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Image classification without CNN

Input an image

Extract “interesting points” (e.g., corner detector)

For each interesting points, extract 128-dimensional SIFT descriptor

Clustering of SIFT descriptor to get “visual vocabulary”

Then transform image to a feature vector (bag of visual words)

Run classification (SVM)

(picture from http://bitsearch.blogspot.com/2013/08/

image-recognition-system-classify-mushrooms.html)

http://bitsearch.blogspot.com/2013/08/image-recognition-system-classify-mushrooms.html
http://bitsearch.blogspot.com/2013/08/image-recognition-system-classify-mushrooms.html


MNIST

Hand-written digits (0 to 9)

Total 60, 000 samples, 10-class classification.



MNIST Classification Accuracy

See the nice website by Yann LeCun:

http://yann.lecun.com/exdb/mnist/

Classifier Test Error

Linear classifier 12.0 %
SVM, Gaussian kernel 1.4%

SVM, degree 4 polynomial 1.1%
Best SVM result 0.56%

2-layer NN ∼ 3.0%
3-layer NN ∼ 2.5%

CNN, LeNet-5 (1998) 0.85%
Larger CNN (2011, 2012) ∼ 0.3%

http://yann.lecun.com/exdb/mnist/


ImageNet Data

ILSVRC competition: 1000 classes and about 1.2 million images

Full imagenet: > 20, 000 categories, each with about a thousand
images.



ImageNet Results

Top-5 error rates on ILSVRC image classification

picture from http://www.paddlepaddle.org/documentation/book/en/0.14.0/03.

image_classification/index.html

 http://www.paddlepaddle.org/documentation/book/en/0.14.0/03.image_classification/index.html 
 http://www.paddlepaddle.org/documentation/book/en/0.14.0/03.image_classification/index.html 


Convolutional Neural Network



Neural Networks

Fully connected networks ⇒ doesn’t work well for computer vision
applications



The structure of CNN

Structure of VGG

Two important layers:

Convolution
Pooling
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Convolution Layer

Fully connected layers have too many parameters

⇒ poor performance

Example: VGG first layer

Input: 224× 224× 3
Output: 224× 224× 64
Number of parameters: (224× 224× 3)× (224× 224× 64) = 483 billion

Convolution layer:

Local connectivity
Parameter sharing
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Local connectivity

Each hidden unit is connected only to a sub-region of input

It is connected to all channels (R, G, B)

(Figure from Salakhutdinov 2017)



Local connectivity

(Figure from Salakhutdinov 2017)



Parameter Sharing

Making one reasonable assumption:

If one feature is useful to compute at some spatial position (x , y), then it
should also be useful to compute at a different position (x2, y2)

Using the convolution operator



Convolution

The convolution of an image x with a kernel k is computed as

(x ∗ k)ij =
∑
pq

xi+p,j+qkp,q



Convolution



Convolution



Convolution



Convolution



Convolution

Illustration



Convolution

Element-wise activation function after convolution

⇒ detector of a feature at any position in the image



Padding

Use zero padding to allow going over the boundary

Easier to control the size of output layer



Learned Kernels

Example kernels learned by AlexNet

Number of parameters:

Example: 200× 200 image, 100 kernels, kernel size 10× 10

⇒ 10× 10× 100 = 10K parameters
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Pooling

It’s common to insert a pooling layer in-between successive
convolutional layers

Reduce the size of representation, down-sampling

Example: Max Pooling
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Pooling

By pooling, we gain robustness to the exact spatial location of features



Example: LeNet5

Input: 32× 32 images (MNIST)
Convolution 1: 6 5× 5 filters, stride 1

Output: 6 28× 28 maps
Pooling 1: 2× 2 max pooling, stride 2

Output: 6 14× 14 maps
Convolution 2: 16 5× 5 filters, stride 1

Output: 16 10× 10 maps
Pooling 2: 2× 2 max pooling with stride 2

Output: 16 5× 5 maps (total 400 values)

3 fully connected layers: 120⇒ 84⇒ 10 neurons



AlexNet

8 layers in total, about 60 million
parameters and 650,000 neurons.

Trained on ImageNet dataset

18.2% top-5 error

“ImageNet Classification with Deep
Convolutional Neural Networks”, by
Krizhevsky, Sustskever and Hinton,
NIPS 2012.



Example: VGG Network



Example: VGG Network

Output provides an estimate of the conditional probability of each class



What do the filters learn?

The receptive field of a neuron is the input region that can affect the
neuron’s output

The receptive field for a first layer neuron is its neighbors (depending
on kernel size) ⇒ capturing very local patterns

For higher layer neurons, the receptive field can be much larger ⇒
capturing global patterns



What do the filters learn?
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Training

Training:

Apply SGD to minimize in-sample training error
Backpropagation can be extended to convolutional layer and pooling
layer to compute gradient!

Millions of parameters ⇒ easy to overfit



Data Augmentation

Increase the size of data by

Rotation: random angle between −π and π
Shift: 4 directions
Rescaling: random scaling up/down
Flipping
Many others

Can be combined perfectly with SGD (augmentation when forming
each batch)



Dropout: Regularization for neural network training

One of the most effective regularization for deep neural networks!



Dropout (training)

Dropout in the training phase:

For each batch, turn off each neuron (including inputs) with a
probability 1− α
Zero out the removed nodes/edges and do backpropagation.



Dropout (test time)

The model is different from the full model:

Each neuron computes

x
(l)
i = Bσ(

∑
j

W
(l)
ij x

(l−1)
j + b

(l)
i )

where B is a Bernoulli variable that takes 1 with probability α

The expected output of the neuron:

E [x
(l)
i ] = ασ(

∑
j

W l
ijx

l−1
j + bli )

Use the expected output at test time

⇒ multiply all the weights by α



Explanations of dropout

For a network with n neurons, there are 2n possible sub-networks

Dropout: randomly sample over all 2n possibilities

Can be viewed as a way to learn Ensemble of 2n models



Revisit Alexnet

Dropout: 0.5 (in FC layers)

A lot of data augmentation

Momentum SGD with batch size 128, momentum factor 0.9

L2 weight decay (L2 regularization)

Learning rate: 0.01, decreased by 10 every time when reaching a stable
validation accuracy



Residual Networks

Very deep convnets do not train well

vanishing gradient problem



Residual Networks

Key idea: introduce “pass through” into each layer

Thus, only residual needs to be learned



Residual Networks



Conclusions

CNN and how to train a good image classifier.

Questions?


