CS260: Machine Learning Algorithms

Lecture 12: Recurrent Neural Network and NLP applications

Cho-Jui Hsieh UCLA

Feb 27, 2019

Recurrent Neural Network

Time Series/Sequence Data

- Input: $\{x_1, x_2, \cdots, x_T\}$
 - ullet Each $oldsymbol{x}_t$ is the feature at time step t
 - Each x_t can be an d-dimensional vector
- Output: $\{y_1, y_2, \dots, y_T\}$
 - ullet Each y_t is the output at step t
 - Multi-class output or Regression output:

$$y_t \in \{1, 2, \cdots, L\}$$
 or $y_t \in \mathbb{R}$

Example: Time Series Prediction

- Climate Data:
 - x_t : temperature at time t
 - ullet y_t : temperature (or temperature change) at time t+1

Example: Time Series Prediction

- Climate Data:
 - x_t : temperature at time t
 - y_t : temperature (or temperature change) at time t+1
- Stock Price: Predicting stock price

Example: Language Modeling

The cat is ?

Example: Language Modeling

The cat is ?

- x_t : one-hot encoding to represent the word at step t $([0, \ldots, 0, 1, 0, \ldots, 0])$
- y_t : the next word

$$y_t \in \{1, \cdots, V\}$$
 V: Vocabulary size

Example: POS Tagging

Part of Speech Tagging:
Labeling words with their Part-Of-Speech (Noun, Verb, Adjective,
...)

• x_t : a vector to represent the word at step t

y_t: label of word t

picture from https://medium.com/analytics-vidhya/pos-tagging-using-conditional-random-fields-92077e5eaa31

- x_t : t-th input
- $oldsymbol{\circ}$ $oldsymbol{s}_t$: hidden state at time t ("memory" of the network)

$$s_t = f(Ux_t + Ws_{t-1})$$

W: transition matrix s_0 usually set to be 0

• Predicted output at time t:

$$o_t = rg \max_i (V s_t)_i$$

- Training: Find U, W, V to minimize empirical loss:
- Loss of a sequence:

$$\sum_{t=1}^{T} \mathsf{loss}(V s_t, y_t)$$

 $(s_t \text{ is a function of } U, W, V)$

- Training: Find *U*, *W*, *V* to minimize empirical loss:
- Loss of a sequence:

$$\sum_{t=1}^{T} \mathsf{loss}(V s_t, y_t)$$

 $(s_t \text{ is a function of } U, W, V)$

Loss on the whole dataset:

Average loss over all sequences

- Training: Find U, W, V to minimize empirical loss:
- Loss of a sequence:

$$\sum_{t=1}^{T} \mathsf{loss}(V\boldsymbol{s}_t, y_t)$$

 $(s_t \text{ is a function of } U, W, V)$

Loss on the whole dataset:

Average loss over all sequences

Solved by Stochastic Gradient Descent (SGD)

RNN: Text Classification

- Not necessary to output at each step
- Text Classification:

$$\mathsf{Sentence} \ \to \ \mathsf{category}$$

Output only at the final step

Model: add a fully connected network to the final embedding

RNN: Neural Machine Translation

Problems of Classical RNN

- Hard to capture long-term dependencies
- Hard to solve (vanishing gradient problem)
- Solution:
 - LSTM (Long Short Term Memory networks)
 - GRU (Gated Recurrent Unit)
 - • •

LSTM

RNN:

• LSTM:

Conclusions

• A Brief introduction of RNN.

Questions?