
based on it but also improve the model’s transfer learning capability,
enabling easier adaptation to new environments1.

I INTRODUCTION

In recent decades, the emergence of domain-specific accelerators
(DSAs) has provided a viable solution to the end of Dennard’s
scaling [9]. Consequently, the field-programmable gate array (FPGA)
has become an appealing option for reconfigurable, energy-efficient
high-performance computing (e.g., [12], [38]). Despite their potential
advantages, FPGAs are not yet widely adopted to create DSAs in
either academia or industry, partially due to their poor programma-
bility. High-level synthesis (HLS) [8] has succeeded in reducing this
burden, but exploiting HLS remains challenging for non-experts. This
is because, even with HLS, a microarchitecture must be designed and
described in code, which limits its accessibility to hardware designers.

As a result, a new research direction aims to enhance FPGA
programmability by automating the optimization process of microar-
chitecture design [35], [37], [39], [43]. In HLS C/C++, the main
instruments used to define the microarchitecture are compiler direc-
tives in the form of pragmas. An essential research question is how to
incorporate the right combination of pragmas into the code to enhance
the quality of results (QoR). This includes determining the type of
required pragmas, where to apply them, and their options, such as the
unroll factor or pipelining type. The complexity of this problem arises
from the exponential growth in the number of candidate pragmas, the
long synthesis time for each design, and the fact that the pragmas
do not have a monotonic effect on performance and/or area, which
makes it challenging to predict their impact. While the optimal choice
of pragmas can yield significant performance improvements in the
resulting microarchitecture, such as the 9000× speedup reported
in [5], identifying the optimal combination of pragmas remains a
challenging task [5], [13], [39].

To address this problem, several previous works, as summarized
in [35], have treated the HLS tool as a black box and focused on
developing efficient heuristics to explore the solution space more
intelligently. Notably, AutoDSE [39] is a state-of-the-art approach
that employs a bottleneck optimizer mimicking the optimization
strategies of an expert designer. However, these works suffer from

1All materials available at https://github.com/UCLA-VAST/HARP

long runtimes as they rely on running the tool directly for evaluating
the design configurations, with each run taking minutes to hours.
This choice stems from the difficulty of capturing the tool’s behavior
with an analytical model [35], [39]. Recent research has demonstrated
that leveraging learning algorithms can mitigate this problem. Graph
neural networks (GNNs) [45] have been found to be highly effective
in the electronic design automation (EDA) domain [10], [16], [20],
[34], [37], [40]. These works represent the input program or circuit
as a graph and utilize GNNs to summarize the graph properties
and produce a vector for graph/node embeddings. The model then
employs a post-processing stage that converts these embeddings to the
final objectives that it wants to predict. In addition to GNNs, recent
advancements in large language models (LLMs) like AlphaCode [23],
ChatGPT [30], and GPT-4 [31] make them potential candidates for
addressing the HLS optimization problem. However, all of these
take huge computing power to train and none of them has targeted
FPGA accelerator designs with performance optimization in mind.
Therefore, for now, GNNs are a more practical solution for the
problem at hand and we consider utilizing LLMs at a later time.

Although GNN-based models have shown promising performance
in the EDA domain, there are still some challenges that need to be
addressed to make them more effective. One of the main challenges is
how to represent the HLS design (C/C++ program with architectural
pragmas) in a way that captures all relevant details and makes
it informative for the learning model. Additionally, as the design
objectives are influenced by both program context and pragmas
(i.e., transformations), it can be beneficial to develop a model that
can learn the effect of each component separately. In response to
these challenges, we propose and implement HARP. To address
the first challenge, it includes a novel hierarchical representation of
HLS designs. This representation incorporates program semantics
and pragmas, while also introducing auxiliary nodes that provide
high-level hierarchical information about the design. This graph
representation provides a coarsened view of the design, which can
assist with coping with the long-range dependencies within the
program. In fact, it helps to reduce the average shortest path of our
benchmark by a factor of 5. This permits the GNN model to pass the
nodes’ messages more easily throughout the whole graph. To tackle
the second challenge, HARP intends to enhance modeling the pragma
optimizations. Hence, we propose two approaches for decoupling the
program representation from its transformations. The first approach
separates the vector representation of the program and pragmas
generated by the GNN and employs an autoencoder loop to ensure
the pragma vector representation can reconstruct its initial features.
The second approach introduces a neural pragma transformer (NPT),
which models pragmas as learnable functions applied to the program
representation. This architectural design aligns more naturally with
the transformative nature of pragmas. We compare and evaluate these
two approaches in our experiments.

The next challenge emerges when deploying the model in a new
environment, where two types of shifts can occur that can lead to
different data distributions compared to the training set. First, the
domain shift arises when the model encounters a kernel that was not
seen by the model during the training process. Second, the task shift

https://github.com/UCLA-VAST/HARP

2

appears when there is a need to predict a new objective that was not
included in the model’s training. Bai et al. [4] discuss how we can
leverage meta-learning techniques to tackle domain shift. Thus, in
this work, we concentrate on addressing the task shift. A significant
source of task shift occurs when the HLS tool is updated, and the
heuristics used in these tools change, which, in turn, impact the
design’s objectives. Fig. 1 showcases the variations in latency and
BRAM utilization (skipping the rest of the resources due to space
limitations) for a total of 1145 designs during the transition from SDx
2018.3 to Vitis 2020.2, the HLS tools from AMD/Xilinx. The vertical
axis represents the objectives obtained using Vitis 2020.2, while the
horizontal axis corresponds to the results obtained with SDx 2018.3.
To provide a clearer comparison, the outcomes are contrasted with
the diagonal line y = x. Given the non-trivial cost of regenerating the
entire database (which requires running the HLS tool) and retraining
the model, it is preferable to transfer the model to the new shift
using a smaller dataset. The experimental results demonstrate that our
proposed graph representation and model architecture can enhance
both the original and the transferred model’s performance.

In summary, in this paper, we make the following contributions:

• We propose a novel hierarchical graph representation to combine
both a high-level view (combination of C/C++ level and LLVM IR
level) and a low-level view (LLVM IR level) of the HLS designs,
which can help to reduce the long range of dependencies.

• We design two approaches to decouple the representation of
programs and their pragmas, allowing the model to learn the
individual impact of each component more effectively.

• We evaluate the effectiveness of our proposed hierarchical graph
representation and model architectures for transfer learning by
showcasing their capacity to enhance the adaptability of the
resulting model to changes in the objectives of HLS designs.

• The experimental results demonstrate that our approach can de-
crease the prediction loss compared to a state-of-the-art (SOTA)
GNN-based work by 12-34%.

• When utilized in design space exploration (DSE), HARP achieves
an average performance improvement of 2.54× compared to the
SOTA model-free DSE while operating within a significantly
reduced time limit of 25×. Moreover, it outperforms the SOTA
model-based approach after transfer learning by 1.31× on average.

II BACKGROUND

In this section, we first provide an overview of GNNs. We then review
the pragmas that define the solution space we need to explore. Finally,
we present a summary of GNN-DSE [37], a previously published
state-of-the-art work, which we use as our baseline.

Fig. 1: The design objectives resulted from AMD/Xilinx Vitis 2020.2
over SDx 2018.3. The points are compared against the y = x line.

II-A Graph Neural Networks
A GNN [45] extracts information from a given graph by learning
the features, known as embeddings, for its nodes. This is achieved
through a sequence of layers, performing aggregation (AGG) of the

information from neighboring nodes (N (i)), and applying a transfor-
mation function (TF) to the aggregated result. The computation of a
single layer in a typical GNN can be represented as follows:

h⃗′
i = σ(TF(AGG({h⃗j |j ∈ N (i)}))) (1)

where hi ∈ RF and h′
i ∈ RF ′

represent the input and output
embeddings of node i, respectively, with F and F ′ denoting the
number of features, and σ is an activation function to introduce non-
linearity to the model.

II-B HLS Design Space and Pragmas
HARP is developed on top of the open-source AMD/Xilinx Merlin
Compiler [7], which offers the advantage of reducing optimization
pragmas and applying source-level code transformations to enable
various architectural optimizations such as memory burst, memory
coalescing, and coarse-grained optimizations [5], [39]. The solution
space using the Merlin Compiler includes three types of prag-
mas: PIPELINE, PARALLEL, and TILE. However, these prag-
mas correspond to several HLS pragmas, including pipeline,
unroll, array_partition, inline, dependence, and
loop_flatten. This is because the Merlin Compiler only needs
a high-level description of the design with its pragmas in order
to transform the input code and generate an HLS C/C++ code
with the required HLS pragmas to implement the described design.
The PIPELINE pragma can be configured to implement either
fine-grained (fg) or coarse-grained (cg) pipelining. By utilizing
the PIPELINE pragma with the cg option, the Merlin Compiler
eliminates the need for manual code rewriting to implement double
buffering, since it automatically transforms the code accordingly. The
PARALLEL and TILE pragmas allow us to adjust the duplication
factor of the processing elements (in the case of cg parallelization)
or the arithmetic operations (in the case of fg parallelization) as well
as the amount of cached data, respectively. As a result, the Merlin
Compiler provides a much more compact design space and is used
in this study. Our approach, however, can be generalized and applied
to other HLS tools directly, such as Vitis HLS [3] or Intel HLS [14]
with proper training.

II-C GNN-DSE
The GNN-DSE framework [37] is a state-of-the-art GNN-based
approach that predicts the resource utilization and cycle counts of an
FPGA design. It starts with a C kernel and generates a design space
for optimizing the kernel based on the viable pragma candidates.
The C kernel is represented as a graph that captures its control, data,
call, and pragma flow. One-hot encoders are used to create the initial
node and edge embeddings based on their attributes. The graph is
then fed into a GNN encoder which takes in designs from different
kernels and learns to assign appropriate node embeddings. The GNN
encoder is composed of TRANSFORMERCONV [36] layers, which
are followed by a jumping knowledge network (JKN) [47] that can
flexibly pick different ranges of neighborhoods for each node. The
node embeddings are merged via a node attention layer, which assigns
an importance score to each node and uses them as weights to pool
their embeddings. The resulting graph-level embedding is then fed
into several multi-layer perceptrons (MLP) networks to predict the
final objectives. The open-source implementation of GNN-DSE is our
baseline in this paper.

III RELATED WORK

Machine Learning for EDA. Since most problems in EDA are
classified as NP-complete, machine learning algorithms are gaining
popularity in this domain due to their ability to efficiently solve
them and produce high-quality solutions [13]. Additionally, these
algorithms can aid in reducing manual effort and introducing greater

3

automation into the design process. Machine learning (ML) and
deep learning (DL) models have demonstrated remarkable success
in various phases of the EDA flow, such as high-level synthesis
[4], [24], [37], [40], [43], logic synthesis [29], [48], placement
and routing in physical design [1], [19], [20], [25], [28], [46], and
design verification [41]. Huang et al. [13] identify four primary
tasks in this field: (1) decision-making in conventional approaches,
where an ML model substitutes for brute-force search or empirical
configuration selection; (2) performance prediction, in which a model
is employed to rapidly estimate QoR; (3) black-box optimization,
where a surrogate model is constructed to explore the solution space
more efficiently for optimal design; and (4) automated design, where
both the predictor and policy are learned and continually adjusted
online to significantly reduce human effort in complex design tasks.
This work aims to enhance performance prediction to facilitate HLS
black-box design optimization.

GNN for EDA. When a larger dataset is available, DL algorithms
have demonstrated significant performance improvements in EDA.
GNNs are one of the most widely used algorithms for this purpose,
as graphs provide an intuitive way to model programs, Boolean
functions, netlists, and layouts commonly used in many EDA prob-
lems [16], [26], [34]. This is also true for the HLS problem, where
analytical models cannot achieve acceptable accuracy [35], [39],
but learning algorithms have demonstrated superior performance.
However, applying learning algorithms to the HLS problem, which
constitutes an early stage of design optimization, can pose consid-
erable challenges due to the extensive and intricate optimization
procedures that a design must undergo before reaching its final
microarchitecture.

ML and GNN for HLS. Although traditional ML algorithms
such as random forest, decision tree, and linear regression have
been employed to model HLS tools [35], recent studies have shown
that GNNs can significantly improve accuracy [4], [37], [40], [43],
[44]. Moreover, using GNNs can help unify the model for several
applications, as opposed to developing a separate model for each
application. For instance, GNN-DSE [37] proposes a graph represen-
tation to capture both the program semantics and the pragma flow
and develops a GNN-based model to build a surrogate of the HLS
tool that can predict the latency and resource utilization for BRAM,
DSP, FF, and LUT. Bai et al. [4] extend GNN-DSE by presenting a
meta-learning-based framework to adapt to domain changes. Ustun
et al. [40] represent the HLS design (without pragmas) as a data
flow graph (DFG) and build a GNN-based model to predict the
mapping of arithmetic operations to the DSPs and LUTs, which can
improve the accuracy of delay prediction. Similarly, IronMan [43]
converts the program (without optimization pragmas) to DFG and
predicts the critical path under different resource allocations (DSP or
LUT) to the computation nodes using graph convolutional networks
(GCNs) [18]. Wu et al. [44] also work with HLS designs without
pragmas and construct a hierarchical GNN that first performs node-
level classification to predict the resource type (DSP, LUT, or FF)
for implementing the node and then uses this information to estimate
the critical path as the graph-level prediction.

HLS Design Space Exploration (DSE). Learning algorithms have
been also utilized for expediting the HLS DSE process to discover
the Pareto-optimal points [42], [43]. Unlike the prior works that use
general-purpose heuristics [35] or dedicated heuristics [39] to explore
the solution space, this research approach employs a data-driven
method for the search. For instance, IronMan trains a reinforcement
learning agent that identifies the optimal resource allocation between
DSP and LUT under user-specified constraints, such as minimizing
resource consumption or optimizing the critical path.

Although optimization pragmas are the primary source for im-

proving the resulting microarchitecture [5], only a few studies have
developed a comprehensive learning model for HLS that utilizes
optimization pragmas and can be applied to explore the solution space
for numerous applications [4], [37]. In this work, we aim to pinpoint
the challenges associated with developing such a model and propose
solutions to address them.

IV HARP METHODOLOGY

The objective of our study is to enhance the efficiency of exploring
the HLS design space by developing a model capable of predicting the
behavior of the HLS tool. As mentioned in Section II-B, our solution
space consists of three types of pragmas (PIPELINE, PARALLEL,
and TILE) which are considered as transformations T applied to
the program (i.e., kernel) P. In this context, HARP includes a novel
hierarchical graph representation, introduced in Section IV-A, which
facilitates the propagation of graph information throughout the graph.
Furthermore, HARP utilizes an advanced model architecture to
increase the accuracy of the prediction. Applying traditional machine
learning models to determine the objectives may erroneously carry the
correlation between program P and transformations T in the collected
data into the prediction. In contrast, HARP individually learns
the impact of each component, as we discuss in Section IV-B. In
Section IV-C, we explain that this attribute can also be advantageous
when moving to new tasks which cause shifts in the data distribution,
as the model can adapt more easily to the shift.

IV-A Hierarchical Graph Representation
A common issue in GNNs is that their performance tends to degrade
as the number of layers increases, leading to a phenomenon known
as over-smoothing. This occurs when repeated graph convolutional
layers create too similar node embeddings, thus losing important
information about the graph structure. Consequently, GNNs typically
have shallow networks, which focus on learning local neighborhoods,
leading to limited receptive fields and difficulties in capturing a global
view of the graph [10], [22]. This poses a significant challenge
in effectively learning programs that are typically characterized by
extensive dependency chains, wherein the performance of a given
program element depends on the operation of another element located
far away in the code.

We aim to tackle this challenge by developing a hierarchical graph
representation that integrates both high-level and low-level perspec-
tives of the program, specifically, the HLS design. By introducing
nodes in the graph that can establish relationships at various levels,
we can coarsen the graph representation to mitigate the impact of the
long range of dependencies. To this end, our method incorporates
a high-level view that combines the C/C++ code level and LLVM
IR [21] level and a low-level view that relies solely on the LLVM IR
level. We leverage the graph representation provided by GNN-DSE
to build the graph from LLVM IR and extend it to incorporate two
additional abstraction levels of the program.

In GNN-DSE, separate nodes represent the instructions and their
operands (data) in LLVM IR, and they are connected according to the
control, data, and call flow of the program. The pragmas are modeled
as extra nodes that link to the icmp instruction of their respective
‘for’ loop, where the optimization pragmas are applied. To build the
second level of representation in the graph, we insert auxiliary nodes
(pseudo nodes), where each pseudo node corresponds to a distinct
LLVM IR block. A block in LLVM IR is a sequence of instructions
that end with a terminator instruction, such as a branch, return, or
switch. Each basic block in LLVM IR has a single entry point and a
single exit point. We define a new node called pseudo_block
for each block. Fig. 2(a) and (b) illustrate two toy examples for
showcasing these nodes and the hierarchical structures between them.
In LLVM IR, each ‘for’ loop is typically translated into 4 blocks.

4

• cond-I

• body-I

• cond-J

• body-J

• cond-K

• body-K

• inc-K

• end-K

• inc-J

• end-J

• inc-I

• end-I

• cond-I

• body-I

• cond-J

• body-J

• inc-J

• end-J

• cond-K

• body-K

• inc-K

• end-K

• inc-I

• end-I

a) Code snippet 1 and 2 b) Hierarchical structures of sample codes

Code 1 Code 2

Code 1:

Code 2:

Sequential blocks

“for” loop hierarchy

Pseudo node to actual nodes

c) A sample hierarchical graph representation

Fig. 2: (a) Two sample code snippets; (b) The hierarchical structures of the two sample code snippets, showing only the pseudo nodes and
the connection between them; (c) A sample hierarchical graph focusing on demonstrating the pseudo nodes and their connections.

These blocks consist of the loop condition block, the loop body
block, the block for updating the loop iterator, and the final block
with a branch instruction to transition to the subsequent block after
the loop’s completion. Fig. 2 (b) portrays the pseudo nodes assigned
to each of these blocks, along with their order and connectivity. The
pseudo nodes are linked to one another based on their sequential
order. Additionally, the pseudo nodes representing the initial blocks
of the ‘for’ loops establish connections based on their order in the
C/C++ code. As demonstrated, each ‘for’ loop is linked to its parent
‘for’ loop (if any) and its first-level children (if any).

Fig. 2(c) shows a partial view (due to the space limit) of a graph for
a real case. Each pseudo_block node has three types of edges.
First, it links to all instruction and data nodes within that block.
Second, it connects to other pseudo-nodes in sequential order, thereby
creating the first level of hierarchy. Third, it establishes connections
based on the hierarchy level of the ‘for’ loops in the C/C++ code,
linking their first blocks according to their hierarchy in the code. This
creates the second level of hierarchy in the graph representation. By
adopting a hierarchical graph representation that combines high-level
and low-level views, our approach can provide a more comprehensive
understanding of the design and reduce the complexity of modeling
long-range dependencies. This is achieved by decreasing the shortest
path between the nodes via the pseudo nodes and their connections,
which helps the GNN model to pass messages throughout the graph.
For the kernels in our benchmark (comprising 40 unique kernels), the
average shortest path between every two nodes in the graph is reduced
from 25 (24.2) for the original graph to 5 (4.9) for the hierarchy
graph, on average (the geometric mean).

IV-B Decoupling Program and Transformation

The input to HLS tools is composed of two primary components that
significantly influence the final microarchitecture. The first compo-
nent is a high-level program description, denoted as P, expressed in
C/C++, which defines the semantics and functionality of the DSA to
be designed. The second component is a set of pragmas that include
parallelizing, pipelining, and tiling directives, which are applied as
transformations (T). As explained in Section II-B, these pragmas
modify the microarchitecture which in turn affects the performance,
power, and/or area of the DSA. The resulting HLS design is a function
of both P and T. This work focuses on minimizing the latency L(P, T)
of the design, given the available resource constraints of the FPGA
on which the design will be implemented. The resource constraints
are determined by the utilization of BRAM, DSP, flip-flops (FF), and
lookup-tables (LUT), which are denoted as BRAM(P, T), DSP(P, T),
FF(P, T), and LUT(P, T), respectively, and must be within certain
preset thresholds. Thus, the GNN task is to learn the impact of T on

P. Although GNN-DSE [37] learns a coupled representation vector
containing both P and T, we propose to separate the modeling of
each component as it allows for a more natural understanding of
their individual impacts. In sections IV-B1 and IV-B2, we present
two distinct approaches for implementing such a modeling strategy.
IV-B1 Separating Vector Representation of Program and Transfor-

mation
Fig. 3 depicts the model architecture for separating the vector rep-
resentation of P and T. As in GNN-DSE (reviewed in Section II-C),
we start with encoding the node and edge attributes using one-hot
encoders. The graph is then passed through a series of GNN layers
and a JKN which lets the model dynamically adjust the range of
neighborhood for each node and has been shown to be effective
for improving the performance of this problem [37]. Once the GNN
encoder is finished, the nodes have seen the program and the pragma
structure, and their embeddings are produced based on that. We
employ two attention layers to build the final P and T vectors. The
attention layer is responsible for learning an attention (importance)
score for each node and applying a weighted addition accordingly on
their embeddings. The program attention layer merges the nodes cor-
responding to the program context (NP) while the pragma attention
layer pools only the pragma nodes (NT). In addition to separating
the learning of the program and its transformation, this architecture
helps to amplify the effect of the pragmas in predicting the final
objectives. Formally, the computation here can be modeled as:

∀V ∈ P, T h⃗V =
∑
i∈NV

softmax
(

MLP(h⃗i)
)
· h⃗i (2)

where V can denote either the program context P or the transforma-
tion context T and NV designates the set of nodes that are in the
context of V .

To make the T vector (h⃗T) more meaningful, we utilize an
autoencoder [11] structure. Autoencoders are designed to reconstruct
part of the input data given its context. We use them to make sure h⃗T ,
which summarizes the pragmas, can reconstruct the input pragmas
stored as a vector θ⃗. This can help us increase the effect of a change
in the input pragma options in the final vector representation. The
autoencoder architecture consists of an MLP encoder and an MLP
decoder, which take as input h⃗T and aim to produce (θ⃗). Despite
the varying number of pragmas in different programs (HLS designs),
we employ a fixed-sized vector for θ⃗ to enable training a shared
MLP decoder for all programs. In cases where programs have fewer
pragmas, the remaining elements of θ⃗ are filled with zeros. The total
loss of the model would be calculated as:

lT = lCE

(
AE(h⃗T), θ⃗

)
+

∑
o∈obj

lMSE

(
Fo(P, T), Ho(P, T)

)
(3)

5

MLP
Decoders

T vector (𝒉𝓣)

Program
attention

 layer

Pragma
attention

 layer

P vector (𝒉𝓟)

pragma options
Ԧ𝜃

Reconstruct the pragma

HLS
design

O
n

e
-h

o
t

En
co

d
er

Ju
m

p
in

g
K

n
o

w
le

d
ge

G
N

N
 la

ye
r

+
ac

ti
va

ti
o

n

G
N

N
 la

ye
r

+
ac

ti
va

ti
o

n

G
N

N
 la

ye
r

+
ac

ti
va

ti
o

n

G
N

N
 la

ye
r

+
ac

ti
va

ti
o

n

G
N

N
 la

ye
r

+
ac

ti
va

ti
o

n

G
N

N
 la

ye
r

MLP
(auto-encoder)

graph

𝐺𝑁𝑁 𝑒𝑛𝑐𝑜𝑑𝑒𝑟

Classification:
valid vs invalid

Regression:
latency, BRAM,

DSP, FF, LUTcosine

loss

Fig. 3: Separating the vector representation of the program P and its transformation T. Distinct vectors are generated for each one. A further
reconstruction loss with an autoencoder is used to enhance the influence of pragmas on the T vector.

(a) The graph-level embedding generated by GNN-DSE [37]. (b) Our proposed P vector (h⃗P) representation.
Fig. 4: t-SNE visualization of the generated embeddings that are color-coded by the kernel name.

where lCE and lMSE denote the cosine error and mean squared error,
respectively. AE(h⃗T) is the generated vector from the autoencoder.
Fo(.) and Ho(.) show the predicted value and the groud-truth value
(HLS results) for objective o, respectively.

The t-SNE [27] visualizations of the embeddings generated by
GNN-DSE and our proposed P vector (h⃗P) are compared in Fig. 4.
t-SNE is a method that is capable of representing data with high
dimensionality through 2-D points, where data points that are close
together in the 2-D space are indicative of similar data, and those
far apart indicate dissimilar data. Each point in the figure represents
a different design point from a different kernel and is color-coded
based on its kernel name. The embeddings generated from GNN-
DSE are interleaved when labeled by kernel name, whereas our
proposed model successfully clusters the embeddings based on the
kernel they belong to. To quantitatively assess the improvement in
clustering, we compute the Euclidean distance between every pair of
embeddings for a given kernel and measure the maximum and average
distance among them. The average (across kernels) of the average
and maximum distance using h⃗P decreases by 3.7× and 2.5×
respectively, compared to the embeddings generated by GNN-DSE.
These findings highlight the effectiveness of h⃗P in understanding the
program scope and its semantics.

Furthermore, Fig. 5 shows the t-SNE visualization of h⃗T for a ran-
dom kernel, gemm-blocked from the MachSuite benchmark [33],
which is color-coded based on the perf value. The perf value
represents the log speedup of the design points to a reference
latency value. In order to better illustrate the effectiveness of h⃗T ,
we compare it with visualization using pragma options θ⃗. As the
figure shows, there are some points that are similar to each other
when they are compared with their pragma options θ⃗ but have
large differences in their perf value. This is expected as a small
change in the pragma options (for example, changing the pipelining
from coarse-grained to fine-grained) can have a significant effect on
the resulting microarchitecture and the final performance. However,
h⃗T can effectively capture the impact of transformations, leading

to improved clustering of design points. This helps us further in
distinguishing the design points within the same program. Therefore,
our proposed P and T vector representations together provide a better
understanding of the program scope and the transformations that
are applied to it. To do the final prediction, we concatenate these
two vectors and pass them to MLP decoders. Like GNN-DSE, we
define two types of tasks, classification to predict whether a pragma
candidate creates a valid design or not, and regression to predict the
latency and resource utilization. Experimental results (Section V-B)
reveal that this model can decrease the loss by 10-23%.
IV-B2 Modeling Pragmas as Function Transformation via Neural

Pragma Transformer (NPT)
The primary goal of this study is to predict the objectives of an HLS
design after applying a specific transformation T to its behavioral
description in program P. These transformations are applied in the
form of pragmas that alter the microarchitecture of the target appli-
cation (Section II-B). For example, the parallel pragma duplicates
statements within a loop and creates parallel units to process them
simultaneously. Therefore, it is appropriate to model the pragmas
(T) as functional transformations that are applied to the program P,
which is represented as a graph. Our model for achieving this goal
is illustrated in Fig. 6.

The model in Section IV-B1 can work with both the original graph
and the hierarchy graph. However, this model needs to be applied to
the hierarchical graph. Since the actual graphs are too crowded to
visualize (∼ 400 nodes on average), a schematic of the hierarchical
graph is presented in Fig. 6. The blue boxes represent the LLVM
blocks, and only one representative node, namely, the icmp node,
is depicted inside each box, which is connected to the pragma
node. Each box has a corresponding pseudo node, and these pseudo
nodes are connected with the hierarchical structure of the program
as described in Section IV-A.

A GNN encoder with the same architecture as the one shown in
Fig. 3 encodes the graph. This encoder is intended to focus on the
program’s structure along with the domain of its pragmas. Therefore,

6

(a) The input pragma options (θ⃗). (b) Our proposed T vector (h⃗T) representation.
Fig. 5: t-SNE visualization of the T vector compared to input pragma options that are color-coded by the performance value (log of speedup).
Warmer colors indicate higher performance (lower latency).

pseudo node

for1.cond

for1.body

for1.end

for2.cond

… …

“fo
r” lo

o
p

 h
ierarch

y

icmp node pragma node

for2.end

grap
h

sch
em

atic

HLS
design

O
n

e
-h

o
t

En
co

d
er

GNN
encoder

B vector (𝒉𝓑):
from pseudo nodes for LLVM

blocks

Program
attention

 layer

Pseudo
node

attention

P vector (𝒉𝓟):
from program nodes

MLP
Decoders

MLP to
Merge

pragmas

MLP as tile

MLP as
pipeline

MLP as
parallel

Transform the node embeddings of pseudo
nodes with pragma in their block

G
N

N
 la

ye
r

Pseudo node
embedding

Pragma option

Neural Pragma
Transformer (NPT)

block of nodes

Fig. 6: Modeling pragmas as function transformations using NPT: each pragma type is modeled as a learnable MLP which takes in the
embeddings of the pseudo node of the pragma block along with the pragma option. A second level of MLP is used to merge the results.

all pragma nodes have the same attribute as their default option (1
for PARALLEL and TILE pragmas. ‘off’ for PIPELINE pragma).
As a result, unlike in Section IV-B1, the input one-hot encoder to
this GNN encoder does not encode the pragma options. After the
GNN encoder has finished, the nodes have gained insight into the
program’s semantics in addition to the domain of the pragmas. We
then utilize the learnable NPT module to apply pragmas as function
transformations. NPT takes the embedding of the pseudo nodes that
contain a pragma node in their block as the input and transforms
it based on the type of the pragmas and their actual options. Each
pragma type is modeled using a learnable MLP that accepts the node
embedding and the pragma option as input and transforms the node
embedding. If a pragma type is not present in the block, the default
option is employed. The results of the MLP transformation for each
pragma type are concatenated, and another MLP is used to learn their
interactions and transform the concatenated result to the final node
embedding of the corresponding pseudo node. After this stage, the
pseudo nodes have acquired knowledge of the program semantics, the
pragma domains, and their options. A further GNN layer is utilized
to propagate the new information (pragma options) to the rest of the
program nodes via message passing.

Once the final node embeddings have been generated, they are
pooled to create the graph-level embedding. Consistent with the
approach used in Section IV-B1, two vectors are generated with the
attention mechanism in Eq. 2 to represent the program P and transfor-
mation T separately. Note that in this architecture, the transformations
T are applied to the pseudo nodes. P vector (h⃗P) is generated by
pooling the program nodes and B vector (h⃗B) is the result of pooling
the pseudo nodes, which are the primary sources containing the
pragma information. As before, h⃗P and h⃗B are concatenated, and the
result is passed through MLP decoders to predict the final objectives.

IV-C Transfer Learning

When faced with new programs or tasks, the data distribution may
shift from the training data distribution, making the prediction model
unreliable. In Section I, we discussed one form of task shift that
occurs when the HLS tool, used for synthesizing and implementing
the design, changes. In such cases, collecting all the labels again,
including the latency and resource usage, and retraining the entire
pipeline can be time-consuming. To address this issue, we aim to
adapt to the new environment using less labeled data by leveraging
transfer learning. Specifically, we use the model trained on the
previous version of the tool and fine-tune it to adapt the predictions
to the labels of the new version of the tool.

Transfer learning [50] can be viewed as a form of task adaptation,
where knowledge learned from a source task is transferred to a target
task with limited labeled data. In our case, the source task refers
to the previous version of the HLS tool, where a large amount of
labeled data is available, and the target task refers to the new version
of the tool, where limited labeled data is available. We speculate
that one important requirement for the success of transfer learning in
this context is that the model must have a clear understanding of the
components that impact optimization results, namely the program se-
mantics and the impact of transformations. By distinguishing between
these two components, the model can better update its predictions
when the data distribution shifts. Our experimental results indeed
demonstrate that our graph representation and model architecture
are effective in improving the model’s performance after transfer
learning. Specifically, our approach achieves significant performance
gains in terms of both the model accuracy and the DSE results when
fine-tuned on the limited labeled data (in this case, about half the
size of the previous dataset) from the new version of the tool.

7

V EXPERIMENTAL RESULTS

V-A Experimental Setup
Our database includes kernels of intermediate complexity that can
be used as building blocks of larger applications. Specifically, we
selected 40 kernels from the widely used MachSuite benchmark [33]
and the Polyhedral benchmark (PolyBench) [49]. They include ker-
nels with different computation intensities including linear algebra
operations on matrices and vectors (e.g., BLAS kernels), data mining
(correlation and covariance), stencil operations, encryption
(aes), and a dynamic programming application (nw). We use Au-
toDSE [39] to gather a database of these kernels. For synthesis, we
employ two AMD/Xilinx HLS tools, SDAccel 2018.3 [2] and Vitis
2020.2 [3], targeting the Xilinx Alveo U200 FPGA with a frequency
of 250MHz. For each design point, we collect the latency in terms
of cycle counts and resource utilization for DSP, BRAM, LUT, and FF.
We normalize the resource usage with the available resources on the
board and the latency with 0.5 ∗ log2(1e7

latency
) which we call perf.

Table I presents our database statistics. It is important to note that not
all combinations of pragmas yield valid design points. Invalid design
points include those with excessively long synthesis times (more than
200 minutes) or cases where either the Merlin Compiler or the HLS
tool failed to implement them [37]. The two versions of the database
consist of a total of 40 unique kernels, with 22 kernels existing in
both versions. When fine-tuning the model for transfer learning, we
freeze the first GNN layer and update the rest of the network.

Our framework is implemented and trained using PyTorch [32]
on NVIDIA Tesla V100 GPUs. The dataset is split into 70% for
training, 15% for validation, and 15% for testing. We employ the
Adam optimizer [17] with a maximum learning rate of 1e-3, which
is linearly increased from zero over the first 2000 updates and then
annealed to zero using a cosine schedule. Separate models are trained
for classification and regression tasks. The classification/regression
model is trained for 200/1500 epochs (taking less than 10h with
1 GPU) for the first version of the database and 200 epochs for
transfer learning. We pick the model with the lowest validation loss
and report its performance on the test set. The initial embeddings
have 154 features. We utilize 6 TRANSFORMERCONV [36]) with a
feature dimension of 64 for the GNN encoder. The final objective
prediction is performed using 4 MLP layers (one MLP network
for each objective). The GNN and MLP layers are followed by
ELU activation [6]. To mitigate overfitting, we apply dropout with
a probability of 0.1 to the neurons in the GNN layers. The NPT
module utilizes two layers for each of the MLPs. The autoencoder is
an MLP with 4 layers that gradually reduces the feature size from 64
to 8 and then increases it to 21 which is the dimension of the vector
containing the pragma options.

V-B Model Accuracy
We conducted a series of experiments to evaluate the effectiveness
of various components of our approach. Firstly, we retrained the
GNN-DSE model using our database as the baseline (M1). Then,
we developed M2 by replacing the model architecture of GNN-
DSE with our proposed approach described in Section IV-B1. This
involved generating separate vector representations for the program
(P) and the transformation (T). Additionally, we constructed M3
by replacing the graph representation with our hierarchical graph.
Furthermore, we implemented HARP based on the approach outlined
in Section IV-B2. Note that it also exploits the idea of separating
vector representations discussed in Section IV-B1. We also examined
two variations of this model: M5, where the last GNN layer after
the NPT module was excluded, and M4, which additionally applied
the pragmas sequentially instead of using the existing parallel and
merge structure of the NPT module. For each model, we evaluated its

performance under three different scenarios. The first two scenarios
involved training the model on datasets v1 and v2, respectively. The
third scenario involved utilizing the model pre-trained on dataset v1
and fine-tuning it on dataset v2. Our empirical results demonstrated
that freezing the parameters of the first GNN layer, which helps
reduce the number of parameters requiring updates, resulted in the
best performance after fine-tuning.

Table II summarizes the performance of each model, using three
metrics to assess their effectiveness. The first metric uses root mean
squared error (RMSE) for each objective and calculates the total loss
by summing the losses of all objectives. The second one utilizes
mean absolute error (MAE) instead. For both metrics, we also
provide the percentage difference compared to the results obtained
from GNN-DSE. Since our primary objective is to conduct DSE for
design optimization, the ranking of the perf values holds significant
importance. Therefore, we employ Kendall’s tau [15], a correlation
coefficient that measures the similarity between two variables’ rank-
ings. A value of 1 indicates a perfect positive association. Hence, for
RMSE and MAE, lower values indicate better performance, while for
tau, higher values indicate superior performance.

The analysis of the results reveals several key observations. Firstly,
when we employ separate learning of representations for program P
and transformation T (M2), we observe a decrease in both losses and
an improvement in the tau ranking of perf. However, an exception
occurs when the model is trained from scratch on the v2 database. In
this case, the increased number of parameters in the new model makes
it harder to converge in a limited training budget (dataset and training
time). Nonetheless, when utilizing the pre-trained model from the v1
database, the performance is able to catch up and even surpass GNN-
DSE. A similar trend is observed when incorporating the hierarchical
graph (M3), which further improved the results. Additionally, our
findings highlight that the optimal architecture for the NPT involves
modeling the pragmas as parallel learnable MLPs, with another MLP
responsible for managing their interaction and merging their results.
Finally, the most effective model for all scenarios (HARP) utilizes
the hierarchy graph and consists of NPT employing the parallel and
merge structure, followed by an additional GNN layer to propagate
the pragma options throughout the program. It is important to note
that this architecture, as depicted in Fig. 6, also generates separate
embeddings for program P and pseudo nodes B, which contain the
pragma (transformation) information here.

Moreover, the results in Table II align with our expectations,
indicating a correlation between the objectives obtained from the
two different versions of the HLS tool. Importantly, we observe
that the pre-trained model from one version can effectively enhance
the performance on the other version. This eliminates the need to
regenerate the whole training set with each new version of the tool,
streamlining the adaptation process. In addition, the results demon-
strate that HARP exhibits the best graph representation and model
architecture for effectively adapting to task shifts. This validates our
hypothesis that by decoupling the learning and representation of the
program and its transformations (i.e., pragmas), the model not only
acquires a deeper understanding of each component but also enhances
its adaptability to new environments.

V-C DSE Results

To verify the effectiveness of our model, we use it to identify the
Pareto-optimal design points by performing a DSE of the design
parameters. We adopt the same exploration technique as GNN-DSE
in searching through the solution space. Specifically, we employ
a bottom-up approach that utilizes a Breadth-First Search (BFS)
traversal of the pragmas, starting from the innermost loops. This
exploration strategy has shown to be very effective for this problem

8

TABLE I: Statistics of our two databases which consist of 40 unique kernels among which 22 of them are shared in both databases.

Version # #points Original range [min – max] Normalized range [min – max]
kernels (All/Valid) latency BRAM DSP LUT FF perf BRAM DSP LUT FF

SDAccel
2018.3 (v1)

23,524/ [660 – [0 – [0 – [0 – [0 – [-1.62 – [0 – [0 – [0 – [0 –
35 8,481 94,129,840] 12,950] 57,531] 7,739,313] 7,558,355] 6.94] 2.99] 8.41] 6.54] 3.19]

Vitis
2020.2 (v2)

12,168/ [992 – [0 – [0 – [0 – [0 – [-3.59 – [0 – [0 – [0 – [0 –
27 4,569 1,453,575,296] 3,182] 45,056] 6,611,687] 4,411,806] 6.65] 0.73] 6.58] 5.59] 1.86]

TABLE II: Total root mean squared error (RMSE), mean absolute error (MAE), and perf ranking (tau) of the models. For RMSE and
MAE, the lower the better. For tau, the higher the better. The percentage of difference is measured with respect to GNN-DSE [37].

Graph Model Name
v1 database v2 database

Train from scratch Train from scratch Fine-tuned from v1
RMSE MAE perf tau RMSE MAE perf tau RMSE MAE perf tau

Original GNN-DSE [37] M1 1.104 0.357 0.90 1.253 0.770 0.78 0.955 0.479 0.85

Separate P&T M2 0.991
(-10%)

0.307
(-14%) 0.92 1.330

(+6%)
0.790
(+3%) 0.76 0.796

(-17%)
0.368

(-23%) 0.89

Hierarchy

Separate P&T M3 0.975
(-12%)

0.257
(-28%) 0.93 1.443

(+15%)
0.948

(+23%) 0.70 0.872
(-9%)

0.348
(-27%) 0.89

Sequential pragma as NPT M4 1.083
(-2%)

0.339
(-5%) 0.91 1.502

(+20%)
0.938

(+22%) 0.73 0.876
(-8%)

0.449
(-6%) 0.86

Parallel & merge as NPT M5 0.989
(-10%)

0.277
(-23%) 0.92 1.073

(-14%)
0.636

(-17%) 0.81 0.739
(-23%)

0.309
(-35%) 0.89

Parallel & merge as NPT
+ post GNN layer HARP 0.974

(-12%)
0.295

(-18%) 0.93 1.015
(-19%)

0.601
(-22%) 0.82 0.679

(-29%)
0.317

(-34%) 0.90
* NPT: neural pragma transformer

as it prioritizes the exploration of fine-grained optimizations over
coarse-grained ones. HLS tools can usually perform better for such
optimizations, making this approach particularly relevant.

We employ HARP for conducting the DSE with a classification
model to assist in pruning invalid design points. The classification
model achieves an accuracy of 95% on the v1 database and after
fine-tuning on the v2 database, gets to an accuracy of 93%. During
the DSE, the classification model first determines the validity of
the point, and if deemed valid, the regression model assesses its
quality. The DSE seeks to optimize the perf value (minimize the
latency) while ensuring that resource utilizations remain below 80%.
We set a time limit of 1h/kernel on our exploration and can explore
approximately 100,000 points during this time. Once the exploration
is finished, we synthesize the top 10 points using the HLS tool to
get their true labels for comparison. We also run DSE utilizing the
GNN-DSE approach, trained on our datasets in the same fashion. For
the baseline comparison, we employ AutoDSE, which directly runs
the HLS tool to evaluate design points. Due to the nature of this
approach, AutoDSE requires a more extended runtime. Thus, we set
a time limit of 25h/kernel for its DSE. During this period, AutoDSE
typically explores an average of 200 points. Note that not all of them
can finish the synthesis as some of them may be invalid points.

Table III summarizes the DSE results obtained using both versions
of the HLS tool. The DSE is conducted on a total of 35 kernels
for SDx 2018.3 (v1) and 27 kernels for Vitis 2020.2 (v2). It is
important to note that among the 22 kernels shared between the two
versions, the average latency of the optimal design in v1 is 5.54×
(1.36× on the geometric mean) higher than that in v2, suggesting
improvements in the heuristics of the HLS tool over time. Due to
space limitations, we only report the average (avg) and geometric
mean (geo mean) of the speedup of the optimal design found by each
DSE with respect to the best design discovered by AutoDSE. As the
model-based DSEs get to explore a much larger space, they can find
better points compared to a model-free DSE. Notably, for 3mm kernel
from PolyBench with a solution space of over 17 trillion points,
both HARP and GNN-DSE demonstrate speedups of 70×. The
results reveal that HARP outperforms both AutoDSE and GNN-DSE.
Specifically, HARP showcases its competence in adapting to new
versions of the HLS tool (v2 kernels), surpassing the performance
of GNN-DSE by an average (geometric mean) speedup of 1.31×

(1.33×). This validates our hypothesis that the hierarchical graph
structure in addition to the decoupling of program and transformation
learning contributes to better adaptation capabilities in the face of
shifts from the original training.

Approach Time v1 kernels (#:35) v2 kernels (#:27)
Limit avg geo mean avg geo mean

AutoDSE 25h/kernel 1× 1× 1× 1×
GNN-DSE 1h/kernel 3.51× 0.99× 0.88× 0.79×
HARP 1h/kernel 3.61× 1.23× 1.15× 1.05×

TABLE III: The performance of the best design found by each DSE
with respect to the best one found by AutoDSE [39] in 25h.

VI CONCLUSION & FUTURE WORK

In this work, we discussed three key challenges in developing a GNN-
based model for HLS and developed HARP for addressing them.
Firstly, we tackle the long-range dependency issue in HLS kernels
by proposing a hierarchical graph structure, reducing the average
shortest path in our benchmark kernels by 5×. Secondly, recognizing
that the final objectives are influenced by two main components,
program structure and its transformations in the form of pragmas, we
decouple their representation to enhance the model’s performance.
This improved graph representation and model architecture enable
better adaptation to the inevitable task shifts. Although our focus in
this paper is on FPGAs, our design decisions are not dependent on
them. We believe that our approach can be applied to other platforms
and HLS tools as well. Moving forward, we aim to investigate the
minimum number of points required for effective adaptation to these
shifts and explore appropriate sampling techniques. Additionally, we
plan to extend our data-driven approach to DSE exploration using
reinforcement learning methods. We envision further advancements
by developing hierarchical GNNs operating at the subgraph level to
enhance compositional objective prediction. Finally, we will explore
the integration of GNNs and LLMs, leveraging multiple design
modalities—graph representation and source code—to address this
problem more effectively.

ACKNOWLEDGEMENT

This work was partially supported by NSF 2211557, NSF 1937599,
NSF 2119643, NSF 2303037, NASA, SRC JUMP 2.0 Center, Okawa
Foundation, Amazon Research, Cisco, Picsart, Snapchat, and CDSC
industrial partners (https://cdsc.ucla.edu/partners/). We would also
like to thank Marci Baun for editing the paper.

https://cdsc.ucla.edu/partners/

9

REFERENCES

[1] M. B. Alawieh, W. Li, Y. Lin, L. Singhal, M. A. Iyer, and D. Z. Pan,
“High-definition routing congestion prediction for large-scale FPGAs,”
in ASP-DAC. IEEE, 2020, pp. 26–31.

[2] AMD/Xilinx SDAccel - Vivado HLS, “https://docs.xilinx.com/v/u/2018.
3-English/ug902-vivado-high-level-synthesis.”

[3] AMD/Xilinx Vitis HLS, “https://docs.xilinx.com/v/u/2020.2-English/
ug1416-vitis-documentation.”

[4] Y. Bai, A. Sohrabizadeh, Y. Sun, and J. Cong, “Improving GNN-based
accelerator design automation with meta learning,” in Proceedings of the
59th ACM/IEEE Design Automation Conference, 2022, pp. 1347–1350.

[5] Y. Chi, W. Qiao, A. Sohrabizadeh, J. Wang, and J. Cong, “Democratizing
Domain-Specific Computing,” Communications of the ACM, vol. 66,
no. 1, pp. 74–85, 2022.

[6] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate
deep network learning by exponential linear units (elus),” arXiv preprint
arXiv:1511.07289, 2015.

[7] J. Cong, M. Huang, P. Pan, Y. Wang, and P. Zhang, “Source-to-source
optimization for HLS,” in FPGAs for Software Programmers, 2016, pp.
137–163.

[8] J. Cong, J. Lau, G. Liu, S. Neuendorffer, P. Pan, K. Vissers, and
Z. Zhang, “FPGA HLS Today: Successes, Challenges, and Opportu-
nities,” ACM TRETS, vol. 15, no. 4, pp. 1–42, 2022.

[9] R. H. Dennard, F. H. Gaensslen, H.-N. Yu, V. L. Rideout, E. Bassous, and
A. R. LeBlanc, “Design of ion-implanted MOSFET’s with very small
physical dimensions,” IEEE Journal of Solid-State Circuits, vol. 9, no. 5,
pp. 256–268, 1974.

[10] Z. Guo, M. Liu, J. Gu, S. Zhang, D. Z. Pan, and Y. Lin, “A Timing
Engine Inspired Graph Neural Network Model for Pre-Routing Slack
Prediction,” in DAC, 2022, pp. 1207–1212.

[11] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” science, vol. 313, no. 5786, pp. 504–507,
2006.

[12] Y. Hu, Y. Du, E. Ustun, and Z. Zhang, “GraphLily: Accelerating graph
linear algebra on HBM-equipped FPGAs,” in ICCAD. IEEE, 2021, pp.
1–9.

[13] G. Huang, J. Hu, Y. He, J. Liu, M. Ma, Z. Shen, J. Wu, Y. Xu, H. Zhang,
K. Zhong et al., “Machine learning for electronic design automation: A
survey,” ACM TODAES, vol. 26, no. 5, pp. 1–46, 2021.

[14] Intel High-Level Synthesis Compiler, “https://www.intel.com/content/
www/us/en/software/programmable/quartus-prime/hls-compiler.html.”

[15] M. G. Kendall, “A new measure of rank correlation,” Biometrika, vol. 30,
no. 1/2, pp. 81–93, 1938.

[16] B. Khailany, H. Ren, S. Dai, S. Godil, B. Keller, R. Kirby, A. Klinefelter,
R. Venkatesan, Y. Zhang, B. Catanzaro et al., “Accelerating chip design
with machine learning,” IEEE Micro, vol. 40, no. 6, pp. 23–32, 2020.

[17] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[18] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” ICLR, 2017.

[19] R. Kirby, S. Godil, R. Roy, and B. Catanzaro, “CongestionNet: Routing
congestion prediction using deep graph neural networks,” in 2019
IFIP/IEEE 27th International Conference on Very Large Scale Integra-
tion (VLSI-SoC). IEEE, 2019, pp. 217–222.

[20] M. Kou, J. Zeng, B. Han, F. Xu, J. Gu, and H. Yao, “GEML: GNN-
based efficient mapping method for large loop applications on CGRA,”
in Proceedings of the 59th ACM/IEEE Design Automation Conference,
2022, pp. 337–342.

[21] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in International Symposium on
CGO, 2004.

[22] Q. Li, Z. Han, and X.-M. Wu, “Deeper insights into graph convolutional
networks for semi-supervised learning,” in Proceedings of the AAAI
conference on artificial intelligence, vol. 32, no. 1, 2018.

[23] Y. Li, D. Choi, J. Chung, N. Kushman, J. Schrittwieser, R. Leblond,
T. Eccles, J. Keeling, F. Gimeno, A. Dal Lago et al., “Competition-
level code generation with alphacode,” Science, vol. 378, no. 6624, pp.
1092–1097, 2022.

[24] H.-Y. Liu and L. P. Carloni, “On learning-based methods for design-
space exploration with high-level synthesis,” in DAC, 2013, pp. 1–7.

[25] Y.-C. Lu, S. Pentapati, and S. K. Lim, “VLSI placement optimization
using graph neural networks,” in Proceedings of the 34th Advances in
Neural Information Processing Systems (NeurIPS) Workshop on ML for
Systems, Virtual, 2020, pp. 6–12.

[26] Y. Ma, Z. He, W. Li, L. Zhang, and B. Yu, “Understanding graphs
in EDA: From shallow to deep learning,” in Proceedings of the 2020
International Symposium on Physical Design, 2020, pp. 119–126.

[27] L. v. d. Maaten and G. Hinton, “Visualizing data using t-SNE,” Journal
of machine learning research, vol. 9, no. Nov, pp. 2579–2605, 2008.

[28] A. Mirhoseini, A. Goldie, M. Yazgan, J. W. Jiang, E. Songhori, S. Wang,
Y.-J. Lee, E. Johnson, O. Pathak, A. Nazi et al., “A graph placement
methodology for fast chip design,” Nature, vol. 594, no. 7862, pp. 207–
212, 2021.

[29] W. L. Neto, M. Austin, S. Temple, L. Amaru, X. Tang, and P.-E.
Gaillardon, “LSOracle: A logic synthesis framework driven by artificial
intelligence,” in ICCAD. IEEE, 2019, pp. 1–6.

[30] OpenAI, “OpenAI: Introducing ChatGPT https://openai.com/blog/
chatgpt,” 2022.

[31] ——, “GPT-4 Technical Report,” 2023.
[32] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,

T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “PyTorch: An Imperative Style, High-
Performance Deep Learning Library,” in Advances in Neural Information
Processing Systems 32, 2019.

[33] B. Reagen, R. Adolf, Y. S. Shao, G.-Y. Wei, and D. Brooks, “Machsuite:
Benchmarks for accelerator design and customized architectures,” in
IISWC, 2014.

[34] H. Ren, S. Nath, Y. Zhang, H. Chen, and M. Liu, “Why are Graph
Neural Networks Effective for EDA Problems?” in ICCAD, 2022, pp.
1–8.

[35] B. C. Schafer and Z. Wang, “High-level synthesis design space explo-
ration: Past, present, and future,” IEEE TCAD, 2019.

[36] Y. Shi, Z. Huang, W. Wang, H. Zhong, S. Feng, and Y. Sun, “Masked
label prediction: Unified message passing model for semi-supervised
classification,” IJCAI, 2021.

[37] A. Sohrabizadeh, Y. Bai, Y. Sun, and J. Cong, “Automated Acceler-
ator Optimization Aided by Graph Neural Networks,” in 2022 59th
ACM/IEEE Design Automation Conference (DAC), 2022.

[38] A. Sohrabizadeh, J. Wang, and J. Cong, “End-to-End Optimization of
Deep Learning Applications,” in FPGA, 2020, pp. 133–139.

[39] A. Sohrabizadeh, C. H. Yu, M. Gao, and J. Cong, “AutoDSE: Enabling
Software Programmers to Design Efficient FPGA Accelerators,” ACM
Transactions on Design Automation of Electronic Systems (TODAES),
vol. 27, no. 4, pp. 1–27, 2022.

[40] E. Ustun, C. Deng, D. Pal, Z. Li, and Z. Zhang, “Accurate operation
delay prediction for FPGA HLS using graph neural networks,” in
ICCAD, 2020.

[41] F. Wang, H. Zhu, P. Popli, Y. Xiao, P. Bodgan, and S. Nazarian, “Accel-
erating coverage directed test generation for functional verification: A
neural network-based framework,” in Proceedings of the 2018 on Great
Lakes Symposium on VLSI, 2018, pp. 207–212.

[42] Z. Wang and B. C. Schafer, “Machine leaming to set meta-heuristic
specific parameters for high-level synthesis design space exploration,”
in DAC. IEEE, 2020, pp. 1–6.

[43] N. Wu, Y. Xie, and C. Hao, “IronMan-pro: Multi-objective design space
exploration in HLS via reinforcement learning and graph neural network
based modeling,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 2022.

[44] N. Wu, H. Yang, Y. Xie, P. Li, and C. Hao, “High-level synthesis perfor-
mance prediction using gnns: Benchmarking, modeling, and advancing,”
in Proceedings of the 59th ACM/IEEE Design Automation Conference,
2022, pp. 49–54.

[45] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A
comprehensive survey on graph neural networks,” IEEE transactions on
neural networks and learning systems, vol. 32, no. 1, pp. 4–24, 2020.

[46] Z. Xie, Y.-H. Huang, G.-Q. Fang, H. Ren, S.-Y. Fang, Y. Chen,
and J. Hu, “RouteNet: Routability prediction for mixed-size designs
using convolutional neural network,” in 2018 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD). IEEE, 2018, pp. 1–8.

[47] K. Xu, C. Li, Y. Tian, T. Sonobe, K.-i. Kawarabayashi, and S. Jegelka,
“Representation learning on graphs with jumping knowledge networks,”
in ICML. PMLR, 2018, pp. 5453–5462.

[48] C. Yu, H. Xiao, and G. De Micheli, “Developing synthesis flows
without human knowledge,” in Proceedings of the 55th Annual Design
Automation Conference, 2018, pp. 1–6.

[49] T. Yuki and L.-N. Pouchet, “PolyBench/C.” [Online]. Available:
https://web.cse.ohio-state.edu/∼pouchet.2/software/polybench/

[50] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and Q. He,
“A comprehensive survey on transfer learning,” Proceedings of the IEEE,
vol. 109, no. 1, pp. 43–76, 2020.

https://docs.xilinx.com/v/u/2018.3-English/ug902-vivado-high-level-synthesis
https://docs.xilinx.com/v/u/2018.3-English/ug902-vivado-high-level-synthesis
https://docs.xilinx.com/v/u/2020.2-English/ug1416-vitis-documentation
https://docs.xilinx.com/v/u/2020.2-English/ug1416-vitis-documentation
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
https://web.cse.ohio-state.edu/~pouchet.2/software/polybench/

	Introduction
	Background
	Graph Neural Networks
	HLS Design Space and Pragmas
	GNN-DSE

	Related Work
	HARP Methodology
	Hierarchical Graph Representation
	Decoupling Program and Transformation
	Separating Vector Representation of Program and Transformation
	Modeling Pragmas as Function Transformation via Neural Pragma Transformer (NPT)

	Transfer Learning

	Experimental Results
	Experimental Setup
	Model Accuracy
	DSE Results

	Conclusion & Future Work
	References

