CS260: Machine Learning Algorithms

Lecture 11: Convolutional Neural Networks

Cho-Jui Hsieh UCLA

Feb 25, 2019

Image classification without CNN

- Input an image
- Extract "interesting points" (e.g., corner detector)
- For each interesting points, extract 128-dimensional SIFT descriptor
- Clustering of SIFT descriptor to get "visual vocabulary"
- Then transform image to a feature vector (bag of visual words)
- Run classification (SVM)

^{*} Mushroom image by Tifred25 (http://commons.wikimedia.org/wiki/File:Bolet_Orange_01.jpg)

MNIST

- Hand-written digits (0 to 9)
- Total 60,000 samples, 10-class classification.

MNIST Classification Accuracy

See the nice website by Yann LeCun: http://yann.lecun.com/exdb/mnist/

Classifier	Test Error
Linear classifier	12.0 %
SVM, Gaussian kernel	1.4%
SVM, degree 4 polynomial	1.1%
Best SVM result	0.56%
2-layer NN	$\sim 3.0\%$
3-layer NN	$\sim 2.5\%$
CNN, LeNet-5 (1998)	0.85%
Larger CNN (2011, 2012)	$\sim 0.3\%$

ImageNet Data

- ILSVRC competition: 1000 classes and about 1.2 million images
- Full imagenet: > 20,000 categories, each with about a thousand images.

ImageNet Results

Top-5 error rates on ILSVRC image classification

 $picture\ from\ http://www.paddlepaddle.org/documentation/book/en/0.14.0/03.$

Convolutional Neural Network

Neural Networks

Fully connected networks \Rightarrow doesn't work well for computer vision applications

The structure of CNN

Structure of VGG

The structure of CNN

Structure of VGG

- Two important layers:
 - Convolution
 - Pooling

Convolution Layer

Fully connected layers have too many parameters

 \Rightarrow poor performance

• Example: VGG first layer

• Input: 224 × 224 × 3

Output: 224 × 224 × 64

• Number of parameters: $(224 \times 224 \times 3) \times (224 \times 224 \times 64) = 483$ billion

Convolution Layer

- Fully connected layers have too many parameters
 - \Rightarrow poor performance
- Example: VGG first layer
 - Input: $224 \times 224 \times 3$
 - Output: $224 \times 224 \times 64$
 - Number of parameters: $(224 \times 224 \times 3) \times (224 \times 224 \times 64) = 483$ billion
- Convolution layer:
 - Local connectivity
 - Parameter sharing

Local connectivity

- Each hidden unit is connected only to a sub-region of input
- It is connected to all channels (R, G, B)

(Figure from Salakhutdinov 2017)

Local connectivity

(Figure from Salakhutdinov 2017)

Parameter Sharing

• Making one reasonable assumption:

If one feature is useful to compute at some spatial position (x, y), then it should also be useful to compute at a different position (x_2, y_2)

Using the convolution operator

• The convolution of an image x with a kernel k is computed as

$$(x*k)_{ij} = \sum_{pq} x_{i+p,j+q} k_{p,q}$$

1	0.5	20
0.25	0	0
0	0	20

¥	1	0.5
~	0.25	0

$$0.25*1 + 0*0.2 + 0*0.2 + 0*0 = 0.25$$

$$0*1 + 0*0.2 + 0*0.2 + 20*0 = 0$$

1	0.5	20						
0.05				1	0.2	_	1.15	4.5
0.25	1	0.2	*	0.2	0	=	0.25	0
0	0	20		0.2	U		0.25	
	0.2	0						

Illustration

Element-wise activation function after convolution
 ⇒ detector of a feature at any position in the image

Padding

- Use zero padding to allow going over the boundary
 - Easier to control the size of output layer

Learned Kernels

• Example kernels learned by AlexNet

Learned Kernels

Example kernels learned by AlexNet

Number of parameters:

- ullet Example: 200 imes 200 image, 100 kernels, kernel size 10 imes 10
- ullet \Rightarrow $10 \times 10 \times 100 = 10$ K parameters

Pooling

- It's common to insert a pooling layer in-between successive convolutional layers
- Reduce the size of representation, down-sampling

Pooling

- It's common to insert a pooling layer in-between successive convolutional layers
- Reduce the size of representation, down-sampling
- Example: Max Pooling

Pooling

• By pooling, we gain robustness to the exact spatial location of features

Example: LeNet5

- Input: 32 × 32 images (MNIST)
- Convolution 1: 6 5 \times 5 filters, stride 1
 - Output: 6 28 × 28 maps
- Pooling 1: 2 × 2 max pooling, stride 2
 - Output: 6.14×14 maps
- ullet Convolution 2: 16 5 imes 5 filters, stride 1
 - Output: $16\ 10 \times 10$ maps
- Pooling 2: 2×2 max pooling with stride 2
 - Output: 16.5×5 maps (total 400 values)
- 3 fully connected layers: $120 \Rightarrow 84 \Rightarrow 10$ neurons

AlexNet

- 8 layers in total, about 60 million parameters and 650,000 neurons.
- Trained on ImageNet dataset
- 18.2% top-5 error
 "ImageNet Classification with Deep Convolutional Neural Networks", by Krizhevsky, Sustskever and Hinton, NIPS 2012.

Example: VGG Network

Example: VGG Network

```
INPUT: [224x224x3]
                        memory: 224*224*3=150K weights: 0
CONV3-64: [224x224x64] memory: 224*224*64=3.2M weights: (3*3*3)*64 = 1,728
CONV3-64: [224x224x64] memory: 224*224*64=3.2M
                                                weights: (3*3*64)*64 = 36,864
POOL2: [112x112x64] memory: 112*112*64=800K weights: 0
CONV3-128: [112x112x128] memory: 112*112*128=1.6M weights: (3*3*64)*128 = 73.728
CONV3-128: [112x112x128] memory: 112*112*128=1.6M weights: (3*3*128)*128 = 147,456
POOL2: [56x56x128] memory: 56*56*128=400K weights: 0
CONV3-256: [56x56x256] memory: 56*56*256=800K weights: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256] memory: 56*56*256=800K weights: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256] memory: 56*56*256=800K
                                               weights: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28*28*256=200K weights: 0
CONV3-512: [28x28x512] memory: 28*28*512=400K
                                               weights: (3*3*256)*512 = 1.179.648
CONV3-512: [28x28x512] memory: 28*28*512=400K
                                               weights: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28*28*512=400K
                                               weights: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512] memory: 14*14*512=100K weights: 0
CONV3-512: [14x14x512] memory: 14*14*512=100K
                                               weights: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K
                                               weights: (3*3*512)*512 = 2.359.296
CONV3-512: [14x14x512] memory: 14*14*512=100K
                                               weights: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512] memory: 7*7*512=25K weights: 0
FC: [1x1x4096] memory: 4096 weights: 7*7*512*4096 = 102,760,448
FC: [1x1x4096] memory: 4096 weights: 4096*4096 = 16,777,216
FC: [1x1x1000] memory: 1000 weights: 4096*1000 = 4.096.000
```

Output provides an estimate of the conditional probability of each class

What do the filters learn?

- The receptive field of a neuron is the input region that can affect the neuron's output
- The receptive field for a first layer neuron is its neighbors (depending on kernel size) ⇒ capturing very local patterns
- For higher layer neurons, the receptive field can be much larger ⇒ capturing global patterns

What do the filters learn?

 For higher layer neurons, the receptive field can be much larger ⇒ capturing global patterns

Training

- Training:
 - Apply SGD to minimize in-sample training error
 - Backpropagation can be extended to convolutional layer and pooling layer to compute gradient!
- ullet Millions of parameters \Rightarrow easy to overfit

Data Augmentation

- Increase the size of data by
 - ullet Rotation: random angle between $-\pi$ and π
 - Shift: 4 directions
 - Rescaling: random scaling up/down
 - Flipping
 - Many others
- Can be combined perfectly with SGD (augmentation when forming each batch)

Dropout: Regularization for neural network training

One of the most effective regularization for deep neural networks!

Method	CIFAR-10	CIFAR-100
Conv Net + max pooling (hand tuned)	15.60	43.48
Conv Net + stochastic pooling (Zeiler and Fergus, 2013)	15.13	42.51
Conv Net + max pooling (Snoek et al., 2012)	14.98	-
Conv Net + max pooling + dropout fully connected layers	14.32	41.26
Conv Net $+$ max pooling $+$ dropout in all layers	12.61	37.20
Conv Net + maxout (Goodfellow et al., 2013)	11.68	38.57

Table 4: Error rates on CIFAR-10 and CIFAR-100.

Srivastava et al, "Dropout: A Simple Way to Prevent Neural Networks from Overfitting", 2014.

Dropout (training)

Dropout in the **training** phase:

- \bullet For each batch, turn off each neuron (including inputs) with a probability $1-\alpha$
- Zero out the removed nodes/edges and do backpropagation.

Dropout (test time)

- The model is different from the full model:
- Each neuron computes

$$x_i^{(l)} = B\sigma(\sum_j W_{ij}^{(l)} x_j^{(l-1)} + b_i^{(l)})$$

where B is a Bernoulli variable that takes 1 with probability α

• The expected output of the neuron:

$$E[x_i^{(l)}] = \alpha \sigma(\sum_i W_{ij}^l x_j^{l-1} + b_i^l)$$

- Use the expected output at test time
 - \Rightarrow multiply all the weights by α

Explanations of dropout

- For a network with n neurons, there are 2^n possible sub-networks
- Dropout: randomly sample over all 2^n possibilities
- Can be viewed as a way to learn Ensemble of 2ⁿ models

Revisit Alexnet

- Dropout: 0.5 (in FC layers)
- A lot of data augmentation
- Momentum SGD with batch size 128, momentum factor 0.9
- L2 weight decay (L2 regularization)
- Learning rate: 0.01, decreased by 10 every time when reaching a stable validation accuracy

Residual Networks

 Very deep convnets do not train well vanishing gradient problem

Residual Networks

Key idea: introduce "pass through" into each layer

• Thus, only residual needs to be learned

Residual Networks

method	top-1 err.	top-5 err.
VGG [41] (ILSVRC'14)	-	8.43 [†]
GoogLeNet [44] (ILSVRC'14)	-	7.89
VGG [41] (v5)	24.4	7.1
PReLU-net [13]	21.59	5.71
BN-inception [16]	21.99	5.81
ResNet-34 B	21.84	5.71
ResNet-34 C	21.53	5.60
ResNet-50	20.74	5.25
ResNet-101	19.87	4.60
ResNet-152	19.38	4.49

Table 4. Error rates (%) of single-model results on the ImageNet validation set (except † reported on the test set).

Conclusions

• CNN and how to train a good image classifier.

Questions?