Cho-Jui Hsieh

Jan 14, 2019

Q>

@ Goal: find the minimizer of a function

min f(w
in f(w)
For now we assume f is twice differentiable

@ Machine learning algorithm: find the hypothesis that minimizes
training error

f(w)

Optimal Solution

DA

@ A function f : R” — R is a convex function

< the function f is below any line segment between two points on f

Vxi, x2, VE € [0,1], f(tx1+ (1 —t)x2) < tf(x1) + (1 — t)f(x2)

f(x)

tf (z1) + (1 =) (22)

[tz + (1 —t)xs)

z1

try + (1 —t)zs

DA

@ A function f : R” — R is a convex function

< the function f is below any line segment between two points on f
Vx1,x2, Vt € [0,1], f(tx1+ (1 — t)x2)<tf(x1) + (1 — t)f(x2)

f(x)

tf (@) + (1 =) f (2)

S (tay + (1 = t)az)

Lol

try + (1 —t)as)

Strict convex: f(tx; + (1 —t)x2) < tf(x1) + (1 — t)f(x2)

[m]

=

DA

@ Another equivalent definition for differentiable function:

f is convex if and only if f(x) > f(xo) + VFf(x0)T (x — x0), ¥x, X0

(x0, f(x0)
convex function

nonconvex function

DA

@ Convex function:

o (for differentiable function) Vf(w*) = 0 < w* is a global minimum
o If f is twice differentiable =

f is convex if and only if V2f(w) is positive semi-definite
e Example: linear regression, logistic regression,

Convex

Minimizer

DA

@ Strict convex function:

o Vf(w*)=0< w* is the unique global minimum
most algorithms only converge to gradient= 0

o Example: Linear regression when X7 X is invertible

Convex

Minimizer

DA

@ Convex function:

o Vf(w*) =0« w* is a global minimum

e Example: linear regression, logistic regression,
@ Non-convex function:

o Vf(w*) =0« w" is Global min, local min, or saddle point
(also called stationary points)

most algorithms only converge to stationary points
e Example: neural network, - - -

Convex

Non-Convex

Saddl€ point

Local min
Minimizer

Global min

DA

Gradient descent

o Gradient descent: repeatedly do

wit o wt — aVf(wh)
« > 0 is the step size

DA

o Gradient descent: repeatedly do

witl — wt— aVf(w?h)
« > 0 is the step size
o Generate the sequence w

1 2

’W ,-..

converge to stationary points (lim;_ [|[VFf(w?)| = 0)

DA

o Gradient descent: repeatedly do

wit o wt — aVf(wh)
« > 0 is the step size

o Generate the sequence w!, w?, ...

converge to stationary points (lim;_ [|[VFf(w?)| = 0)
@ Step size too large = diverge; too small = slow convergence

10"

— stepsize 0.001
— stepsize 0.01
—stepsize 0.1

Error

40 60
lterations

DA

@ Successive approximation view

At each iteration, form an approximation function of f(-):

1
f(w'+d) = g(d) := f(w) + Vi(w)d + zlldll2
Update solution by wit! < wt 4 d*

d* = argming g(d)
Vg(d*) =0= Vf(w!)+ 1d*=0= d*=—-aVf(w?)

DA

@ Successive approximation view

At each iteration, form an approximation function of f(-):

1
f(w'+d) = g(d) := f(w) + Vi(w)d + ledll2
Update solution by wit! < wt 4 d*

d* = argming g(d)
Vg(d*) =0= Vf(w!)+ 1d*=0= d*=—-aVf(w?)

o d* will decrease f(-) if v (step size) is sufficiently small

DA

f(w)

g(d) ~ f(wt+d)

wt

Form a quadratic approximation

f(wt +d)~g(d) = f(w) + Vf(w)Td—i-

||ﬂ'||2

[m]

=

DA

g(d) ~ f(w'+d)

Minimize g(d):

Vg(d®) = 0 = VF(w') + éd* — 0= d" = —aV(w)

o 5 = = E DA

Update

Wt+1 = wt +d* = Wf_an(Wt)

g(d) ~ f(wt*1+d)

Wt wt+1

f(w)

Form another quadratic approximation

1
f(Wt+1 + d) s g(d) — f(wt+1) + Vf(wt+1)Td + ﬁ”dlb

d* = —aVf(wttl)

[m]

=

DA

Update

wt

g(d) ~ f(w*!+d)

f(w)

Q>

Can diverge (f(w?)<f(w'*1)) if g is not an upperbound of f

wt

wt+1

f(w?) < f(w**1), diverge because g’s curvature is too small

DA

Always converge (f(wt)>f(w*1)) when g is an upperbound of f

wt wt+1

f(w?) > f(w'*1), converge when g’s curvature is large enough

DA

@ Let L be the Lipchitz constant

(V2f(x) = LI for all x)

@ Theorem: gradient descent converges if o < %

DA

@ Let L be the Lipchitz constant

(V2f(x) = LI for all x)
@ Theorem: gradient descent converges if o < %
o Why?

o When o < 1/L, for any d,

1
g(d) = f(w') + Vi(w)"d + |||’

> F(w) + VA(w)Td + 2 d]?
> f(w' +d)

DA

@ Let L be the Lipchitz constant

(V2f(x) = LI for all x)

@ Theorem: gradient descent converges if o < %
o Why?

o When o < 1/L, for any d,

1
g(d) = f(w') + Vi(w)"d + |||’

> F(w) + VA(w)Td + 2 d]?
> f(w' +d)

e So, f(w' +d*) < g(d*) < g(0) = f(w?)

DA

@ Let L be the Lipchitz constant

(V2f(x) = LI for all x)

@ Theorem: gradient descent converges if o < %
o Why?

o When o < 1/L, for any d,

1
g(d) = f(w') + Vi(w)"d + |||’

> F(w) + VA(w)Td + 2 d]?
> f(w' +d)

f(w?)

e So, f(w! +d*) < g(d*) < g(0) = f(w?')
o In formal proof, need to show f(w* + d*) is sufficiently smaller than

DA

Applying to Logistic regression

gradient descent for logistic regression

@ Initialize the weights wy
@ Fort=1,2,...
o Compute the gradient

N
1 YnXn

Viw) = —— Y — 2
(W) N e 1+ ernwix,

o Update the weights: w < w — aVf(w)

@ Return the final weights w

Applying to Logistic regression

gradient descent for logistic regression

@ Initialize the weights wy
@ Fort=1,2,...
o Compute the gradient

N
1 YnXn

Viw) = —— Y — 2
(W) N e 1+ ernwix,

o Update the weights: w < w — aVf(w)

@ Return the final weights w

When to stop?
@ Fixed number of iterations, or
e Stop when ||Vf(w)|| < e

@ In practice, we do not know L ---

need to tune step size when running gradient descent

DA

@ In practice, we do not know L ---

need to tune step size when running gradient descent

@ Line Search: Select step size automatically (for gradient descent)

DA

@ The back-tracking line search:

e Start from some large ag
o Try a=ap, 3, 3"

Stop when « satisfies some sufficient decrease condition

DA

@ The back-tracking line search:

e Start from some large ag
o Try a=ap, 3, 9, -

Stop when « satisfies some sufficient decrease condition
o A simple condition: f(w + ad) < f(w)

DA

@ The back-tracking line search:

e Start from some large ag
o Try a=ap, 3, 9, -

Stop when « satisfies some sufficient decrease condition
o A simple condition: f(w + ad) < f(w)

often works in practice but doesn't work in theory

DA

@ The back-tracking line search:

e Start from some large ag
o Try

— Qo Qo
=00, 5,7 ,"

Stop when « satisfies some sufficient decrease condition
o A simple condition: f(w + ad) < f(w)

often works in practice but doesn't work in theory
o A (provable) sufficient decrease condition:

f(w+ad) < f(w) +oaVf(w)'d
for a constant o € (0,1)

DA

Line Search

gradient descent with backtracking line search

@ Initialize the weights wy
@ Fort=1,2,...
o Compute the gradient
d=—-Vf(w)
o For a = apg, /2, /4, -
Break if f(w + ad) < f(w) + ocaVf(w)'d
o Update w <+ w + ad

@ Return the final solution w

Stochastic Gradient descent

@ Machine learning: usually minimizing the training loss

N

1 ;

mMI/n{N z;e(w Xn;yn)}
n=

f(w) (linear model)
N
in{ L U(hw(xn),yn)} := f(w) (general hypothesis)
mM'/n{NX; w\Xn),Yn)y = g yp
n=

¢: loss function (e.g., £(a, b) = (a — b)?)
o Gradient descent:
W< w-—1

Vi(w)
——

Main computation

DA

@ Machine learning: usually minimizing the training loss

N

1 ;

mMI/n{N z;e(w Xn;yn)}
n=

f(w) (linear model)
N
in{ L U(hw(xn),yn)} := f(w) (general hypothesis)
mMI/n{N 2; wl\Xn)s Yn — g yp
n=
¢: loss function (e.g., £(a, b) = (a — b)?)
o Gradient descent:
w<—w-—-n Vi(w)
——
Main computation
o In general, f(w) = 1, ZnN_l fo(w),

each f,(w) only depends on (X, yn)

DA

@ Gradient:

1 N
Vi(w) = NZW,,(W)
n=1

@ Each gradient computation needs to go through all training samples
slow when millions of samples

o Faster way to compute “approximate gradient”?

DA

@ Gradient:

N
1
Vf(w) = NZW,,(W)
n=1
@ Each gradient computation needs to go through all training samples
slow when millions of samples

o Faster way to compute “approximate gradient”?
@ Use stochastic sampling

o Sample a small subset B C {1,--- , N}
e Estimated gradient
|Bl: batch size

~ 15 Zw (w)

neB

DA

Stochastic gradient descent

Stochastic Gradient Descent (SGD)

o Input: training data {x,, y,}N_;

o Initialize w (zero or random)

@ Fort=1,2,...
e Sample a small batch B C {1,--- , N}
e Update parameter

1
W w— ntﬁ Z Vi (w)
neB

Stochastic gradient descent

Stochastic Gradient Descent (SGD)

o Input: training data {x,, y,}N_;

o Initialize w (zero or random)

@ Fort=1,2,...
e Sample a small batch B C {1,--- , N}
e Update parameter

1
W w— ntﬁ Z Vi (w)
neB

Extreme case: |B| =1 = Sample one training data at a time

Logistic Regression by SGD

@ Logistic regression:

N
1 T
H —YnW ' Xp
min g log(1+e)
n=1
fa(w)

SGD for Logistic Regression

o Input: training data {x,, yn}N_;

o Initialize w (zero or random)

@ Fort=1,2,...
e Sample a batch B C {1,--- , N}
o Update parameter

w3

Yow T X,
iEB\]'iE,_/
Vin(w)

@ Stochastic gradient is an unbiased estimator of full gradient

E[ﬁ nGX;an(w)] -

1 N
N;Vf“(w)

= Vf(w)

DA

@ Stochastic gradient is an unbiased estimator of full gradient

E[|B|’§3Vf(w NZVf

= Vf(w)
o Each iteration updated by

gradient 4 zero-mean noise

e In gradient descent, 1) (step size) is a fixed constant
@ Can we use fixed step size for SGD?

DA

e In gradient descent, 1) (step size) is a fixed constant
@ Can we use fixed step size for SGD?

@ SGD with fixed step size cannot converge to global/local minimizers

DA

e In gradient descent, 1) (step size) is a fixed constant
@ Can we use fixed step size for SGD?

@ SGD with fixed step size cannot converge to global/local minimizers
o If w* is the minimizer, Vf(w*) = % ZnN=1 V fp(w*)=0,

it
N)
yel
Q

e In gradient descent, 1) (step size) is a fixed constant
@ Can we use fixed step size for SGD?
@ SGD with fixed step size cannot converge to global/local minimizers
o If w* is the minimizer, Vf(w*) = % ZnN=1 V fp(w*)=0,
1

but 8| Z Vi,(w*)#0 if B is a subset
neB

u]

o)
1

n
it
)
»
i)

e In gradient descent, 1) (step size) is a fixed constant
@ Can we use fixed step size for SGD?
@ SGD with fixed step size cannot converge to global/local minimizers
o If w* is the minimizer, Vf(w*) = % EnN=1 V fp(w*)=0,
1

but 8| Z Vi,(w*)#0 if B is a subset
neB

(Even if we got minimizer, SGD will move away from it)

u]

o)
1

n
it
)
»
i)

@ To make SGD converge:

Step size should decrease to 0
nt — 0

Usually with polynomial rate: n' ~ t~2 with constant a

DA

Stochastic gradient descent:
@ pros:

cheaper computation per iteration
faster convergence in the beginning
@ cons:

less stable, slower final convergence
hard to tune step size

— Batch gradient descent

— Mini-batch gradient Descent
— Stochastic gradient descent

(Figure from https://medium.com/@ImadPhd/

gradient-descent-algorithm-and-its-variants-10£652806a3)

https://medium.com/@ImadPhd/gradient-descent-algorithm-and-its-variants-10f652806a3
https://medium.com/@ImadPhd/gradient-descent-algorithm-and-its-variants-10f652806a3

o Given a classification data {x,, y,}N_,
@ Learning a linear model:

N
1 T
mMI/n N ZE(W Xnayn)
n=1
@ Consider the loss:

U(w " xn, yn) = max(0, —y,w " x,)

loss

What's the gradient?

Ty *wx

DA

E(WTxna}’n) = max(O, —YnW X,,)
Consider two cases:
e Case I: y,wx, > 0 (prediction correct)
* f(WTxna}/n) =0
o 2l wTXn,yn) =0

DA

E(WTxna}’n) = max(0, —y,w ' x,)
Consider two cases:
o Case I: y,wx, > 0 (prediction correct)
o UwTx,, y,)=0
o 2l wTXn,yn) =0
o Casell: y,wTx, <0 (prediction wrong)
° E(WTXmYn) = _anTxn
° a%,e(WTXmYn) = —YnXn

DA

Revisit perceptron Learning Algorithm

K(WTxm)/n) = max(O, _)/nWTxn)

Consider two cases:
e Case I: y,wx, > 0 (prediction correct)
o {(w'x,,y,) =0
o 2w xy,y,) =0
e Case ll: y,w'x, < 0 (prediction wrong)
o ((WTxp,y,) = —y.w'x,
° a%g(WTxm)/n) = —YnXn
SGD update rule: Sample an index n

e, wt if y.w T x,>0 (predict correct)
w
wi + nty,x, if yow T x,<0 (predict wrong)

Equivalent to Perceptron Learning Algorithm when nf =1

@ Gradient descent

@ Stochastic gradient descent

Questions?

DA

