Cho-Jui Hsieh

Feb 25, 2019

Q>

Image classification without CNN

Input an image

Extract “interesting points” (e.g., corner detector)

For each interesting points, extract 128-dimensional SIFT descriptor
Clustering of SIFT descriptor to get “visual vocabulary”

Then transform image to a feature vector (bag of visual words)

Run classification (SVM)

Interest points

M images extraction

SIFT descriptors

*
*

¥
*-

Keypaint descriptor

* Mushroom image by Tifred25 (nttp: ikimedia.orgiwikiFile:Bolet_Orange_01.jpg)

(picture from http://bitsearch.blogspot.com/2013/08/

image-recognition-system-classify-mushrooms.html)

http://bitsearch.blogspot.com/2013/08/image-recognition-system-classify-mushrooms.html
http://bitsearch.blogspot.com/2013/08/image-recognition-system-classify-mushrooms.html

MNIST

@ Hand-written digits (0 to 9)

@ Total 60,000 samples, 10-class classification.

- EN S Y EYNE S N S
-2 [v0 o]] o] oo waf w0)
ENCEERNESSEN
-SNNERENSNN
- (7 I Y 3 (S) 2 2
- B SN ESEINN Exks KRN Ed
- 2 Y 8 P) S Y
- TR SV R1 A S K 359
NN
-NESSSSEENSN

@ See the nice website by Yann LeCun:

http://yann.lecun.com/exdb/mnist/

Classifier Test Error
Linear classifier 12.0 %
SVM, Gaussian kernel 1.4%
SVM, degree 4 polynomial 1.1%
Best SVM result 0.56%
2-layer NN ~ 3.0%
3-layer NN ~ 2.5%
CNN, LeNet-5 (1998) 0.85%
Larger CNN (2011, 2012) ~ 0.3%

http://yann.lecun.com/exdb/mnist/

ELE 2T R "ill oy 1 lﬁl I
s HEe B PRl MEE MW)k
III P o] ﬁi. W III VaEas

mammal . placental . camivore — . canine —— — - workingdog ——

@EE O e !I! Bag 2E
=N kY st u

* Sl Ll B
oS < [0 D=) w3 =g

vehicle craft — watercraft —— sailingvessel —— sailboat ~—— trimaran

@ ILSVRC competition: 1000 classes and about 1.2 million images

o Full imagenet: > 20,000 categories, each with about a thousand
images.

19 layers
8 layers
s ha[low

2010 201 2012 2013
AlexNet

2014 2014 2015
VGG GoogleNet ResNet

Top-5 error rates on ILSVRC image classification

picture from http://www.paddlepaddle.org/documentation/book/en/0.14.0/03
image_classification/index.html

[m]

=

DA

 http://www.paddlepaddle.org/documentation/book/en/0.14.0/03.image_classification/index.html
 http://www.paddlepaddle.org/documentation/book/en/0.14.0/03.image_classification/index.html

Convolutional Neural Network

Layer 3

Layer L=4

h(x) = x = 0(W,x®)) = o(W,0(Wsx?))
== 0(W40(W30(W26(W1x))))

Fully connected networks = doesn’t work well for computer vision
applications

[m]

=

@ Structure of VGG

224x224x3

.Fuuy:m r
ﬂsm

S
2622

4096
N:
7x7x512 l
14x14x512 l
Convolution+ReLU
Max pooling

@ Structure of VGG

224x224x3

Tx7x512
14x14x512

@ Two important layers:

e Convolution
e Pooling

= poor performance
@ Example: VGG first layer

o Input: 224 x 224 x 3
o Output: 224 x 224 x 64

@ Fully connected layers have too many parameters

o Number of parameters: (224 x 224 x 3) x (224 x 224 x 64) = 483 billion

DA

@ Fully connected layers have too many parameters

= poor performance
@ Example: VGG first layer

o Input: 224 x 224 x 3
o Output: 224 x 224 x 64

@ Convolution layer:

o Number of parameters: (224 x 224 x 3) x (224 x 224 x 64) = 483 billion
e Local connectivity
e Parameter sharing

DA

Local connectivity

@ Each hidden unit is connected only to a sub-region of input

e It is connected to all channels (R, G, B)

(Figure from Salakhutdinov 2017)

Local connectivity

CETH R

W

5

lnﬁv.,(.‘

(Figure from Salakhutdinov 2017)

@ Making one reasonable assumption:

If one feature is useful to compute at some spatial position (x,y), then it
should also be useful to compute at a different position (x2, y2)
@ Using the convolution operator

DA

@ The convolution of an image x with a kernel k is computed as

(x* k)j = ZXi+pJ+qkp,q
Pq

05 | 20

0.25

0.25
20

DA

1*1+0.5%0.2 + 0.25*0.2 + 0*0 = 1.15
1
5 | 20
0 1|02 1.15
o | o |3k =
02| 0
o | 0|20

DA

0.5*1 +20*0.2 + 0*0.2 + 0*0 = 4.5

]

0.25

%

0.2

1.15
0

0.2
20

4.5

DA

0.25*1 + 0%0.2 + 0%0.2 + 0*0 = 0.25
1 |05 20
1 |02 115 | 45
o | 3k =
02| 0 0.25
20

DA

0*1 + 0%0.2 + 0*0.2 + 20*0 =0
1 | 05| 20
: > 115 | 45
025110 . * :
1 0.2 0.2 0 —
0) -
0.2 0

Q>

Convolution

[llustration

Convolution

@ Element-wise activation function after convolution

= detector of a feature at any position in the image

I *]{Jij, where Wij = Wij

sigm(0.02 z; ki; -4)

Padding

@ Use zero padding to allow going over the boundary
e Easier to control the size of output layer

@ Example kernels learned by AlexNet

@ Example kernels learned by AlexNet

Number of parameters:

o Example: 200 x 200 image, 100 kernels, kernel size 10 x 10
e = 10 x 10 x 100 = 10K parameters

@ It's common to insert a pooling layer in-between successive
convolutional layers

@ Reduce the size of representation, down-sampling

DA

@ It's common to insert a pooling layer in-between successive
convolutional layers

@ Reduce the size of representation, down-sampling
@ Example: Max Pooling

224x224x64) .
112x112x64 Single depth slice
o g | 1] 1]2]4
Il ‘ max pool with 2x2 filters
g 5|6 |7 | 8| andstide2 6
l I 3 | 2 EINN0 3
1| 2 ESHEZ
— - downsampling -
224 7

u]
o)
1
n
it
)
»
i)

@ By pooling, we gain robustness to the exact spatial location of features

C3: . maps 16@10x10
S4: 1. maps 16@5x5

C1: feature maps

Input: 32 x 32 images (MNIST)
Convolution 1: 6 5 x 5 filters, stride 1
o Output: 6 28 x 28 maps
Pooling 1: 2 x 2 max pooling, stride 2
o Output: 6 14 x 14 maps
Convolution 2: 16 5 x 5 filters, stride 1
o Output: 16 10 x 10 maps
Pooling 2: 2 x 2 max pooling with stride 2
o Output: 16 5 x 5 maps (total 400 values)

3 fully connected layers: 120 = 84 = 10 neurons

it
N)
yel
Q

@ 8 layers in total, about 60 million
parameters and 650,000 neurons.

@ Trained on ImageNet dataset

e 18.2% top-5 error [Lay‘:r;':”" }
“ImageNet Classification with Deep [Layer 6: Full }
i " ES
Co.nvolutlonal Neural Networlfs , by { Layor 5: Gonv + Poal }
Krizhevsky, Sustskever and Hinton, =5
NIPS 2012. [Layer 4: Conv]
ES

Layer 3: Conv

Input Image

[

u]
]

1

il
it
N)
yel
Q

224x224x3 224x224x64

4096
Number of class
N:2622
14x14x512
‘ I
softmax.
Convolution+RelL U

Max pooling
. Fully connected=ReLU

Bsm

DA

Example: VGG Network

INPUT: [224x224x3] memory: 224%224*3=150K weights: 0

CONV3-64: [224x224x64] memory: 224*224%64=3.2M weights: (3*3*%3)*64 = 1,728
CONV3-64: [224x224x64] memory: 224*224%64=3.2M weights: (3*3%64)*64 = 36,864
POOL2: [112x112x64] memory: 112*112*64=800K weights: 0

CONV3-128: [112x112x128] memory: 112*112%128=1.6M weights: (3*3*%64)*128 = 73,728
CONV3-128: [112x112x128] memory: 112*112*128=1.6M weights: (3*3%128)*128 = 147,456
POOL2: [56x56x128] memory: 56%*56*128=400K weights: 0

CONV3-256: [56x56x256] memory: 56%*56*256=800K weights: (3*3*%128)*256 = 294,912
CONV3-256: [56x56x256] memory: 56*56*256=800K weights: (3*3%256)*256 = 589,824
CONV3-256: [56x56x256] memory: 56%*56*256=800K weights: (3*3*%256)*256 = 589,824
POOL2: [28x28x256] memory: 28%*28*256=200K weights: 0

CONV3-512: [28x28x512] memory: 28%28*512=400K weights: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28%28%*512=400K weights: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28%28%512=400K weights: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512] memory: 14%*14*512=100K weights: 0

CONV3-512: [14x14x512] memory: 14%14%512=100K weights: (3*3%512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14%14%512=100K weights: (3*3%512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14%14%512=100K weights: (3*3%512)*512 = 2,359,296
POOL2: [7x7x512] memory: 7%*7%512=25K weights: 0

FC: [1x1x4096] memory: 4096 weights: 7*7*512*4096 = 102,760,448

FC: [1x1x4096] memory: 4096 weights: 4096%4096 = 16,777,216

FC: [1x1x1000] memory: 1000 weights: 4096*1000 = 4,096,000

Output provides an estimate of the conditional probability of each class

@ The receptive field of a neuron is the input region that can affect the
neuron’s output

@ The receptive field for a first layer neuron is its neighbors (depending
on kernel size) = capturing very local patterns

@ For higher layer neurons, the receptive field can be much larger =
capturing global patterns

54321

u]
o)
1
n
it
)
»
i)

What do the filters learn?

@ For higher layer neurons, the receptive field can be much larger =
capturing global patterns

@ Training:

o Apply SGD to minimize in-sample training error
e Backpropagation can be extended to convolutional layer and pooling
layer to compute gradient!

@ Millions of parameters = easy to overfit

DA

@ Increase the size of data by

o Rotation: random angle between —m and 7
Shift: 4 directions
Rescaling: random scaling up/down
Flipping
Many others

@ Can be combined perfectly with SGD (augmentation when forming
each batch)

u]
o)
1
n
it
)
»
i)

@ One of the most effective regularization for deep neural networks!

Method CIFAR-10 CIFAR-100 o Without dropout
Conv Net + max pooling (hand tuned) 15.60 43.48 H

Conv Net + stochastic pooling (Zeiler and Fergus, 2013) 15.13 42,51 H

Conv Net + max pooling (Snoek et al., 2012) 14.98 - 3

Conv Net + max pooling + dropout fully connected layers 14.32 41.26 5

Convy Net + max pooling + dropout in all layers 12,61 37.20

Conv Net + maxout (Goodfellow et al., 2013) 11.68 38.57

Table 4: Error rates on CIFAR-10 and CIFAR-100.

260060 500000 000000

300000 550000
Number of weight updates

Srivastava et al, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”, 2014.

u]
o)
1
n
it

DA

Dropout in the training phase:

@ For each batch, turn off each neuron (including inputs) with a
probability 1 — «

@ Zero out the removed nodes/edges and do backpropagation

Full network
Xy

Xz

X3

S
@ O

1st batch

2nd batch

DA

@ The model is different from the full model:

@ Each neuron computes

I n (-1 /
() BUZW,'J(')XJ'()+b())
where B is a Bernoulli variable that takes 1 with probability «
@ The expected output of the neuron
El"] = ao(_ Wix/™ + b))

J
@ Use the expected output at test time
= multiply all the weights by «

DA

@ For a network with n neurons, there are 2" possible sub-networks
@ Dropout: randomly sample over all 2" possibilities

@ Can be viewed as a way to learn Ensemble of 2”7 models

DA

@ Dropout: 0.5 (in FC layers)

@ A lot of data augmentation

@ Momentum SGD with batch size 128, momentum factor 0.9
o L2 weight decay (L2 regularization)

@ Learning rate: 0.01, decreased by 10 every time when reaching a stable
validation accuracy

u]
o)
1
n
it
)
»
i)

@ Very deep convnets do not train well

vanishing gradient problem

20,

training error (%)

o

test error (%)

V\\Lvééiaﬂ

20-layer

2 3 4
iter. (le4)

o)

1

n
it
)
»
i)

o Key idea: introduce “pass through” into each layer

X
Y
weight layer
‘F(x) Y relu X
weight layer identity
F(x) +x

1 raln

@ Thus, only residual needs to be learned

‘method top-1 err. top-5 err.
VGG [41] (ILSVRC’14) - 8.43F
GoogLeNet [44] (ILSVRC’14) - 7.89
VGG [41] (v5) 244 71
PReLU-net [13] 21.59 571
BN-inception [16] 21.99 5.81
ResNet-34 B 21.84 571
ResNet-34 C 21.53 5.60
ResNet-50 20.74 5.25
ResNet-101 19.87 4.60
ResNet-152 19.38 4.49

Table 4. Error rates (%) of single-model results on the ImageNet
validation set (except ' reported on the test set).

&

il

i
&

HEEN

il
Ll Ll N

i
B

HEBHRERREE

@ CNN and how to train a good image classifier.

Questions?

DA

