
Towards Robustness of Deep Neural Networks via Regularization

Yao Li1 Martin Renqiang Min2 Thomas Lee3

Wenchao Yu2 Erik Kruus2 Wei Wang4 Cho-Jui Hsieh4

1University of North Carolina, Chapel Hill 2NEC Labs America, Princeton
3University of California, Davis 4University of California, Los Angeles

Abstract

Recent studies have demonstrated the vulnerability of
deep neural networks against adversarial examples. In-
spired by the observation that adversarial examples often
lie outside the natural image data manifold and the intrin-
sic dimension of image data is much smaller than its pixel
space dimension, we propose to embed high-dimensional
input images into a low-dimensional space and apply regu-
larization on the embedding space to push the adversarial
examples back to the manifold. The proposed framework
is called Embedding Regularized Classifier (ER-Classifier),
which improves the adversarial robustness of the classi-
fier through embedding regularization. Besides improving
classification accuracy against adversarial examples, the
framework can be combined with detection methods to de-
tect adversarial examples. Experimental results on several
benchmark datasets show that, our proposed framework
achieves good performance against strong adversarial at-
tack methods.

1. Introduction
It has been shown that Deep Neural Networks (DNNs)

are vulnerable to adversarial examples that are generated
by adding carefully crafted perturbations to original im-
ages [48, 30]. This phenomenon brings out security con-
cerns for practical applications of deep learning. Despite
many adversarial training methods have been proposed for
defending against adversarial examples [38, 55, 41, 42], we
propose a novel defense and detection method from a dif-
ferent point of view.

Recent work showed that adversarial examples often lie
outside the natural image data manifolds [27, 49]. Since
the model was trained using data in the manifold, the model
naturally mis-classifies on examples outside the manifold.
Therefore, applying regularization to push the adversar-
ial examples back to the natural image data manifold may
help improve the robustness of neural networks (see Fig-
ure 1). Furthermore, a consensus in the high-dimensional
data analysis community is that, a method working well on

Natural
Distribution

Adv
Distribution

Regularization

Figure 1. Natural and adversarial images are from different distri-
butions

the high-dimensional data is because the data is not really
of high-dimension [33]. Inspired by the observation that the
intrinsic dimension of image data is actually much smaller
than its pixel space dimension [33] and adversarial exam-
ples lie outside the natural image data manifold [27, 49],
we propose a defense framework called Embedding Regu-
larized Classifier (ER-Classifier) shown in Figure 2.

The difference between ER-Classifier and general deep
classifier is that the extracted feature is regularized by a
discriminator part in ER-Classifier. To be more specific,
we introduce a discriminator in the latent space which tries
to separate the generated code vectors (output of the en-
coder network) from the ideal code vectors (sampled from
a prior distribution, i.e., a standard Gaussian distribution).
Employing a similar powerful competitive mechanism as
demonstrated by Generative Adversarial Networks [20], the
discriminator enforces the embedding space of the model
to follow the prior distribution. This regularization process
can help remove the effect of adversarial distortion and push
the adversarial example back to the natural data manifold.
Another difference is that the embedding space dimension
of ER-classifier is much smaller, which makes it easier for
ER-Classifier to apply regularization.

We compare ER-Classifier with other state-of-the-art de-
fense methods on MNIST, CIFAR10, STL10 and Tiny Im-
agenet. Experimental results demonstrate that our proposed
ER-Classifier outperforms other methods by a large margin.
To sum up, this paper makes the following four main con-
tributions:

• A novel unified end-to-end robust deep neural net-

&~EF

Encoder
G/(&)

Discriminator
HI($)

2~EJ

Classifier
KL($)

Generated Code

Ideal Code

Figure 2. Overview of ER-Classifier framework

work framework against adversarial attacks is pro-
posed, where embedding space regularization is ap-
plied to remove the adversarial effect.

• An objective is induced to minimize the optimal trans-
port cost between the true class distribution and the
framework output distribution, guiding the framework
to project the input image to a low-dimensional space
without losing important features for classification.

• A detection process is proposed to further improve the
robustness of the framework.

• Extensive experiments demonstrate the robustness
of our proposed ER-Classifier framework under the
white-box attacks, and show that ER-Classifier out-
performs other state-of-the-art approaches on several
benchmark image datasets.

2. Related Work
In this section, we summarize related work into two cat-

egories: attack methods and defense mechanisms.
Attack Methods. We first discuss different adversar-

ial attack methods [38, 6, 24, 13, 21, 5, 9, 43, 12, 24, 44,
58, 56]. Two main types of attack settings have been con-
sidered in previous research: black-box and white-box set-
tings. Under the white-box setting, attackers have all in-
formation about the targeted neural network, including net-
work structure and gradients. Many other white-box attack
methods have been proposed [38, 6, 24, 13], and among
them C&W [6] and PGD [38] attacks have been widely
used to test the robustness of machine learning models. Re-
cently, a new attack method called Autoattack [13] was de-
veloped, which is parameter-free, computationally afford-
able and user-independent, to test adversarial robustness. In
this paper, we mainly use l∞-PGD untargeted attack [38]
and Autoattack [13] to evaluate the effectiveness of the de-
fense method under the white-box setting. In the black-box
setting, the detailed model information, such as gradient and
model structure, are not available to the attackers. Some
attack methods rely on the predicted scores, such as class
probabilities or logits, of the model to craft adversarial ex-

amples [9, 25]. Some attacks are more agnostic and only
rely on the final decision of the model [3, 10, 23, 8, 35, 7].

Defense Mechanisms. Many works have been done to
improve the robustness of deep neural networks [55, 38, 40,
21, 34, 52, 16, 53, 54, 28, 45, 22, 4, 32, 57]. We select
five representative methods to compare with the proposed
framework. Madry’s adversarial training [38] proposed a
min-max formulation against adversarial attacks. The pro-
posed model is trained on adversarial examples generated
during the training process within the ϵ-ball of input im-
ages. A new loss function was introduced in [55] to trade
adversarial robustness off classification accuracy. The loss
function is used to replace the loss function used in Mary’s
adversarial training to further improve the robustness of ad-
versarial training. Another effective defense method under
the white-box setting is RSE [34]. The authors proposed a
“noise layer”, which fuses output of each layer with Gaus-
sian noise. Due to the difficulty of defense, some works
attempted to detect adversarial examples as alternative so-
lutions. In [19], the author proposed a kernel density based
detection framework, in which one kernel density model is
fitted for each class on the final layer output. A Logistic
Regression model is trained on the kernel density scores to
detect adversarial example. Local Intrinsic Dimensionality
(LID) characterizes the space-filling capability of the region
surrounding a sample, based on the distance to its nearest
neighbors within the sample. The author of [36] proposed
to use LID as a feature to facilitate the detection of adver-
sarial examples.

Notations. In this paper, we use l∞ and l2 distortion
metrics to measure similarity. We report l∞ distance in the
normalized [0, 1] space, so that a distortion of 0.031 cor-
responds to 8/256, and l2 distance as the total root-mean-
square distortion normalized by the total number of pixels.
We use calligraphic letters for sets (i.e., X), capital letters
for random variables (i.e., X), and lower case letters for
their values (i.e., x). The probability distributions are de-
noted with capital letters (i.e., PX) and corresponding den-
sities with lower case letters (i.e., pX).

3. Embedding Regularized Classifier

3.1. Framework Details

We propose a novel defense framework, ER-Classifier,
which aims at improving the robustness of deep neural net-
works through embedding regularization by training a dis-
criminator to push the embedding space distribution to-
wards a prior distribution. An overview of the framework is
shown in Figure 2.

Mathematically, input images X ∈ X = Rd from
PX are projected to a low-dimensional embedding vector
Z ∈ Z = Rk through the encoder Qϕ, where the em-
bedding space dimension k is much smaller than the pixel

space dimension d. The discriminator Dγ discriminates be-
tween the generated code Z̃ ∼ Qϕ(Z|X) and the ideal code
Z ∼ PZ . In this paper we apply the standard Gaussian
N (0,1) as our prior distribution PZ , but other priors may
be used for different cases. The classifier Cτ performs clas-
sification based on the generated code Z̃, producing output
U ∈ U = Rm, where m is the number of classes. The label
of X is denoted as Y ∈ U .

The training objective of ER-Classifier is:

inf
Q(Z|X)∈Q

EPX
EQ(Z|X) {ℓ(Y,C(Z))}︸ ︷︷ ︸

Classification

+λD(QZ , PZ)︸ ︷︷ ︸
Regularization

. (1)

The first part of the objective function represents classifica-
tion loss, where the encoder Q maps the input image to the
embedding vector Z, then the classifier C takes Z as an in-
put and performs prediction. Y is the true label of the input
image and ℓ is the cost function. The second part represents
the regularization loss, where λ > 0 is a hyper-parameter
controls the trade-off between regularization and classifica-
tion tasks, and D can be any arbitrary divergence between
the marginal distribution of Z (QZ) and prior distribution
(PZ).

To estimate the divergence between QZ and PZ , we ap-
ply a GAN-based framework, fitting a discriminator to esti-
mate the 1-Wasserstein distance between QZ and PZ :

W (QZ , PZ) = inf
Γ∈P(Z̃∼QZ ,Z∼PZ)

E(Z̃,Z)∼Γ∥Z̃ − Z∥.

When training the framework, the weight clipping method
proposed in Wasserstein GAN [1] is applied to help stabilize
the training of discriminator Dγ . Details of the training
algorithm is summarized in Algorithm 1.

At training stage, the encoder Qϕ first maps the input
x to a low-dimensional space, resulting in generated code
(z̃). Another ideal code (z) is sampled from the prior dis-
tribution, and the discriminator Dγ discriminates between
the ideal code and the generated code. The classifier (Cτ)
predicts the image label based on the generated code (z̃).
The main goal of ER-Classifier is leveraging embedding
space regularization to push adversarial examples back to
the natural data manifold, removing adversarial perturba-
tion. Therefore, other defense methods can also benefit
from this property. Our framework is trained with min-max
robust optimization [38], first searching for adversarial ex-
amples with projected gradient descent (PGD) method then
optimizing the framework over the adversarial examples.

At inference time, only the encoder Qϕ and the classifier
Cτ are used. The input image x is first mapped to a low-
dimensional space by the encoder (z̃ = Qϕ(x)), then the
latent code z̃ is fed into the classifier to predict the label.

3.2. Justifications of the Framework

In the framework, the classifier (PC(U |Z)) maps a latent
code Z sampled from a fixed distribution (PZ) in a latent

Algorithm 1 Training ER-Classifier
1: Input: Regularization coefficient λ > 0, l∞ distortion

ϵ, step-size for PGD attack α.
2: Note: ℓ stands for the cross-entropy loss. Πϵ(·, xo)

stands for projection to the set {x|∥x− xo∥∞ ≤ ϵ}
3: while (ϕ, γ, τ) not converged do
4: Sample {(xo

1, y
o
1), ..., (x

o
n, y

o
n)} from the training

set. Generate adversarial examples by running PGD for
multiple steps, and get {(x1, y1), ..., (xn, yn)}

5: Sample {z1, ..., zn} from the prior PZ

6: Obtain z̃i from Qϕ(Z|xi) for i = 1, ..., n
7: Update Dγ by ascending:

λ

n

n∑
i=1

Dγ(zi)−Dγ(z̃i)

8: Update Qϕ and Cτ by descending:

1

n

n∑
i=1

ℓ(Cτ (Qϕ(xi)), yi)

9: Update Qϕ by ascending the following objective by
1-step Adam:

λ

n

n∑
i=1

Dγ(Qϕ(xi))

space Z , to the output U ∈ U = Rm. The density of ER-
Classifier output is defined as follow:

pC(u) :=

∫
Z
pC(u|z)pZ(z)dz, ∀u ∈ U . (2)

If the divergence between the distribution of the true class
(PY) and the distribution of the framework output (PC) is
minimized, the framework will be doing classification task
well, which is the most important goal of the framework.

There are various ways to define the distance or diver-
gence between PY and PC . In this paper, we turn to the op-
timal transport theory [51], because it imposes a weak dis-
tance between distributions making it easier for a sequence
of distributions to converge [1]. Kantorovich’s distance in-
duced by the optimal transport problem is given by

Wc(PY , PC) := inf
Γ∈P(Y∼PY ,U∼PC)

E(Y,U)∼Γ {c(Y,U)} ,

where P(Y ∼ PY , U ∼ PC) is the set of all joint distri-
butions of (Y,U) with marginals PY and PC , and c(y, u) :
U×U 7→ R+ is any measurable cost function. Wc(PY , PC)
measures the divergence between probability distributions
PY and PC . When the probability measures are on a met-
ric space, the p-th root of Wc is called the p-Wasserstein
distance.

Theorem 1 For PC as defined above with a deterministic
PC(U |Z) and any function C : Z 7→ U ,

Wc(PY , PC) = inf
Q:QZ=PZ

EPX
EQ(Z|X) {c(Y,C(Z))} ,

where c(y, u) : U × U 7→ R+ is any measurable cost func-
tion. QZ is the marginal distribution of Z when X ∼ PX

and Z ∼ Q(Z|X). The proof is presented in Appendix A.

It is obvious that the objective function (1) is relaxed
from the r.h.s. of Theorem 1, by converting the constraint
on QZ to a penalty term and using cross-entropy loss as
the cost function. Therefore, optimizing over (1) is equiv-
alent to minimizing the discrepancy between the true class
distribution (PY) and the output distribution PC . A sum-
mary of Theorem 1 is that if we are doing optimization well
on the objective used, we will be doing classification task
well. Theorem 1 requires a deterministic PC(U |Z). How-
ever, our proposed framework readily applies to the non-
deterministic case. We derived an upper bound on the dis-
tance between the two distributions PY and PC for the non-
deterministic case. See details in Appendix A.

3.3. Detecting Adversarial Examples

Studies showed that adversarial samples come from a
distribution that is different from the natural data distribu-
tion, that is, adversarial samples do not lie on the data man-
ifold, and DNNs perform correctly only near the manifold
of training data [27, 49]. Embedding regularization helps
push adversarial examples back to the data manifold but
there might be some adversarial examples that are hard to
regularize. Therefore, we propose a detection framework,
ER-Detector, to filter out these adversarial examples before
classification. After training the ER-Classifier framework,
all samples from the training set are fed into the encoder
to generate the combined code Z

′
, where Z

′
is generated

by concatenating the hidden layer output means of encoder
Qϕ and encoder direct output Z̃. Combined code is used to
provide more clues to the detector. Then, one kernel density
model is fitted for each class based on Z

′
.

With the kernel density model, we can get density score
for any input. A logistic regression model (Gβ) is trained
on the density scores to detect adversarial examples, with
scores of adversarial examples as positive examples and
scores of natural examples as negative examples. Details
of the detector training process are shown in Algorithm 2 in
Appendix B.

At the inference time, only the encoder Qϕ, classifier
Cτ and detector Gβ are used. The input image X is first
mapped to a low-dimensional space (Qϕ(X) → Z̃, Z

′
).

Then the embedding based detector Gβ will judge whether
the image is an adversarial example. If it is marked as adver-
sarial, the classifier does not need to deal with it, otherwise

the classifier will predict the label based on the latent code.
The process is designed to detect adversarial examples that
manage to “escape” the regularization process and further
improve the robustness of the framework.

4. Experiments
For the first set of experiments, we assume the classifier

needs to predict a label for each test sample and compare the
performance of the proposed algorithm (ER-Classifier) with
other state-of-the-art adversarial defense methods. We con-
sider the following datasets: MNIST [31], CIFAR10 [29],
STL10 [11] and Tiny Imagenet [14]. See details of data in
Appendix C.

Various defense methods have been proposed to improve
the robustness of deep neural networks. In Section 4.1, we
compare our algorithm with state-of-the-art methods that
are robust in the white-box setting. Madry’s adversarial
training (Madry’s Adv) has been recognized as one of the
most successful defense methods in the white-box setting,
as shown by [2]. Random Self-Ensemble (RSE) method
introduced by [34] adds stochastic components in the neu-
ral network, achieving similar performance to Madry’s ad-
versarial training algorithm. Trades introduced in [55]
won first place in the NeurIPS 2018 Adversarial Vision
Challenge and outperformed the runner-up apparoach by
11.41% in terms of mean l2 perturbation distance.

Since the main goal of ER-Classifier is using embedding
regularization to improve adversarial robustness, other de-
fense methods can also benefit from this property. The pro-
posed ER-Classifier is trained with min-max robust opti-
mization [38]. ER-Trades is a variant that combines the
proposed framework with the loss function of Trades [55].
To demonstrate the regularization effect of ER-Classifier,
we include a variant ER-Classifier− which trains ER-
Classifier without min-max robust optimization. Code for
reproduction is available in supplementary material and will
be made available at Github later, and network architecture
details are included in Appendix G.

In Section 4.5, ER-Detector, ER-Classifier combined
with detection method described in Section 3.3, is com-
pared with KD-Detection [19] and LID Detection [36] on
MNIST [31] and CIFAR10 [29].

4.1. Evaluate Models Under White-box Attack

In this section, we first evaluate the defense methods
against l∞-PGD untargeted attack [38]. The methods that
perform best among the baselines are then evaluated by Au-
toattack [13]. When tested against PGD attack, defense
methods are evaluated under different distortion levels (ϵ),
and the larger the distortion the stronger the attack. De-
pending on the image scale and type, different datasets are
sensitive to different strengths of the attack. Models on
MNIST are evaluated under distortion level from 0 to 0.4 by

Table 1. Testing accuracy (%) of two defense methods under Au-
toattack [13] with l∞ norm. VGG19 is used as the base architec-
ture on CIFAR10. Architectures on STL10 and Tiny Imagenet are
similar to VGG19. See details of architectures in Appendix G.

Method MNIST CIFAR10 STL10 Tiny

Madry’s Adv 69.0 35.6 21.0 9.70
ER-Classifier 79.0 47.2 25.3 11.1

Table 2. Testing accuracy (%) of two defense methods under C&W
attack with l2 ≤ 0.005.

Method Testing Accuracy

Defense-GAN 55.0
ER-Classifier 99.1

0.025. Models on CIFAR10 and STL10 are evaluated un-
der ϵ ∈ [0, 0.06, 0.005]. Models on Tiny Imagenet are eval-
uated under ϵ ∈ [0, 0.02, 0.002]. When evaluated by Au-
toattack, the distortion levels on MNIST, CIFAR10, STL10
and Tiny Imagenet are 0.3, 0.03, 0.03 and 0.01 respectively.
As mentioned in the notation part, all the distortion levels
are reported in the normalized [0, 1] space. All the methods
are trained for 30 epochs on the datasets. The experimental
results against l∞-PGD are shown in Figure 3.

Based on Figure 3, we can see that ER-Classifier is
the most robust one on MNIST and Tiny Imagenet. On
STL10, ER-Trades outperforms all the other baselines. On
CIFAR10, ER-Classifier- performs better than other base-
lines when the attack is strong and other baselines except
that Trades performs similarly when distortion level (ϵ) is
small. The good performances of ER-Classifier and ER-
Trades show that the proposed framework can be combined
with state-of-the-art defense methods to further improve ro-
bustness against adversarial examples.

ER-Classifier without min-max robust optimization can
also improve the robustness of deep neural networks. Com-
pare the performance of ER-Classifier− with the perfor-
mance of the model without defense method (No De-
fense), we can see that ER-Classifier− is much more robust
than the model with no defense method on all benchmark
datasets. Besides, when the distortion level (ϵ) is large, ER-
Classifier− tends to perform better than some state-of-the-
art defense methods on MNIST, CIFAR10 and Tiny Ima-
genet. This phenomenon is obvious on CIFAR10 and it even
performs better than ER-Classifier when the attack strength
is strong. The reason might be that without min-max robust
optimization, it is easier to regularize the embedding space.

Madry’s adversarial training performs best among all the
baselines except proposed frameworks. Therefore, we eval-
uate Madry’s adversarial training and ER-Classifier against
a stronger white-box attack, Autoattack [13]. Since Autoat-
tack takes a long time to generate adversarial examples, the
two methods are compared on 1, 000 random samples from
each benchmark dataset. The results are shown in Table 1.

Table 3. Testing accuracy (%) of ER-Classifier under RayS black-
box attack [7] with l∞ norm.

Method MNIST CIFAR10 STL10 Tiny

ER-Classifier 75.8 51.0 34.4 21.7

We also compare Defense-GAN [46] with our method
ER-Classifier on MNIST. Although Defense-GAN was
shown to be partly broken by [2, 26], both ER-Classifier
and Defense-GAN leverage the power of generative mod-
els to improve adversarial robustness, and comparing to
Defense-GAN is important to demonstrate the advantage of
our novel Wassserstein distance regularization. Please note
that Defense-GAN is not our major comparison baseline in
this paper.

Both ER-Classifier and Defense-GAN are evaluated
against the l2-C&W untargeted attack, one of the strongest
white-box attacks proposed by [6]. Defense-GAN is eval-
uated using the method proposed by [2], and the code is
available on github1. ER-Classifier is evaluated against l2-
C&W untargeted attack with the same hyper-parameter val-
ues as those used in the evaluation of Defense-GAN. The
results under l2 ≤ 0.005 threshold are shown in Table 2.
Based on Table 2, ER-Classifier is much more robust than
Defense-GAN under the l2 ≤ 0.005 threshold. Since [46]
did not evaluate Defense-GAN on CIFAR10, STL10 and
Tiny Imagenet, without details of GAN structure, we can
not compare with Defense-GAN on these datasets.

4.2. Evaluate Models Under Black-box Attack

We evaluate ER-Classifier against a recently proposed
black-box attack method called RayS [7] on four bench-
mark datasets to test the performance of the proposed
framework under black-box setting. RayS is an adversarial
attack that only requires the target model’s prediction. RayS
is performed on 1, 000 random samples from each bench-
mark dataset since the attack process takes a long time. In
the experiment, the maximum number of queries is set to be
10, 0002. We report the robust accuracy in Table 3.

4.3. Evaluate the Effect of Discriminator

The ER-Classifier framework consists of three parts,
where the classification task is done by the encoder Qϕ

and classifier Cτ , and the regularization task is done by
the discriminator Dγ . The encoder and classifier are not
different from the general deep neural network classifier.
To show that it is embedding space regularization improves
the robustness, we fit a framework with only the encoder
and classifier part (E-CLA), where the encoder and classi-
fier have the same structures as in ER-Classifier, and com-

1Publicly available at https://github.com/anishathalye/
obfuscated-gradients/tree/master/defensegan

2Code available at https://github.com/uclaml/RayS

0.0 0.1 0.2 0.3 0.4
epsilon (strength of the attack)

0.0

0.2

0.4

0.6

0.8

1.0

te
st

in
g

ac
cu

ra
cy

MNIST

No Defense
Madry's Adv
ER-Classifier-
ER-Classifier
RSE
ER-Trades
Trades

0.00 0.01 0.02 0.03 0.04 0.05 0.06
epsilon (strength of the attack)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

te
st

in
g

ac
cu

ra
cy

CIFAR10
No Defense
Madry's Adv
ER-Classifier-
ER-Classifier
RSE
ER-Trades
Trades

0.00 0.01 0.02 0.03 0.04 0.05 0.06
epsilon (strength of the attack)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

te
st

in
g

ac
cu

ra
cy

STL10
No Defense
Madry's Adv
ER-Classifier-
ER-Classifier
RSE
ER-Trades
Trades

0.000 0.005 0.010 0.015 0.020
epsilon (strength of the attack)

0.1

0.2

0.3

0.4

0.5

0.6

te
st

in
g

ac
cu

ra
cy

Tiny Imagenet
No Defense
Madry's Adv
ER-Classifier-
ER-Classifier
RSE
ER-Trades
Trades

Figure 3. Testing accuracy under l∞-PGD attack on four different datasets: MNIST, CIFAR10, STL10 and Tiny Imagenet.

pare E-CLA with ER-Classifier framework. For a fair com-
parison, both structures are trained without min-max robust
optimization. The results are shown in Figure 4.

Based on Figure 4, we can observe that ER-Classifier
is much more robust than E-CLA structure on MNIST, CI-
FAR10 and Tiny Imagenet. It is also more robust on STL10
but not that much. The reason might be that there are
only 5, 000 training images in STL10 and the resolution is
96 × 96. Therefore, it is harder to learn a good embedding
with a limited amount of images. However, even when the
number of training images is limited, ER-Classifier is still
much more robust than the E-CLA structure. This obser-
vation demonstrates that regularization on the embedding
space helps improve the adversarial robustness. Notice that
the performance of the E-CLA structure is similar to the
performance of the model without defense method on CI-
FAR10, STL10 and Tiny Imagenet, and worse on MNIST,
which means the robustness of ER-Classifier does not come
from the structure design.

Variational auto-encoder can project the images to low-
dimensional space and use Kullback–Leibler divergence
loss to regularize the embedding distribution, which does
not need discriminator structure. Therefore, we also tried
VAE-CLA, which applies Variational auto-encoder struc-
ture to do the projection and regularization. The experi-
mental results in Figure 4 show that VAE-CLA does not
perform as well as ER-Classifier. Based on the observation
of the Kullback–Leibler loss and classification loss during
the training process, it seems difficult for VAE-CLA to bal-
ance between the two tasks.

4.4. Embedding Visualization

In this section, we compare the embedding learned by
Encoder+Classifier structure (E-CLA) and the embedding
learned by ER-Classifier without min-max robust optimiza-
tion on several datasets. We first generate embedding of
testing data using the encoder (z̃ = Qϕ(x)), then project
the embedding (z̃) to 2-D space by tSNE [37]. Adversarial
images (xadv) are generated using l∞-PGD attack. The ad-
versarial embedding is generated by feeding the adversarial
images into the encoder (z̃adv = Qϕ(xadv)). Finally, we
project the adversarial embedding (z̃adv) to 2-D space. The
results are shown in Figures 5 and 6. The first two plots are

embedding visualization for E-CLA, and the last two plots
are the embedding visualization for ER-Classifier. In ad-
versarial embedding visualization plots, the mis-classified
point is marked as “down triangle”, which means the PGD
attack successfully changed the prediction, and the correctly
classified point is marked as “point”, which means the at-
tack fails.

We can see that E-CLA can learn a good embedding on
natural images of MNIST. In the first plot of Figure 5, em-
bedding for different classes are well separated on the 2D
space, but under adversarial attack (second plot of Figure 5),
some points of different classes are mixed together. How-
ever, ER-Classifier can generate good separated embedding
on both natural and adversarial images (last two plots of
Figure 5). On CIFAR10, the E-CLA can not generate good
separated embedding on either natural or adversarial images
(first two plots of Figure 6), while ER-Classifier can gener-
ate good separated embedding for both (last two plots of
Figure 6).

4.5. ER-Detector

In this section, we compare the performance of the pro-
posed detection method (ER-Detector) with baseline adver-
sarial example detection methods on MNIST and CIFAR10
to show that the ER-Classifier framework can be combined
with a detection method to further improve the adversarial
robustness. There are two versions of ER-Detector: ER1
performs classification on the direct output Z̃ and ER2 per-
forms classification on the combined code Z

′
.

4.5.1 Setup and Criteria
For both MNIST and CIFAR10, deep neural networks with-
out any defense methods are used as baseline nets for KD-
Detection and LID detection methods. The networks are
trained on the designated training set. The designated test-
ing set is split into set I (20%) and set II (80%). The detec-
tors for KD, LID and ER-Detector, are trained on set I, then
evaluated on set II (80%).

The detection methods are evaluated against FGSM,
PGD and C&W attacks, which are frequently used to bench-
mark the detection methods. For FGSM and PGD, the l∞
distortion levels (ϵ) are 0.3 on MNIST and 0.03 on CI-
FAR10. Those are standard values used in many previous

0.0 0.1 0.2 0.3 0.4
epsilon (strength of the attack)

0.0

0.2

0.4

0.6

0.8

1.0

te
st

in
g

ac
cu

ra
cy

MNIST
No Defense
ER-Classfier-
VAE-CLA
E-CLA

0.00 0.01 0.02 0.03 0.04 0.05 0.06
epsilon (strength of the attack)

0.2

0.4

0.6

0.8

te
st

in
g

ac
cu

ra
cy

CIFAR10
No Defense
ER-Classifier-
VAE-CLA
E-CLA

0.00 0.01 0.02 0.03 0.04 0.05 0.06
epsilon (strength of the attack)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

te
st

in
g

ac
cu

ra
cy

STL10
No Defense
ER-Classifier-
VAE-CLA
E-CLA

0.000 0.005 0.010 0.015 0.020
epsilon (strength of the attack)

0.1

0.2

0.3

0.4

0.5

0.6

te
st

in
g

ac
cu

ra
cy

Tiny Imagenet
No Defense
ER-Classifier-
VAE-CLA
E-CLA

Figure 4. Testing accuracy of E-CLA, VAE-CLA and ER-Classsifier− under l∞-PGD attack on four different datasets: MNIST, CIFAR10,
STL10 and Tiny Imagenet.

Original Embedding of E-CLA on MNIST Adversarial Embedding of E-CLA on MNIST
Classified Right
Classified Wrong

Original Embedding of ER-classifier on MNIST Adversarial Embedding of ER-classifier on MNIST
Classified Right
Classified Wrong

Figure 5. 2D embeddings for E-CLA and ER-Classifier on MNIST. Larger visualization figures are available in Appendix E.
Original Embedding of E-CLA on CIFAR10 Adversarial Embedding of E-CLA on CIFAR10

Classified Right
Classified Wrong

Original Embedding of ER-classifier on CIFAR10 Adversarial Embedding of ER-classifier on CIFAR10
Classified Right
Classified Wrong

Figure 6. 2D embeddings for E-CLA and ER-Classifier on CIFAR10. Larger visualization figures are available in Appendix E.

Table 4. Criteria for evaluating the detection methods
Criteria Description Formula

ACC-ADV detecting accuracy for adversarial examples ACC-ADV= nadv

N

ACC-NADV detecting accuracy for non-adversarial examples ACC-NADV= mnadv

M

ACC-CLA classification accuracy for adversarial examples not detected ACC-CLA= ncla

N−nadv

ACC-COM combined accuracy for adversarial example ACC-COM= ncla+nadv

N

papers [2, 39, 36]. As for C&W attacks, the l2 distortions
are bounded by 0.007 for MNIST and 0.004 for CIFAR10.

Assume that there are N adversarial examples, and M
natural examples. nadv represents the number of adver-
sarial examples correctly detected by the detection method.
mnadv represents the number of non-adversarial examples
correctly found by the detection method. Out of the un-
detected adversarial examples, ncla is the number of them
that are correctly classified. Table 4 lists the criteria used to
evaluate the performance of the detection methods.

The detection method should not detect the non-
adversarial examples as adversarial ones, i.e. the false posi-
tive rate should not be high. The higher the ACC-NADV,
the lower the false positive rate. Besides, the detection
method should also recognize the adversarial examples cor-
rectly, and if not detected, it should classify them correctly.
Since ACC-ADV only considers the detection accuracy of

adversarial examples, it does not fully represent the “abil-
ity” of detectors in handling adversarial examples. Instead,
ACC-COM represents the accuracy for detecting and clas-
sifying adversarial examples. Therefore, ACC-NADV and
ACC-COM are two important criteria reflecting the overall
performance of the detectors.

4.5.2 Detectors Against “Familiar” Adversary
In this part, we test the performance of the detection meth-
ods against the adversary that have been “seen” by the de-
tectors, which means that the detectors are first trained with
the adversarial examples generated by an attack method,
and then tested with adversarial examples crafted by the
same attack method. The performance of the detection
methods are shown in Table 5. The numbers in the table are
percentage (%), and the best ACC-NADV and ACC-COM
are marked in bold.

Based on Table 5, ERs perform better than KD and LID
on MNIST, especially when evaluated against the PGD at-
tacks. KD also performs well when tested against the C&W
attack, but the accuracy for detecting non-adversarial ex-
amples is lower than those of ERs. ERs also perform better

Table 5. Performance on MNIST and CIFAR10 against PGD, FGSM and C&W attacks.

Data Metric PGD FGSM C&W
KD LID ER1 ER2 KD LID ER1 ER2 KD LID ER1 ER2

MNIST ACC-NADV 90.71 91.24 97.41 97.94 92.99 89.78 94.82 96.49 86.39 88.15 95.97 98.66
ACC-COM 29.87 28.12 63.81 44.13 78.46 58.33 81.15 76.70 100.00 52.38 99.91 100.00

CIFAR10 ACC-NADV 94.56 94.86 98.44 97.54 93.01 92.74 97.62 97.69 88.76 91.86 92.13 93.45
ACC-COM 29.33 79.30 80.49 86.78 50.04 58.17 59.82 61.60 100.00 82.03 100.00 100.00

Table 6. Trained on FGSM adv.examples and tested by adv.examples gen-
erated from PGD and C&W.

Data Metric PGD C&W
KD LID ER1 ER2 KD LID ER1 ER2

MNIST ACC-NADV 81.41 89.56 99.91 99.66 80.28 57.48 93.62 94.34
ACC-COM 51.23 28.58 60.09 41.87 100.00 11.18 100.00 100.00

CIFAR10 ACC-NADV 98.71 90.36 99.98 99.91 94.53 46.06 88.79 88.48
ACC-COM 23.71 60.90 63.86 72.20 10.06 87.65 100.00 100.00

Table 7. Trained on PGD adv.examples and tested by adv.examples gen-
erated from FGSM and C&W.

Data Metric FGSM C&W
KD LID ER1 ER2 KD LID ER1 ER2

MNIST ACC-NADV 97.42 91.18 77.98 92.09 90.58 81.33 88.99 91.12
ACC-COM 57.05 47.28 99.10 82.31 10.05 27.01 100.00 100.00

CIFAR10 ACC-NADV 97.89 94.97 98.19 97.54 89.18 84.41 81.70 79.07
ACC-COM 40.37 36.63 59.13 60.86 100.00 10.06 100.00 100.00

Table 8. Trained on C&W adv.examples and tested by adv.examples gen-
erated from FGSM and PGD.

Data Metric FGSM PGD
KD LID ER1 ER2 KD LID ER1 ER2

MNIST ACC-NADV 95.95 78.82 97.78 98.84 87.12 88.31 99.99 99.94
ACC-COM 67.63 21.87 76.65 56.94 39.21 13.99 58.89 40.07

CIFAR10 ACC-NADV 85.73 86.86 100.00 99.84 94.22 87.54 100.00 99.98
ACC-COM 60.89 52.07 56.31 59.91 29.72 19.37 53.05 68.18

than KD and LID on CIFAR10 against all three attacks. The
ACC-COMs of ERs are better than those of KD and LID,
which means ERs do well in detecting and classifying ad-
versarial examples. Overall, ERs perform better than the
baseline methods in the “familiar” adversary setting.

4.5.3 Cross Attack
We now evaluate the performances of the detectors under
the setting that the detectors are trained on adversarial ex-
amples generated by one attack method, and tested on ad-
versarial examples crafted by another attack method. This
is a more realistic setting since the detection system can-
not predict what kind of attack strategy will be used by the
adversary. Therefore, the performances of detection meth-
ods under the cross-attack setting are important. The ex-
perimental results are shown in Tables 6-8 (“adv.examples”
stands for “adversarial examples”.)

From Tables 6-8, ERs perform better than KD and LID
on MNIST in cross-attack setting, especially when trained
on PGD adversarial examples and attacked by C&W. When
trained on PGD adversarial examples and attacked by
FGSM, KD performs better in terms of ACC-NADV. But
the corresponding ACC-COM of KD is much worse than
those of ERs. Taking both ACC-NADV and ACC-COM
into consideration, ER2 performs best when trained on PGD
adversarial examples and attacked by FGSM.

In general, ERs perform better than KD and LID on CI-
FAR10 in cross-attack setting. From Table 6, when trained
on FGSM adversarial examples and attacked by PGD on

CIFAR10, ERs perform better than the baseline methods.
When attacked by C&W, the ACC-NADV of KD is higher
than those of ERs. However, the corresponding ACC-COM
of KD is much lower than those of ERs. The ACC-COM
of KD is only 10.06% while the ACC-COMs of ERs are
100%. Taking both criteria into consideration, ERs perform
better than KD and LID when trained on FGSM adversar-
ial examples and attacked by other methods on CIFAR10.
From Table 7, when trained on PGD adversarial examples
and attacked by FGSM on CIFAR10, ERs perform better
than KD and LID. However, when attacked by C&W, KD
performs the best and ERs perform slightly worse in terms
of ACC-NADV. Based on Table 8, when trained on C&W
adversarial examples and attacked by PGD on CIFAR10,
ERs perform better than other baseline methods. When at-
tacked by FGSM, ACC-COM of KD is slightly better than
those of ERs. The difference is not significant as the ACC-
COM of ER2 is 59.91% and that of KD is 60.89%. How-
ever, ACC-NADV of KD is much worse than those of ERs.
The ACC-NADV of KD is 85.73% and those of ERs are
100% and 99.84%. Therefore, taking both criteria into con-
sideration, ER2 performs the best.

See more experimental results on adversarial de-
tection in Appendix D. ER-Detector also performs well
against high-confidence adversarial examples. Due to the
page limit, the results of comparing detectors against high
confidence adversarial examples and the results of evaluat-
ing the effect of regularization on detection performance are
moved to Appendix D.

5. Conclusion
In this paper, we propose a new defense framework, ER-

Classifier, which improves the robustness of deep neural
networks through embedding regularization. A discrimina-
tor is trained to minimize the discrepancy between the em-
bedding space distribution and the prior distribution. The-
oretical analysis shows that our framework is not distracted
from the main goal of the model, to do classification well.
We empirically show that ER-Classifier is more robust than
other state-of-the-art defense methods on several bench-
mark datasets. Future work will include further exploration
of the low-dimensional space to improve the robustness of
deep neural networks.

Acknowledgements This work is partially supported by
NSF under CCF-1934568, DMS-1916125, DMS-2113605,
IIS-1901527, IIS-2008173 and IIS-2048280.

References
[1] Martin Arjovsky, Soumith Chintala, and Léon Bottou.

Wasserstein generative adversarial networks. In Doina Pre-
cup and Yee Whye Teh, editors, Proceedings of the 34th In-
ternational Conference on Machine Learning, volume 70 of
Proceedings of Machine Learning Research, pages 214–223,
International Convention Centre, Sydney, Australia, 06–11
Aug 2017. PMLR.

[2] Anish Athalye, Nicholas Carlini, and David Wagner. Obfus-
cated gradients give a false sense of security: Circumventing
defenses to adversarial examples. In International Confer-
ence on Machine Learning, pages 274–283. PMLR, 2018.

[3] Wieland Brendel, Jonas Rauber, and Matthias Bethge.
Decision-based adversarial attacks: Reliable attacks against
black-box machine learning models. International Confer-
ence on Learning Representations, 2018.

[4] Vivek B.S. and R. Venkatesh Babu. Single-step adversarial
training with dropout scheduling. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), June
2020.

[5] Nicholas Carlini and David Wagner. Adversarial examples
are not easily detected: Bypassing ten detection methods. In
Proceedings of the 10th ACM Workshop on Artificial Intelli-
gence and Security, pages 3–14. ACM, 2017.

[6] Nicholas Carlini and David Wagner. Towards evaluating the
robustness of neural networks. In Security and Privacy (SP),
2017 IEEE Symposium on, pages 39–57. IEEE, 2017.

[7] Jinghui Chen and Quanquan Gu. Rays: A ray searching
method for hard-label adversarial attack. In Proceedings of
the 26th ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, pages 1739–1747, 2020.

[8] Jianbo Chen, Michael I Jordan, and Martin J Wainwright.
Hopskipjumpattack: A query-efficient decision-based attack.
In 2020 ieee symposium on security and privacy (sp), pages
1277–1294. IEEE, 2020.

[9] Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and
Cho-Jui Hsieh. Zoo: Zeroth order optimization based black-
box attacks to deep neural networks without training sub-
stitute models. In Proceedings of the 10th ACM Workshop
on Artificial Intelligence and Security, pages 15–26. ACM,
2017.

[10] Minhao Cheng, Simranjit Singh, Patrick H. Chen, Pin-Yu
Chen, Sijia Liu, and Cho-Jui Hsieh. Sign-opt: A query-
efficient hard-label adversarial attack. In International Con-
ference on Learning Representations, 2020.

[11] Adam Coates, Andrew Ng, and Honglak Lee. An analy-
sis of single-layer networks in unsupervised feature learning.
In Proceedings of the fourteenth international conference on
artificial intelligence and statistics, pages 215–223, 2011.

[12] Francesco Croce and Matthias Hein. Sparse and imperceiv-
able adversarial attacks. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 4724–
4732, 2019.

[13] Francesco Croce and Matthias Hein. Reliable evalua-
tion of adversarial robustness with an ensemble of diverse
parameter-free attacks. In International Conference on Ma-
chine Learning, pages 2206–2216. PMLR, 2020.

[14] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical im-
age database. In Computer Vision and Pattern Recognition,
2009. CVPR 2009. IEEE Conference on, pages 248–255.
Ieee, 2009.

[15] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. BERT: Pre-training of deep bidirectional trans-
formers for language understanding. In Proceedings of the
2019 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota, June 2019. Associa-
tion for Computational Linguistics.

[16] Guneet S Dhillon, Kamyar Azizzadenesheli, Zachary C Lip-
ton, Jeremy Bernstein, Jean Kossaifi, Aran Khanna, and An-
ima Anandkumar. Stochastic activation pruning for robust
adversarial defense. International Conference on Learning
Representations, 2018.

[17] Gavin Weiguang Ding, Kry Yik Chau Lui, Xiaomeng Jin,
Luyu Wang, and Ruitong Huang. On the sensitivity of adver-
sarial robustness to input data distributions. In International
Conference on Learning Representations, 2019.

[18] Logan Engstrom, Andrew Ilyas, and Anish Athalye. Eval-
uating and understanding the robustness of adversarial logit
pairing. arXiv preprint arXiv:1807.10272, 2018.

[19] Reuben Feinman, Ryan R Curtin, Saurabh Shintre, and An-
drew B Gardner. Detecting adversarial samples from arti-
facts. arXiv preprint arXiv:1703.00410, 2017.

[20] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. In Advances
in neural information processing systems, pages 2672–2680,
2014.

[21] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and harnessing adversarial examples. In Inter-
national Conference on Learning Representations, 2015.

[22] Sven Gowal, Chongli Qin, Po-Sen Huang, Taylan Cemgil,
Krishnamurthy Dvijotham, Timothy Mann, and Pushmeet
Kohli. Achieving robustness in the wild via adversarial mix-
ing with disentangled representations. In IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
June 2020.

[23] Yiwen Guo, Ziang Yan, and Changshui Zhang. Subspace
attack: Exploiting promising subspaces for query-efficient
black-box attacks. In H. Wallach, H. Larochelle, A. Beygelz-
imer, F. d Alché-Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems, vol-
ume 32. Curran Associates, Inc., 2019.

[24] Qian Huang, Isay Katsman, Horace He, Zeqi Gu, Serge Be-
longie, and Ser-Nam Lim. Enhancing adversarial example
transferability with an intermediate level attack. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision, pages 4733–4742, 2019.

[25] Andrew Ilyas, Logan Engstrom, Anish Athalye, and Jessy
Lin. Black-box adversarial attacks with limited queries and
information. In International Conference on Machine Learn-
ing, pages 2137–2146. PMLR, 2018.

[26] Andrew Ilyas, Ajil Jalal, Eirini Asteri, Constantinos
Daskalakis, and Alexandros G Dimakis. The robust mani-
fold defense: Adversarial training using generative models.
arXiv preprint arXiv:1712.09196, 2017.

[27] Susmit Jha, Uyeong Jang, Somesh Jha, and Brian Jalaian.
Detecting adversarial examples using data manifolds. In
MILCOM 2018-2018 IEEE Military Communications Con-
ference (MILCOM), pages 547–552. IEEE, 2018.

[28] Christoph Kamann and Carsten Rother. Increasing the ro-
bustness of semantic segmentation models with painting-
by-numbers. In European Conference on Computer Vision,
pages 369–387. Springer, 2020.

[29] Alex Krizhevsky and Geoffrey Hinton. Learning multiple
layers of features from tiny images. Technical report, Cite-
seer, 2009.

[30] Alexey Kurakin, Ian Goodfellow, Samy Bengio, et al. Ad-
versarial examples in the physical world, 2016.

[31] Yann LeCun. The mnist database of handwritten digits.
http://yann. lecun. com/exdb/mnist/, 1998.

[32] Saehyung Lee, Hyungyu Lee, and Sungroh Yoon. Adversar-
ial vertex mixup: Toward better adversarially robust general-
ization. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), June 2020.

[33] Elizaveta Levina and Peter J Bickel. Maximum likelihood
estimation of intrinsic dimension. In Advances in neural in-
formation processing systems, pages 777–784, 2005.

[34] Xuanqing Liu, Minhao Cheng, Huan Zhang, and Cho-Jui
Hsieh. Towards robust neural networks via random self-
ensemble. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 369–385, 2018.

[35] Yujia Liu, Seyed-Mohsen Moosavi-Dezfooli, and Pascal
Frossard. A geometry-inspired decision-based attack. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), October 2019.

[36] Xingjun Ma, Bo Li, Yisen Wang, Sarah M Erfani, Sudanthi
Wijewickrema, Grant Schoenebeck, Dawn Song, Michael E
Houle, and James Bailey. Characterizing adversarial sub-
spaces using local intrinsic dimensionality. International
Conference on Learning Representations, 2018.

[37] Laurens van der Maaten and Geoffrey Hinton. Visualiz-
ing data using t-sne. Journal of machine learning research,
9(Nov):2579–2605, 2008.

[38] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,
Dimitris Tsipras, and Adrian Vladu. Towards deep learn-
ing models resistant to adversarial attacks. In International
Conference on Learning Representations, 2018.

[39] Jan Hendrik Metzen, Tim Genewein, Volker Fischer, and
Bastian Bischoff. On detecting adversarial perturbations. In-
ternational Conference on Learning Representations, 2017.

[40] Taesik Na, Jong Hwan Ko, and Saibal Mukhopadhyay. Cas-
cade adversarial machine learning regularized with a unified
embedding. In International Conference on Learning Rep-
resentations, 2018.

[41] Tianyu Pang, Xiao Yang, Yinpeng Dong, Hang Su, and Jun
Zhu. Bag of tricks for adversarial training. arXiv preprint
arXiv:2010.00467, 2020.

[42] Tianyu Pang, Xiao Yang, Yinpeng Dong, Kun Xu, Jun Zhu,
and Hang Su. Boosting adversarial training with hypersphere
embedding. arXiv preprint arXiv:2002.08619, 2020.

[43] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow,
Somesh Jha, Z Berkay Celik, and Ananthram Swami. Practi-
cal black-box attacks against machine learning. In Proceed-
ings of the 2017 ACM on Asia Conference on Computer and
Communications Security, pages 506–519. ACM, 2017.

[44] Haonan Qiu, Chaowei Xiao, Lei Yang, Xinchen Yan,
Honglak Lee, and Bo Li. Semanticadv: Generating ad-
versarial examples via attribute-conditioned image editing.
In European Conference on Computer Vision, pages 19–37.
Springer, 2020.

[45] Arash Rahnama, Andre T. Nguyen, and Edward Raff. Ro-
bust design of deep neural networks against adversarial at-
tacks based on lyapunov theory. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), June
2020.

[46] Pouya Samangouei, Maya Kabkab, and Rama Chellappa.
Defense-GAN: Protecting classifiers against adversarial at-
tacks using generative models. In International Conference
on Learning Representations, 2018.

[47] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

[48] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan
Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus. In-
triguing properties of neural networks. In International Con-
ference on Learning Representations, 2014.

[49] Thomas Tanay and Lewis Griffin. A boundary tilting
persepective on the phenomenon of adversarial examples.
arXiv preprint arXiv:1608.07690, 2016.

[50] Ilya Tolstikhin, Olivier Bousquet, Sylvain Gelly, and Bern-
hard Schoelkopf. Wasserstein auto-encoders. International
Conference on Learning Representations, 2018.

[51] Cédric Villani. Optimal transport: old and new, volume 338.
Springer Science & Business Media, 2008.

[52] Cihang Xie, Jianyu Wang, Zhishuai Zhang, Zhou Ren, and
Alan Yuille. Mitigating adversarial effects through random-
ization. In International Conference on Learning Represen-
tations, 2018.

[53] Cihang Xie, Jianyu Wang, Zhishuai Zhang, Yuyin Zhou,
Lingxi Xie, and Alan Yuille. Adversarial examples for se-
mantic segmentation and object detection. In Proceedings
of the IEEE International Conference on Computer Vision,
pages 1369–1378, 2017.

[54] Junfeng Yang and Carl Vondrick. Multitask learning
strengthens adversarial robustness. 2020.

[55] Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Lau-
rent El Ghaoui, and Michael Jordan. Theoretically principled
trade-off between robustness and accuracy. In International
Conference on Machine Learning, pages 7472–7482. PMLR,
2019.

[56] Zhengyu Zhao, Zhuoran Liu, and Martha Larson. Towards
large yet imperceptible adversarial image perturbations with
perceptual color distance. In IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), June 2020.

[57] Haizhong Zheng, Ziqi Zhang, Juncheng Gu, Honglak Lee,
and Atul Prakash. Efficient adversarial training with trans-
ferable adversarial examples. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), June
2020.

[58] Junhua Zou, Zhisong Pan, Junyang Qiu, Xin Liu, Ting Rui,
and Wei Li. Improving the transferability of adversarial ex-
amples with resized-diverse-inputs, diversity-ensemble and
region fitting. In European Conference on Computer Vision,
pages 563–579. Springer, 2020.

A. Theoretical analysis of our framework
The proof of Theorem 1 is adapted from the proof of

Theorem 1 in [50]. Consider certain sets of joint proba-
bility distributions of three random variables (X,U,Z) ∈
X × U × Z . X can be taken as the input images, U as
the output of the framework, and Z as the latent codes.
PC,Z(U,Z) represents a joint distribution of a variable pair
(U,Z), where Z is first sampled from PZ and then U from
PC(U |Z). PC defined in (2) is the marginal distribution of
U when (U,Z) ∼ PC,Z .

The joint distributions Γ(X,U) or couplings between
values of X and U can be written as Γ(X,U) =
Γ(U |X)PX(X) due to the marginal constraint. Γ(U |X)
can be decomposed into an encoding distribution Q(Z|X)
and the generating distribution PC(U |Z), and Theorem 1
mainly shows how to factor it through Z.

In the first part, we will show that if PC(U |Z) are Dirac
measures, we have

inf
Γ∈P(X∼PX ,U∼PC)

E(X,U)∼Γ {ℓ(f(X), U)}

= inf
Γ∈PX,U

E(X,U)∼Γ {ℓ(f(X), U)} , (3)

where P(X ∼ PX , U ∼ PC) denotes the set of all joint dis-
tributions of (X,U) with marginals PX , PC , and likewise
for P(X ∼ PX , Z ∼ PZ). The set of all joint distribu-
tions of (X,U,Z) such that X ∼ PX , (U,Z) ∼ PC,Z , and
(U ⊥⊥ X)|Z are denoted by PX,U,Z . PX,U and PX,Z de-
note the sets of marginals on (X,U) and (X,Z) induced by
PX,U,Z .

From the definition, it is clear that PX,U ⊆ P(PX , PC).
Therefore, we have

inf
Γ∈P(X∼PX ,U∼PC)

E(X,U)∼Γ {ℓ(f(X), U)}

≤ inf
Γ∈PX,U

E(X,U)∼Γ {ℓ(f(X), U)} , (4)

The identity is satisfied if PC(U |Z) are Dirac measures,
such as U = C(Z). This is proved by the following Lemma
in [50].

Lemma 1 PX,U ⊆ P(PX , PC) with identity if PC(U |Z =
z) are Dirac for all z ∈ Z . (see details in [50].)

In the following part, we show that

inf
Γ∈PX,U

E(X,U)∼Γ {ℓ(f(X), U)}

= inf
Q:QZ=PZ

EPX
EQ(Z|X) {ℓ(f(X),C(Z))} . (5)

Based on the definition, P(PX , PC), PX,U,Z and PX,U de-
pend on the choice of conditional distributions PC(U |Z),
but PX,Z does not. It is also easy to check that PX,Z =
P(X ∼ PX , Z ∼ PZ). The tower rule of expectation, and

the conditional independence property of PX,U,Z implies

inf
Γ∈PX,U

E(X,U)∼Γ {ℓ(f(X), U)}

= inf
Γ∈PX,U,Z

E(X,U,Z)∼Γ {ℓ(f(X), U)}

= inf
Γ∈PX,U,Z

EPZ
EX∼P (X|Z)EU∼P (U |Z) {ℓ(f(X), U)}

= inf
Γ∈PX,U,Z

EPZ
EX∼P (X|Z) {ℓ(f(X),C(Z))}

= inf
Γ∈PX,Z

E(X,Z)∼Γ {ℓ(f(X),C(Z))}

= inf
Q:QZ=PZ

EPX
EQ(Z|X) {ℓ(f(X),C(Z))} (6)

Finally, since Y = f(X), it is easy to get

inf
Γ∈P(Y∼PY ,U∼PC)

E(Y,U)∼Γ {ℓ(Y,U)}

= inf
Γ∈P(X∼PX ,U∼PC)

E(X,U)∼Γ {ℓ(f(X), U)} (7)

Now (3), (5) and (7) are proved and the three together prove
Theorem 1.

Our proposed framework readily applies to non-
deterministic case. If the classifier part is non-deterministic,
Lemma 1 provides only the inclusion of sets PX,U ⊆
P(PX , PU), and we can get an upper bound on the Wasser-
stein distance between the ground-truth and predicted label
distributions:

inf
Γ∈P(X∼PX ,U∼PC)

E(X,U)∼Γ {ℓ(f(X), U)}

≤ inf
Γ∈PX,U

E(X,U)∼Γ {ℓ(f(X), U)}

≤
d∑

i=1

σ2
i + inf

Γ∈PX∼PX,Z∼PZ

E(X,Z)∼Γ

{
∥f(X)−C(Z)∥2

}
,

(8)

where we assume the conditional distributions PC(U |Z =
z) have mean values C(z) ∈ Rd and marginal variances
σ2
1 , ..., σ

2
d ≥ 0 for all z ∈ Z , where C : Z → X , and

ℓ(y, u) = ∥y − u∥2. The above upper bound is derived by:

inf
Γ∈PX,U

E(X,U)∼Γ

{
∥f(X)− U∥2

}
= inf

Γ∈PX,U,Z

EPZ
EX∼P (X|Z)EU∼P (U |Z){∥f(X)− U∥2}

(9)

and

EU∼P (U |Z){∥f(X)− U∥2}
= EU∼P (U |Z){∥f(X)−C(Z) +C(Z)− U∥2}
= ∥f(X)−C(Z)∥2 + EU∼P (U |Z){∥C(Z)| − U∥2}
+ EU∼P (U |Z){< f(X)−C(Z),C(Z)− U >}

= ∥f(X)−C(Z)∥2 +
d∑

i=1

σ2
i . (10)

In equation (10), the second term of the second last row
becomes 0 since the optimization will drive f(X) −C(Z)
to zero.

B. Implementation Details
B.1. Detection Model Training Algorithm

See details of training ER-Detector in Algorithm 2.

Algorithm 2 Training the Detection System
1: Input: Pre-trained encoder Qϕ.
2: Training Procedure:
3: Feeding all the training set images {x}ntrain

i=1 into the
encoder Qϕ and get {z′}ntrain

i=1 .
4: for t = 1, ...,m do, ▷ m is the number of classes
5: Fit KDEt based on Z

′

t , where Z
′

t is the set of z
′

i with
label t.

6: Generate noisy ({xb
i}

nsetI
i=1) and adversarial ({xa

i }
nsetI
i=1)

examples based on {xi}nsetI
i=1 .

7: for i = 1, ..., nsetI do
8: di = KDEt(xi), where the predicted label ŷi = t
9: dbi = KDEt(x

b
i), where the predicted label ŷbi = t

10: dai = KDEt(x
a
i), where the predicted label ŷai = t

11: Train Logistic Regression based on {di}nsetI
i=1 and

{dbi}
nsetI
i=1 as negative examples and {dai }

nsetI
i=1 as pos-

itive examples.
12: End Procedure
13: Return Gβ

B.2. Kernel Density Estimation

Kernel density estimation (KDE) is used in the detector
Gβ to model the low-dimensional space of the projection
system. KDE is an unsupervised technique to estimate un-
known probability distribution. Suppose that z1, ..., zn are
training samples drawn from an unknown probability den-
sity fZ(z). Given z, we can use the following function to
estimate the density score at z:

f̂Z(z) =
1

n

n∑
i=1

Kσ(z, zi),

where Kσ(·, ·) stands for kernel functions. In the exper-
iments, one kernel density model is fitted for each class.
Therefore, if z is predicted with label t, the samples {z}ni=1

used to do the estimation are training samples from class t.
In the experiments, we apply the Gaussian kernel with

bandwidth σ:

Kσ(z1, z2) ∼ exp(−∥z1 − z2∥2/σ2).

The bandwidth parameter affects the “smoothness” of the
resulting density. A large bandwidth leads to a very
“smooth” density distribution. A small bandwidth usually
leads to a “spiky” density distribution.

C. Experimental Details
C.1. Datasets

In this paper, we compare the performance of our pro-
posed algorithm with other state-of-the-art defense methods
on several benchmark datasets:

• MNIST [31]: handwritten digit dataset, which consists
of 60, 000 training images and 10, 000 testing images.
These are 28 × 28 black and white images in ten dif-
ferent classes.

• CIFAR10 [29]: natural image dataset, which contains
50, 000 training images and 10, 000 testing images in
ten different classes. These are low resolution 32× 32
color images.

• STL10 [11]: color image dataset similar to CIFAR10,
but contains only 5, 000 training images and 8, 000
testing images in ten different classes. The images are
of higher resolution 96× 96.

• Tiny Imagenet [14]: a subset of Imagenet dataset. Tiny
Imagenet has 200 classes, and each class has 500 train-
ing images, 50 testing images, making it a challenging
benchmark for the defense task. The resolution of the
images is 64× 64.

Adversarial training parameters on different datasets are
shown in Table 9. The parameters are the same for both
Madry’s adversarial training and ER-Classifier for fair com-
parison.

Table 9. Parameters of adversarial training.
Data ϵ Number of Iterations

MNIST 0.3 40
CIFAR10 0.03 20

STL10 0.03 20
Tiny Imagenet 0.01 10

C.2. Dimension of Embedding Space

One important hyper-parameter of ER-Classifier is the
dimension of the embedding space. If the dimension is too
small, important features are “collapsed” onto the same di-
mension, and if the dimension is too large, it will be hard

to regularize the embedding and result in too much noise
and instability. The maximum likelihood estimation of in-
trinsic dimension proposed by [33]3 is used to calculate
the intrinsic dimension of each image dataset, serving as
a guide for selecting the embedding dimension. The sam-
ple size used in calculating the intrinsic dimension is 1, 000,
and increasing the sample size does not influence the results
much. Based on the intrinsic dimension estimated by [33],
we test several different values around the estimated intrin-
sic dimension and evaluate the models against the l∞-PGD
attack. All models are trained without min-max robust op-
timization, and the experimental results are shown in Fig-
ure 7.

The final embedding dimension is chosen based on ro-
bustness, number of parameters, and testing accuracy when
there is no attack. The final embedding dimensions and es-
timated intrinsic dimensions are shown in Table 10.

Table 10. Pixel space dimension, intrinsic dimension calculated
by [33], and final embedding dimension used.

Data Data dim. Estimated Embedding dim.
Intrinsic dim.

MNIST 1× 28× 28 13 4
CIFAR10 3× 32× 32 17 16

STL10 3× 96× 96 20 16
Tiny Imagenet 3× 64× 64 19 20

Based on Figure 7, the embedding dimension close to the
estimated intrinsic dimension usually offers better results
except on MNIST. One explanation may be that MNIST is
a simple handwritten digit dataset, so performing classifica-
tion on MNIST may not require that many dimensions.

C.3. Epsilon Selection

Epsilon (ϵ) is an important hyper-parameter for adversar-
ial training. When doing Madry’s adversarial training, we
test the model robustness with different ϵ and choose the
best one. The experiment results are shown in Figure 8.

Based on Figure 8, we use ϵ = 0.3, 0.03, 0.03 in Madry’s
adversarial training on MNIST, CIFAR10 and STL10 re-
spectively. For Tiny Imagenet, we use ϵ = 0.01. To make
a fair comparison, we use the same ϵ when training ER-
Classifier.

C.4. Prior Selection

ER-Classifier does not have restrictions on the choice of
prior. However, it is interesting to explore the performances
of different priors.

Three different prior distributions are tested on MNIST
and CIFAR10 datasets. They are standard Gaussian,
Uniform(−3, 3) and Cauchy(0, 1), where Cauchy(0, 1) has
the same support as standard Gaussian but is heavy tailed

3Code publicly available at https://github.com/OFAI/
hub-toolbox-python3

and 99.7% of the standard Gaussian points lies within
[−3, 3]. All the models are trained without min-max ro-
bust optimization, and the experimental results are shown
in Figure 9. Based on the results, all three priors work well,
but standard Gaussian performs best on both datasets.

Ding et al. [17] prove that adversarial robustness is sen-
sitive to the input data distribution, and if the data is uni-
formly distributed in the input space, no algorithm can
achieve good robustness. They also empirically show that
cornered/concentrated data distributions tend to achieve
better robustness. Standard Gaussian pushes the embedding
space to be more concentrated, making the valid perturba-
tion space to be smaller. This may explain why Gaussian
prior performs a little bit better than two other priors.

D. More Detection Experiments

D.1. Testing Against High Confidence Adversarial
Examples

In [2], the author pointed out that LID detection method
is not able to detect high confidence adversarial examples
generated by C&W attack. This might be a concern for all
detection methods. Therefore, in this part, we apply C&W
to generate high confidence adversarial examples and test
the detectors against them.

We generate 100 high confidence adversarial examples
for both datasets and evaluate the detectors against them.
The confidences are 9 and 20 for MNIST and CIFAR10 re-
spectively. Based on the experiment, if the confidence goes
higher than those thresholds, it is difficult to generate adver-
sarial examples on the corresponding datasets within the L2

thresholds. The performances of the detectors are shown in
Tables 11-13.

Table 11. Trained on FGSM adv.examples and tested on high confidence
adv.examples generated by C&W.

Methods MNIST CIFAR10
ACC-NADV ACC-COM ACC-NADV ACC-COM

KD 63.50 11.00 86.50 16.00
LID 57.00 11.00 43.00 16.00
ER1 80.00 100.00 82.50 100.00
ER2 83.00 100.00 77.00 16.00

Table 12. Trained on PGD adv.examples and tested on high confidence
adv.examples generated by C&W.

Methods MNIST CIFAR10
ACC-NADV ACC-COM ACC-NADV ACC-COM

KD 74.00 11.00 74.50 16.00
LID 83.00 11.00 94.00 36.00
ER1 73.00 100.00 79.00 100.00
ER2 80.50 100.00 72.50 16.00

0.0 0.1 0.2 0.3 0.4
epsilon (strength of the attack)

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

te
st

in
g

ac
cu

ra
cy

MNIST
dim=4
dim=8
dim=16

0.00 0.01 0.02 0.03 0.04 0.05 0.06
epsilon (strength of the attack)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

te
st

in
g

ac
cu

ra
cy

CIFAR10
dim=8
dim=16
dim=24

0.00 0.01 0.02 0.03 0.04 0.05 0.06
epsilon (strength of the attack)

0.2

0.3

0.4

0.5

0.6

te
st

in
g

ac
cu

ra
cy

STL10
dim=16
dim=20
dim=24

Figure 7. Testing accuracy of models with different embedding dimensions under l∞-PGD attack.

0.0 0.1 0.2 0.3 0.4
epsilon (strength of the attack)

0.0

0.2

0.4

0.6

0.8

1.0

te
st

in
g

ac
cu

ra
cy

MNIST

Madry:epsilon=0.25
Madry:epsilon=0.3
Madry:epsilon=0.35
Madry:epsilon=0.4

0.00 0.01 0.02 0.03 0.04 0.05 0.06
epsilon (strength of the attack)

0.2

0.4

0.6

0.8

te
st

in
g

ac
cu

ra
cy

CIFAR10
Madry:epsilon=0.01
Madry:epsilon=0.02
Madry:epsilon=0.03
Madry:epsilon=0.04

0.00 0.01 0.02 0.03 0.04 0.05 0.06
epsilon (strength of the attack)

0.2

0.3

0.4

0.5

0.6

te
st

in
g

ac
cu

ra
cy

STL10
Madry:epsilon=0.025
Madry:epsilon=0.03
Madry:epsilon=0.035
Madry:epsilon=0.04

Figure 8. Testing accuracy of models with different ϵ on MNIST, CIFAR10 and STL10.

Table 13. Trained on C&W adv.examples and tested on high confidence
adv.examples generated by C&W.

Methods MNIST CIFAR10
ACC-NADV ACC-COM ACC-NADV ACC-COM

KD 69.50 11.00 74.00 16.00
LID 98.50 11.00 74.00 16.00
ER1 87.00 11.00 85.00 100.00
ER2 89.50 100.00 83.00 16.00

When tested against high confidence adversarial exam-
ples, ER1 can still maintain good performance while other
methods are heavily influenced. When trained on FGSM
adversarial examples, KD has better ACC-NADV on CI-
FAR10 while the ACC-COM is much lower than that of
ER1. When trained on PGD adversarial examples, LID
has better ACC-NADVs but in terms of ACC-COM, it per-
forms much worse than ER1. Similarly, when trained on
C&W adversarial examples, LID has better ACC-NADV
on MNIST, but the corresponding ACC-COM is worse than
that of ER2. Generally speaking, taking both ACC-NADV
and ACC-COM into consideration, ERs perform better than
the baseline methods under the high confidence setting.

D.2. Effect of Regularization

To show that regularization on the embedding space help
improve the robustness of ER-Detector, we fit frameworks
with only the encoder and classifier part (ER1− and ER2−),

where the encoder and classifier have the same structures as
in ER-Detector. The results are shown in Table 14. Consid-
ering both ACC-NADV and ACC-COM, ER-Detector per-
forms much better than structures without regularization.
Instead of fitting a discriminator to regularize the embed-
ding space, Kullback-Leibler distance is also tried. How-
ever, the KL loss and classification loss cannot converge
together during the training.

E. Loss Surface Visualization

To show that ER-Classifier outperforms Madry’s adver-
sarial training is not because of weird loss surface, we visu-
alized the loss surfaces of ER-Classifier and Madry’s adver-
sarial training on CIFAR10. Following the implementation
in [18], we vary the data input along a linear space defined
by the sign of the input gradient and a random Rademacher
vector, where the x- and y- axes represent the magnitude of
the perturbation added in each direction and the z-axis rep-
resents the loss. Based on the results in Figure 10. We can
see that both methods have smooth loss surfaces.

F. Embedding Visualization

Larger versions of embedding visualization plots are
shown in Figure 11 and Figure 12.

0.0 0.1 0.2 0.3 0.4
epsilon (strength of the attack)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

te
st

in
g

ac
cu

ra
cy

MNIST
Gaussian
Uniform
Cauchy

0.00 0.01 0.02 0.03 0.04 0.05 0.06
epsilon (strength of the attack)

0.4

0.5

0.6

0.7

0.8

0.9

te
st

in
g

ac
cu

ra
cy

CIFAR10
Gaussian
Uniform
Cauchy

Figure 9. Testing accuracy of models with different prior distributions under l∞-PGD attack.

Table 14. Performances of ERs− and ERs on MNIST and CIFAR10 against PGD, FGSM and C&W attacks.

Criteria PGD FGSM C&W
ER1− ER1 ER2− ER2 ER1− ER1 ER2− ER2 ER1− ER1 ER2− ER2

MNIST ACC-NADV 99.95 97.41 100.00 97.94 95.97 94.82 99.52 96.49 93.42 95.97 91.55 98.66
ACC-COM 1.11 63.81 1.41 44.13 31.54 81.15 8.67 76.70 9.61 99.91 9.75 100.00

CIFAR10 ACC-NADV 97.68 98.44 96.85 97.54 95.03 97.62 96.77 97.69 100.00 92.13 100.00 93.45
ACC-COM 58.74 80.49 49.11 86.78 52.31 59.82 55.83 61.60 10.06 100.00 11.54 100

G. Model Structure
MNIST, CIFAR10, STL10 and TinyImagenet classifier

structures used for baseline methods are shown in Table 15.
Details of ER-Classifier structures on the four benchmark
datasets are shown in Table 16. The discrminator architec-
ture is the same on four datasets: four fully connected lay-
ers. See code of model in code files in supplementary code
folder.

Table 15. Architectures of baseline networks.
Dataset Architecture

MNIST [31] 4Conv. + 4FC layers
CIFAR10 [29] VGG19 with BN [47]

STL10 [11] 6Conv. with BN and 5Max.Pool +4FC
Tiny Imagenet [15] 13Conv. with BN and 5Max.Pool +4FC

Table 16. Architectures of ER-Classifier Encoders.
Dataset Encoder Architecture Classifier Architecture

MNIST [31] 4Conv. with BN + 1FC 3FC with BN
CIFAR10 [29] 16Conv. + 1FC 4FC

STL10 [11] 6Conv. with BN +1FC 3FC
Tiny Imagenet [15] 13Conv. with BN and 5Max.Pool +1FC 3FC

0.10
0.05

0.00
0.05

0.10 0.10
0.05

0.00
0.05

0.10
0.00

1.00

2.00

3.00

4.00

0.10
0.05

0.00
0.05

0.10 0.10
0.05

0.00
0.05

0.10
0.00

1.00

2.00

3.00

4.00

Figure 10. Loss surfaces of ER-Classifier and Madry’s adversarial training. (Left: ER-Classifier, Right: Madry’s adversarial training)

Original Embedding of E-CLA on MNIST Adversarial Embedding of E-CLA on MNIST
Classified Right
Classified Wrong

Original Embedding of ER-classifier on MNIST Adversarial Embedding of ER-classifier on MNIST
Classified Right
Classified Wrong

Figure 11. 2D embeddings for E-CLA and ER-Classifier on MNIST.

Original Embedding of E-CLA on CIFAR10 Adversarial Embedding of E-CLA on CIFAR10
Classified Right
Classified Wrong

Original Embedding of ER-classifier on CIFAR10 Adversarial Embedding of ER-classifier on CIFAR10
Classified Right
Classified Wrong

Figure 12. 2D embeddings for E-CLA and ER-Classifier on CIFAR10.

