CS260: Machine Learning Algorithms

Lecture 1: Overview

Cho-Jui Hsieh UCLA

Jan 7, 2019

Course Information

- Website: http://web.cs.ucla.edu/~chohsieh/teaching/CS260_ Winter2019/main.html
- My office: EVI 284
- Office hours: Wednesday 11am-noon
- Online office hour: TBD
- TA: Patrick Chen (patrickchen@g.ucla.edu)
- TA for online course: Minhao Cheng (mhcheng@ucla.edu)

Course Information

 There is no textbook. Most of the topics are covered in "Deep Learning" (by Goodfellow, Bengio, Courville)

Course Information

 There is no textbook. Most of the topics are covered in "Deep Learning" (by Goodfellow, Bengio, Courville)

• Part I (basic concepts):

Linear models (regression, classification, clustering, dimension reduction)

Basic learning theory (overfitting, regularization)

Part II (Nonlinear models):

Kernel methods

Tree-based methods

Deep networks

Applications in computer vision and NLP

Grading Policy

- Midterm exam (30%)
- Homework (30%)
 - 3 homeworks
- Final project (40%)

Final project

- Group of \leq 4 students.
- Work on some research projects:
 - Solve an interesting problem
 - Develop a new algorithm
 - Compare state-of-the-art algorithms on some problems
 - . . .
- I'll recommend some topics in the course. Feel free to discuss with me in advance.

Machine Learning: Overview

From learning to machine learning

• What is learning?

observations
$$\rightarrow$$
 Learning \rightarrow *Skill*

- Skill: how to make decision (action)
 - · Classify an image
 - Translate a sentence from one language to another
 - ...

From learning to machine learning

• What is learning?

observations
$$\rightarrow$$
 Learning \rightarrow *Skill*

- Skill: how to make decision (action)
 - Classify an image
 - Translate a sentence from one language to another
 - . . .
- Machine learning:

```
data → Machine Learning → Skill (decision rules)
```

Automatic the learning process!

Credit Approval Problem

Customer record (features):

age	23 years
gender	female
annual salary	NTD 1,000,000
year in residence	1 year
year in job	0.5 year
current debt	200,000

To be learned:

"Should we approve the credit card application?"

Credit Approval Problem

Customer record (features):

age	23 years
gender	female
annual salary	NTD 1,000,000
year in residence	1 year
year in job	0.5 year
current debt	200,000

To be learned:

"Should we approve the credit card application?"

Data: A collection of feature-label pairs:

(customer1 feature, Yes), (customer2 feature, No), · · ·

Credit Approval Problem

Customer record (features):

age	23 years
gender	female
annual salary	NTD 1,000,000
year in residence	1 year
year in job	0.5 year
current debt	200,000

• To be learned:

"Should we approve the credit card application?"

Data: A collection of feature-label pairs:

 $({\sf customer 1 \ feature}, {\sf Yes}), ({\sf customer 2 \ feature}, {\sf No}), \cdots$

• Learned model: Some decision rule

e.g., salary
$$> 1M$$

Formalize the Learning Problem

- Input: $\mathbf{x} \in \mathcal{X}$ (customer application) e.g., $\mathbf{x} = [23, \ 1, \ 1000000, \ 1, \ 0.5, \ 200000]$
- Output: $y \in \mathcal{Y}$ (approve/disapprove)
- Target function to be learned:

$$f: \mathcal{X} \to \mathcal{Y}$$
 (ideal credit approval formula)

• Data (historical records in bank):

$$\mathcal{D} = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \cdots, (\mathbf{x}_N, y_N)\}\$$

Hypothesis (model)

 $g: \mathcal{X} \to \mathcal{Y}$ (**learned** formula to be used)

$$\{(\mathbf{x}_n, y_n)\} \text{ from } f \longrightarrow \boxed{\mathsf{ML}} \longrightarrow g$$

Basic Setup of Learning Problem

Learning Model

- A learning model has two components:
 - The hypothesis set H:
 Set of candidate hypothesis (functions)
 - The learning algorithm:
 To pick a hypothesis (function) from the H
 Usually optimization algorithm (choose the best function to minimize the training error)

Perceptron

- Our first ML model: perceptron (1957)
 - Learning a linear function
 - Single layer neural network
- Next, we introduce two components of perceptron:
 - What's the hypothesis space?
 - What's the learning algorithm?

Perceptron Hypothesis Space

Define the hypothesis set ${\cal H}$

• For input $x = (x_1, \dots, x_d)$ "attributes of a customer"

Approve credit if
$$\sum_{i=1}^d w_i x_i > \text{threshold},$$
 Deny credit if $\sum_{i=1}^d w_i x_i < \text{threshold}$

- Define $\mathcal{Y} = \{+1(\mathsf{good}), -1(\mathsf{bad})\}$
- Linear hypothesis space \mathcal{H} : all the h with the following form

$$h(x) = \operatorname{sign}(\sum_{i=1}^{d} w_i x_i - \operatorname{threshold})$$

(perceptron hypothesis)

Perceptron Hypothesis Space (cont'd)

• Introduce an artificial coordinate $x_0 = -1$ and set $w_0 =$ threshold

$$h(\mathbf{x}) = \operatorname{sign}(\sum_{i=1}^d w_i x_i - \operatorname{threshold}) = \operatorname{sign}(\sum_{i=0}^d w_i x_i) = \operatorname{sign}(\mathbf{w}^T \mathbf{x})$$

(vector form)

- Customer features x: points on \mathbb{R}^d (d dimensional space)
- Labels y: +1 or -1
- Hypothesis h: linear hyperplanes

Select the best one from ${\cal H}$

- ullet \mathcal{H} : all possible linear hyperplanes
- How to select the best one?

Select the best one from ${\cal H}$

- \bullet \mathcal{H} : all possible linear hyperplanes
- How to select the best one?

Find g such that
$$g(\mathbf{x}_n) \approx f(\mathbf{x}_n) = y_n$$
 for $n = 1, \dots, N$

Select the best one from ${\cal H}$

- ullet \mathcal{H} : all possible linear hyperplanes
- How to select the best one?

Find g such that
$$g(\mathbf{x}_n) \approx f(\mathbf{x}_n) = y_n$$
 for $n = 1, \dots, N$

• Naive approach:

Test all $h \in \mathcal{H}$ and choose the best one minimizing the "training error"

training error =
$$\frac{1}{N} \sum_{n=1}^{N} I(h(\mathbf{x}_n) \neq y_n)$$

 $(I(\cdot): indicator)$

• Difficult: \mathcal{H} is of infinite size

Perceptron Learning Algorithm

Perceptron Learning Algorithm (PLA)

Initial from some ${m w}$ (e.g., ${m w}={m 0})$

For $t = 1, 2, \cdots$

Find a misclassified point n(t):

$$sign(\boldsymbol{w}^T \boldsymbol{x}_{n(t)}) \neq y_{n(t)}$$

Update the weight vector:

$$\mathbf{w} \leftarrow \mathbf{w} + y_{n(t)} \mathbf{x}_{n(t)}$$

PLA

Iteratively

- Find a misclassified point
- Rotate the hyperplane according to the misclassified point

Perceptron Learning Algorithm

- Converge for "linearly separable" case:
 - Linearly separable: there exists a perceptron (linear) hypothesis f with 0 training error
 - PLA is guaranteed to obtain f (Stop when no more misclassified point)

Binary classification

- Data:
 - Features for each training example: $\{x_n\}_{n=1}^N$, each $x_n \in \mathbb{R}^d$
 - Labels for each training example: $y_n \in \{+1, -1\}$
- ullet Goal: learn a function $f:\mathbb{R}^d o \{+1,-1\}$
- Examples:
 - Credit approve/disapprove
 - Email spam/not-spam
 - patient sick/not sick
 - ...

Other types of output space - Regression

- Regression: $y_n \in \mathbb{R}$ (output is a real number)
- Example:
 - Stock price prediction
 - Movie rating prediction
 - ...

Other types of output space - Multi-class prediction

Multi-class classification:

- $y_n \in \{1, \dots, C\}$ (*C*-way classification)
- Example: Coin recognition
 - Classify coins by two features (size, mass) $(x_n \in \mathbb{R}^2)$
 - $y_n \in \mathcal{Y} = \{1c, 5c, 10c, 25c\}$ $(\mathcal{Y} = \{1, 2, 3, 4\})$
- Other examples: hand-written digits, · · ·

Other types of output space - Multi-label prediction

- Multi-class problem: Each sample only has one label
- Multi-label problem: Each sample can have multiple labels

Other types of output space - Multi-label prediction

- Multi-class problem: Each sample only has one label
- Multi-label problem: Each sample can have multiple labels
- Example:
 - ullet Document categorization (news/sports/economy/ \cdots)
 - Document/image tagging
 - • •

Other types of output space - Multi-label prediction

- Multi-class problem: Each sample only has one label
- Multi-label problem: Each sample can have multiple labels
- Example:
 - ullet Document categorization (news/sports/economy/ \cdots)
 - Document/image tagging
 - ...
- Extreme classification (large output space problems):
 - Millions of billions of labels (but usually each sample only has few labels)
 - Recommendation systems: Predict a subset of preferred items for each user
 - Document retrieval or search: Predict a subset of related articles for a query

Other types of output space - structure predict

Output as exponential

- Multiclass classification for each word (word ⇒ word class) (not using information of the whole sentence)
- Structure prediction problem: sentence ⇒ structure (class of each word)
- Other examples: speech recognition, image captioning, machine translation, . . .

- A red stop sign sitting on the side of a road.
- A stop sign on the corner of a street.
- A red stop sign sitting on the side of a street.

Machine Learning Problems

Machine learning problems can usually be categorized into

- Supervised learning: every x_n comes with y_n (label) (semi-supervised learning)
- Unsupervised learning: only x_n , no y_n
- Reinforcement learning:
 - Examples contain (input, some output, grade for this output)

Unsupervised Learning (no y_n)

- Clustering: given examples x_1, \ldots, x_N , classify them into K classes
- Other unsupervised learning:
 - Outlier detection: $\{x_n\} \Rightarrow \text{unusual}(x)$
 - Dimensional reduction
 - ...

supervised multiclass classification

unsupervised multiclass classification

⇔ 'clustering'

Semi-supervised learning

- Only some (few) x_n has y_n
- Labeled data is much more expensive than unlabeled data

Reinforcement Learning

- Used a lot in game AI, robotic controls
 - Agent observe state S_t
 - Agent conduct action A_t
 (ML model, based on input S_t)
 - Environment gives agent reward R_t
 - Environment gives agent next state S_{t+1}
- Only observe "grade" for a certain action (best action is not revealed)
- Ads system: (customer, ad choice, click or not)

Conclusions

- Basic concept of learning:
 - Set up a hypothesis space (potential functions)
 - Define an error measurement (define the quality of each function based on data)
 - Develop an algorithm to choose a good hypothesis based on the error measurement (optimization)
- A perceptron algorithm (linear classification)
- Binary classification, multiclass, multilabel, structural prediction
- Supervised vs unsupervised learning

Questions?