CS260: Machine Learning Algorithms

Lecture 3: Optimization

Cho-Jui Hsieh UCLA

Jan 14, 2019

Optimization

• Goal: find the minimizer of a function

$$\min_{\boldsymbol{w}} f(\boldsymbol{w})$$

For now we assume f is twice differentiable

 Machine learning algorithm: find the hypothesis that minimizes training error

- A function $f: \mathbb{R}^n \to \mathbb{R}$ is a convex function
 - \Leftrightarrow the function f is below any line segment between two points on f:

$$\forall x_1, x_2, \ \forall t \in [0, 1], \ f(tx_1 + (1 - t)x_2) \le tf(x_1) + (1 - t)f(x_2)$$

• A function $f: \mathbb{R}^n \to \mathbb{R}$ is a convex function \Leftrightarrow the function f is below any line segment between two points on f:

$$\forall x_1, x_2, \ \forall t \in [0, 1], \ f(tx_1 + (1 - t)x_2) \le tf(x_1) + (1 - t)f(x_2)$$

Strict convex:
$$f(tx_1 + (1-t)x_2) < tf(x_1) + (1-t)f(x_2)$$

Another equivalent definition for differentiable function:

$$f$$
 is convex if and only if $f(\mathbf{x}) \geq f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^T (\mathbf{x} - \mathbf{x}_0), \ \ \forall \mathbf{x}, \mathbf{x}_0$

- Convex function:
 - (for differentiable function) $\nabla f(\mathbf{w}^*) = 0 \Leftrightarrow \mathbf{w}^*$ is a global minimum
 - If f is twice differentiable \Rightarrow f is convex if and only if $\nabla^2 f(\mathbf{w})$ is positive semi-definite
 - Example: linear regression, logistic regression, · · ·

- Strict convex function:
 - $\nabla f(\mathbf{w}^*) = 0 \Leftrightarrow \mathbf{w}^*$ is the unique global minimum most algorithms only converge to gradient= 0
 - Example: Linear regression when X^TX is invertible

Convex

Convex vs Nonconvex

- Convex function:
 - $\nabla f(\mathbf{w}^*) = 0 \Leftrightarrow \mathbf{w}^*$ is a global minimum
 - Example: linear regression, logistic regression, · · ·
- Non-convex function:
 - ∇f(w*) = 0 ⇔ w* is Global min, local min, or saddle point
 (also called stationary points)
 most algorithms only converge to stationary points
 - Example: neural network, · · ·

Gradient descent

Gradient Descent

• Gradient descent: repeatedly do

$$\mathbf{w}^{t+1} \leftarrow \mathbf{w}^t - \alpha \nabla f(\mathbf{w}^t)$$

 $\alpha > 0$ is the step size

Gradient Descent

• Gradient descent: repeatedly do

$$\mathbf{w}^{t+1} \leftarrow \mathbf{w}^t - \alpha \nabla f(\mathbf{w}^t)$$

 $\alpha > 0$ is the step size

• Generate the sequence $\mathbf{w}^1, \mathbf{w}^2, \cdots$ converge to stationary points ($\lim_{t \to \infty} \|\nabla f(\mathbf{w}^t)\| = 0$)

Gradient Descent

Gradient descent: repeatedly do

$$\mathbf{w}^{t+1} \leftarrow \mathbf{w}^t - \alpha \nabla f(\mathbf{w}^t)$$

 $\alpha > 0$ is the step size

- Generate the sequence $\mathbf{w}^1, \mathbf{w}^2, \cdots$ converge to stationary points ($\lim_{t \to \infty} \|\nabla f(\mathbf{w}^t)\| = 0$)
- Step size too large ⇒ diverge; too small ⇒ slow convergence

Why gradient descent?

Successive approximation view

At each iteration, form an approximation function of $f(\cdot)$:

$$f(\mathbf{w}^t + \mathbf{d}) \approx g(\mathbf{d}) := f(\mathbf{w}^t) + \nabla f(\mathbf{w}^t)^T \mathbf{d} + \frac{1}{2\alpha} ||\mathbf{d}||^2$$

Update solution by $\mathbf{w}^{t+1} \leftarrow \mathbf{w}^t + \mathbf{d}^*$

$$\mathbf{d}^* = \operatorname{arg\,min}_{\mathbf{d}} g(\mathbf{d})$$

$$\nabla g(\mathbf{d}^*) = 0 \Rightarrow \nabla f(\mathbf{w}^t) + \frac{1}{\alpha} \mathbf{d}^* = 0 \Rightarrow \mathbf{d}^* = -\alpha \nabla f(\mathbf{w}^t)$$

Why gradient descent?

Successive approximation view

At each iteration, form an approximation function of $f(\cdot)$:

$$f(\mathbf{w}^t + \mathbf{d}) \approx g(\mathbf{d}) := f(\mathbf{w}^t) + \nabla f(\mathbf{w}^t)^T \mathbf{d} + \frac{1}{2\alpha} ||\mathbf{d}||^2$$

Update solution by $\mathbf{w}^{t+1} \leftarrow \mathbf{w}^t + \mathbf{d}^*$

$$d^* = \arg\min_{d} g(d)$$

$$\nabla g(\mathbf{d}^*) = 0 \Rightarrow \nabla f(\mathbf{w}^t) + \frac{1}{\alpha} \mathbf{d}^* = 0 \Rightarrow \mathbf{d}^* = -\alpha \nabla f(\mathbf{w}^t)$$

• d^* will decrease $f(\cdot)$ if α (step size) is sufficiently small

Form a quadratic approximation

$$f(\mathbf{w}^t + \mathbf{d}) \approx g(\mathbf{d}) = f(\mathbf{w}^t) + \nabla f(\mathbf{w}^t)^T \mathbf{d} + \frac{1}{2\alpha} ||\mathbf{d}||^2$$

Minimize g(d):

$$\nabla g(\mathbf{d}^*) = 0 \Rightarrow \nabla f(\mathbf{w}^t) + \frac{1}{\alpha} \mathbf{d}^* = 0 \Rightarrow \mathbf{d}^* = -\alpha \nabla f(\mathbf{w}^t)$$

Update

$$\mathbf{w}^{t+1} = \mathbf{w}^t + \mathbf{d}^* = \mathbf{w}^t - \alpha \nabla f(\mathbf{w}^t)$$

Form another quadratic approximation

$$f(\mathbf{w}^{t+1} + \mathbf{d}) \approx g(\mathbf{d}) = f(\mathbf{w}^{t+1}) + \nabla f(\mathbf{w}^{t+1})^T \mathbf{d} + \frac{1}{2\alpha} \|\mathbf{d}\|^2$$
$$\mathbf{d}^* = -\alpha \nabla f(\mathbf{w}^{t+1})$$

Update

$$\mathbf{w}^{t+2} = \mathbf{w}^{t+1} + \mathbf{d}^* = \mathbf{w}^{t+1} - \alpha \nabla f(\mathbf{w}^{t+1})$$

When will it diverge?

Can diverge $(f(\mathbf{w}^t) < f(\mathbf{w}^{t+1}))$ if g is not an upperbound of f

 $f(w^t) < f(w^{t+1})$, diverge because g's curvature is too small

When will it converge?

Always converge $(f(\mathbf{w}^t) > f(\mathbf{w}^{t+1}))$ when g is an upperbound of f

 $f(w^t) > f(w^{t+1})$, converge when g's curvature is large enough

• Let *L* be the Lipchitz constant

$$(\nabla^2 f(\mathbf{x}) \leq LI \text{ for all } \mathbf{x})$$

 \bullet Theorem: gradient descent converges if $\alpha < \frac{1}{L}$

• Let *L* be the Lipchitz constant

$$(\nabla^2 f(\mathbf{x}) \leq LI \text{ for all } \mathbf{x})$$

- Theorem: gradient descent converges if $\alpha < \frac{1}{L}$
- Why?
 - When $\alpha < 1/L$, for any \boldsymbol{d} ,

$$g(\boldsymbol{d}) = f(\boldsymbol{w}^t) + \nabla f(\boldsymbol{w}^t)^T \boldsymbol{d} + \frac{1}{2\alpha} \|\boldsymbol{d}\|^2$$
$$> f(\boldsymbol{w}^t) + \nabla f(\boldsymbol{w}^t)^T \boldsymbol{d} + \frac{L}{2} \|\boldsymbol{d}\|^2$$
$$\geq f(\boldsymbol{w}^t + \boldsymbol{d})$$

• Let *L* be the Lipchitz constant

$$(\nabla^2 f(\mathbf{x}) \leq LI \text{ for all } \mathbf{x})$$

- **Theorem:** gradient descent converges if $\alpha < \frac{1}{L}$
- Why?
 - When $\alpha < 1/L$, for any ${\it d}$,

$$g(\boldsymbol{d}) = f(\boldsymbol{w}^t) + \nabla f(\boldsymbol{w}^t)^T \boldsymbol{d} + \frac{1}{2\alpha} \|\boldsymbol{d}\|^2$$
$$> f(\boldsymbol{w}^t) + \nabla f(\boldsymbol{w}^t)^T \boldsymbol{d} + \frac{L}{2} \|\boldsymbol{d}\|^2$$
$$\geq f(\boldsymbol{w}^t + \boldsymbol{d})$$

• So,
$$f(w^t + d^*) < g(d^*) \le g(0) = f(w^t)$$

• Let *L* be the Lipchitz constant

$$(\nabla^2 f(\mathbf{x}) \leq LI \text{ for all } \mathbf{x})$$

- Theorem: gradient descent converges if $\alpha < \frac{1}{L}$
- Why?
 - When $\alpha < 1/L$, for any \boldsymbol{d} ,

$$g(\boldsymbol{d}) = f(\boldsymbol{w}^t) + \nabla f(\boldsymbol{w}^t)^T \boldsymbol{d} + \frac{1}{2\alpha} \|\boldsymbol{d}\|^2$$
$$> f(\boldsymbol{w}^t) + \nabla f(\boldsymbol{w}^t)^T \boldsymbol{d} + \frac{L}{2} \|\boldsymbol{d}\|^2$$
$$\geq f(\boldsymbol{w}^t + \boldsymbol{d})$$

- So, $f(\mathbf{w}^t + \mathbf{d}^*) < g(\mathbf{d}^*) \le g(0) = f(\mathbf{w}^t)$
- In formal proof, need to show $f({m w}^t + {m d}^*)$ is sufficiently smaller than $f({m w}^t)$

Applying to Logistic regression

gradient descent for logistic regression

- Initialize the weights w₀
- For $t = 1, 2, \cdots$
 - Compute the gradient

$$\nabla f(\mathbf{w}) = -\frac{1}{N} \sum_{n=1}^{N} \frac{y_n \mathbf{x}_n}{1 + e^{y_n \mathbf{w}^T \mathbf{x}_n}}$$

- Update the weights: $\mathbf{w} \leftarrow \mathbf{w} \alpha \nabla f(\mathbf{w})$
- Return the final weights w

Applying to Logistic regression

gradient descent for logistic regression

- Initialize the weights w₀
- For $t = 1, 2, \cdots$
 - Compute the gradient

$$\nabla f(\mathbf{w}) = -\frac{1}{N} \sum_{n=1}^{N} \frac{y_n \mathbf{x}_n}{1 + e^{y_n \mathbf{w}^T \mathbf{x}_n}}$$

- Update the weights: $\mathbf{w} \leftarrow \mathbf{w} \alpha \nabla f(\mathbf{w})$
- Return the final weights w

When to stop?

- Fixed number of iterations, or
- Stop when $\|\nabla f(\boldsymbol{w})\| < \epsilon$

ullet In practice, we do not know $L\cdots$ need to tune step size when running gradient descent

- ullet In practice, we do not know $L \cdot \cdot \cdot$ need to tune step size when running gradient descent
- Line Search: Select step size automatically (for gradient descent)

- The back-tracking line search:
 - Start from some large α_0
 - Try $\alpha = \alpha_0, \frac{\alpha_0}{2}, \frac{\alpha_0}{4}, \cdots$ Stop when α satisfies some sufficient decrease condition

- The back-tracking line search:
 - Start from some large α_0
 - Try $\alpha = \alpha_0, \frac{\alpha_0}{2}, \frac{\alpha_0}{4}, \cdots$ Stop when α satisfies some sufficient decrease condition
 - A simple condition: $f(\mathbf{w} + \alpha \mathbf{d}) < f(\mathbf{w})$

- The back-tracking line search:
 - Start from some large α_0
 - Try $\alpha = \alpha_0, \frac{\alpha_0}{2}, \frac{\alpha_0}{4}, \cdots$ Stop when α satisfies some sufficient decrease condition
 - A simple condition: $f(\mathbf{w} + \alpha \mathbf{d}) < f(\mathbf{w})$ often works in practice but doesn't work in theory

- The back-tracking line search:
 - Start from some large α_0
 - Try $\alpha = \alpha_0, \frac{\alpha_0}{2}, \frac{\alpha_0}{4}, \cdots$ Stop when α satisfies some sufficient decrease condition
 - A simple condition: $f(\mathbf{w} + \alpha \mathbf{d}) < f(\mathbf{w})$ often works in practice but doesn't work in theory
 - A (provable) sufficient decrease condition:

$$f(\mathbf{w} + \alpha \mathbf{d}) \le f(\mathbf{w}) + \sigma \alpha \nabla f(\mathbf{w})^T \mathbf{d}$$

for a constant $\sigma \in (0,1)$

gradient descent with backtracking line search

- Initialize the weights w₀
- For $t = 1, 2, \cdots$
 - Compute the gradient

$$\mathbf{d} = -\nabla f(\mathbf{w})$$

- For $\alpha = \alpha_0, \alpha_0/2, \alpha_0/4, \cdots$ Break if $f(\mathbf{w} + \alpha \mathbf{d}) \le f(\mathbf{w}) + \sigma \alpha \nabla f(\mathbf{w})^T \mathbf{d}$
- Update $\mathbf{w} \leftarrow \mathbf{w} + \alpha \mathbf{d}$
- Return the final solution w

Stochastic Gradient descent

Large-scale Problems

Machine learning: usually minimizing the training loss

$$\min_{\boldsymbol{w}} \{ \frac{1}{N} \sum_{n=1}^{N} \ell(\boldsymbol{w}^{T} \boldsymbol{x}_{n}, y_{n}) \} := f(\boldsymbol{w}) \text{ (linear model)}$$

$$\min_{\boldsymbol{w}} \{ \frac{1}{N} \sum_{n=1}^{N} \ell(h_{\boldsymbol{w}}(\boldsymbol{x}_{n}), y_{n}) \} := f(\boldsymbol{w}) \text{ (general hypothesis)}$$

$$\ell$$
: loss function (e.g., $\ell(a,b) = (a-b)^2$)

• Gradient descent:

$$\mathbf{w} \leftarrow \mathbf{w} - \eta \underbrace{\nabla f(\mathbf{w})}_{\text{Main computation}}$$

Large-scale Problems

Machine learning: usually minimizing the training loss

$$\min_{\boldsymbol{w}} \{ \frac{1}{N} \sum_{n=1}^{N} \ell(\boldsymbol{w}^{T} \boldsymbol{x}_{n}, y_{n}) \} := f(\boldsymbol{w}) \text{ (linear model)}$$

$$\min_{\boldsymbol{w}} \{ \frac{1}{N} \sum_{n=1}^{N} \ell(h_{\boldsymbol{w}}(\boldsymbol{x}_{n}), y_{n}) \} := f(\boldsymbol{w}) \text{ (general hypothesis)}$$

 ℓ : loss function (e.g., $\ell(a,b) = (a-b)^2$)

• Gradient descent:

$$\mathbf{w} \leftarrow \mathbf{w} - \eta \underbrace{\nabla f(\mathbf{w})}_{\mathsf{Main computation}}$$

• In general, $f(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} f_n(\mathbf{w})$, each $f_n(\mathbf{w})$ only depends on (\mathbf{x}_n, y_n)

Stochastic gradient

• Gradient:

$$\nabla f(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} \nabla f_n(\mathbf{w})$$

- Each gradient computation needs to go through all training samples slow when millions of samples
- Faster way to compute "approximate gradient"?

Stochastic gradient

• Gradient:

$$\nabla f(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} \nabla f_n(\mathbf{w})$$

- Each gradient computation needs to go through all training samples slow when millions of samples
- Faster way to compute "approximate gradient"?
- Use stochastic sampling:
 - Sample a small subset $B \subseteq \{1, \dots, N\}$
 - Estimated gradient

$$\nabla f(\mathbf{w}) \approx \frac{1}{|B|} \sum_{n \in B} \nabla f_n(\mathbf{w})$$

|B|: batch size

Stochastic Gradient Descent (SGD)

- Input: training data $\{x_n, y_n\}_{n=1}^N$
- Initialize w (zero or random)
- For $t = 1, 2, \cdots$
 - Sample a small batch $B \subseteq \{1, \dots, N\}$
 - Update parameter

$$\mathbf{w} \leftarrow \mathbf{w} - \frac{\mathbf{\eta}^t}{|B|} \sum_{n \in B} \nabla f_n(\mathbf{w})$$

Stochastic Gradient Descent (SGD)

- Input: training data $\{x_n, y_n\}_{n=1}^N$
- Initialize w (zero or random)
- For $t = 1, 2, \cdots$
 - Sample a small batch $B \subseteq \{1, \dots, N\}$
 - Update parameter

$$\mathbf{w} \leftarrow \mathbf{w} - \frac{\mathbf{\eta}^t}{|B|} \sum_{n \in B} \nabla f_n(\mathbf{w})$$

Extreme case: $|B| = 1 \Rightarrow$ Sample one training data at a time

Logistic Regression by SGD

Logistic regression:

$$\min_{\mathbf{w}} \frac{1}{N} \sum_{n=1}^{N} \underbrace{\log(1 + e^{-y_n \mathbf{w}^T \mathbf{x}_n})}_{f_n(\mathbf{w})}$$

SGD for Logistic Regression

- Input: training data $\{x_n, y_n\}_{n=1}^N$
- Initialize w (zero or random)
- For $t = 1, 2, \cdots$
 - Sample a batch $B \subseteq \{1, \dots, N\}$
 - Update parameter

$$\mathbf{w} \leftarrow \mathbf{w} - \eta^t \frac{1}{|B|} \sum_{i \in B} \underbrace{\frac{-y_n \mathbf{x}_n}{1 + e^{y_n \mathbf{w}^T \mathbf{x}_n}}}_{\nabla f_n(\mathbf{w})}$$

Why SGD works?

• Stochastic gradient is an unbiased estimator of full gradient:

$$E\left[\frac{1}{|B|}\sum_{n\in B}\nabla f_n(\boldsymbol{w})\right] = \frac{1}{N}\sum_{n=1}^{N}\nabla f_n(\boldsymbol{w})$$
$$= \nabla f(\boldsymbol{w})$$

Why SGD works?

• Stochastic gradient is an unbiased estimator of full gradient:

$$E\left[\frac{1}{|B|}\sum_{n\in B}\nabla f_n(\boldsymbol{w})\right] = \frac{1}{N}\sum_{n=1}^{N}\nabla f_n(\boldsymbol{w})$$
$$= \nabla f(\boldsymbol{w})$$

Each iteration updated by

gradient + zero-mean noise

- In gradient descent, η (step size) is a fixed constant
- Can we use fixed step size for SGD?

- In gradient descent, η (step size) is a fixed constant
- Can we use fixed step size for SGD?
- SGD with fixed step size cannot converge to global/local minimizers

- In gradient descent, η (step size) is a fixed constant
- Can we use fixed step size for SGD?
- SGD with fixed step size cannot converge to global/local minimizers
- If \mathbf{w}^* is the minimizer, $\nabla f(\mathbf{w}^*) = \frac{1}{N} \sum_{n=1}^{N} \nabla f_n(\mathbf{w}^*) = 0$,

- In gradient descent, η (step size) is a fixed constant
- Can we use fixed step size for SGD?
- SGD with fixed step size cannot converge to global/local minimizers
- If \mathbf{w}^* is the minimizer, $\nabla f(\mathbf{w}^*) = \frac{1}{N} \sum_{n=1}^{N} \nabla f_n(\mathbf{w}^*) = 0$,

but
$$\frac{1}{|B|} \sum_{n \in B} \nabla f_n(\mathbf{w}^*) \neq 0$$
 if B is a subset

- In gradient descent, η (step size) is a fixed constant
- Can we use fixed step size for SGD?
- SGD with fixed step size cannot converge to global/local minimizers
- If \mathbf{w}^* is the minimizer, $\nabla f(\mathbf{w}^*) = \frac{1}{N} \sum_{n=1}^{N} \nabla f_n(\mathbf{w}^*) = 0$,

but
$$\frac{1}{|B|} \sum_{n \in B} \nabla f_n(\mathbf{w}^*) \neq 0$$
 if B is a subset

(Even if we got minimizer, SGD will move away from it)

Stochastic gradient descent, step size

To make SGD converge:

Step size should decrease to 0

$$\eta^t \to 0$$

Usually with polynomial rate: $\eta^t pprox t^{-a}$ with constant a

Stochastic gradient descent vs Gradient descent

Stochastic gradient descent:

pros:

cheaper computation per iteration faster convergence in the beginning

o cons:

less stable, slower final convergence hard to tune step size

- Given a classification data $\{x_n, y_n\}_{n=1}^N$
- Learning a linear model:

$$\min_{\boldsymbol{w}} \frac{1}{N} \sum_{n=1}^{N} \ell(\boldsymbol{w}^{T} \boldsymbol{x}_{n}, y_{n})$$

Consider the loss:

$$\ell(\boldsymbol{w}^T\boldsymbol{x}_n, y_n) = \max(0, -y_n \boldsymbol{w}^T\boldsymbol{x}_n)$$

$$\ell(\boldsymbol{w}^T\boldsymbol{x}_n, y_n) = \max(0, -y_n \boldsymbol{w}^T\boldsymbol{x}_n)$$

Consider two cases:

- Case I: $y_n \mathbf{w}^T \mathbf{x}_n > 0$ (prediction correct)
 - $\ell(\mathbf{w}^T \mathbf{x}_n, y_n) = 0$ $\frac{\partial}{\partial \mathbf{w}} \ell(\mathbf{w}^T \mathbf{x}_n, y_n) = 0$

$$\ell(\boldsymbol{w}^T\boldsymbol{x}_n, y_n) = \max(0, -y_n \boldsymbol{w}^T\boldsymbol{x}_n)$$

Consider two cases:

- Case I: $y_n \mathbf{w}^T \mathbf{x}_n > 0$ (prediction correct)

 - $\ell(\mathbf{w}^T \mathbf{x}_n, y_n) = 0$ $\frac{\partial}{\partial \mathbf{w}} \ell(\mathbf{w}^T \mathbf{x}_n, y_n) = 0$
- Case II: $y_n \mathbf{w}^T \mathbf{x}_n < 0$ (prediction wrong)
 - $\ell(\mathbf{w}^T \mathbf{x}_n, y_n) = -y_n \mathbf{w}^T \mathbf{x}_n$ $\frac{\partial}{\partial \mathbf{w}} \ell(\mathbf{w}^T \mathbf{x}_n, y_n) = -y_n \mathbf{x}_n$

$$\ell(\boldsymbol{w}^T\boldsymbol{x}_n, y_n) = \max(0, -y_n \boldsymbol{w}^T\boldsymbol{x}_n)$$

Consider two cases:

• Case I:
$$y_n \mathbf{w}^T \mathbf{x}_n > 0$$
 (prediction correct)

•
$$\ell(\mathbf{w}^T \mathbf{x}_n, y_n) = 0$$

• $\frac{\partial}{\partial \mathbf{w}} \ell(\mathbf{w}^T \mathbf{x}_n, y_n) = 0$

• Case II: $y_n \mathbf{w}^T \mathbf{x}_n < 0$ (prediction wrong)

•
$$\ell(\mathbf{w}^T \mathbf{x}_n, y_n) = -y_n \mathbf{w}^T \mathbf{x}_n$$

• $\frac{\partial}{\partial \mathbf{w}} \ell(\mathbf{w}^T \mathbf{x}_n, y_n) = -y_n \mathbf{x}_n$

$$\frac{\partial}{\partial \mathbf{w}} \ell(\mathbf{w}^T \mathbf{x}_n, y_n) = -y_n \mathbf{x}_n$$

SGD update rule: Sample an index n

$$\mathbf{w}^{t+1} \leftarrow \begin{cases} \mathbf{w}^t & \text{if } y_n \mathbf{w}^T \mathbf{x}_n \ge 0 \text{ (predict correct)} \\ \mathbf{w}^t + \eta^t y_n \mathbf{x}_n & \text{if } y_n \mathbf{w}^T \mathbf{x}_n < 0 \text{ (predict wrong)} \end{cases}$$

Equivalent to Perceptron Learning Algorithm when $n^t = 1$

Conclusions

- Gradient descent
- Stochastic gradient descent

Questions?