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Supervised Learning:

@ Learning from labeled observations
o Classification, regression,

Unsupervised Learning:

@ Learning from unlabeled observations
@ Discover hidden patterns

o Clustering (today)
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Kmeans Clustering



e Given {x1,x2, ..

., Xn} and K (number of clusters)
@ Output A(x;) € {1,2,..., K} (cluster membership)
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Can we split the data into two clusters?
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Clustering is Subjective

@ Non-trivial to say one partition is better than others
@ Each algorithm has two parts:

e Define the objective function
e Design an algorithm to minimize this objective function
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objective:

@ Partition dataset into Ci, G, ..., Ckx to minimize the following

K
J=30 3 Ik - 3,

k=1 xeCy
where my is the mean of C.
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objective:

@ Partition dataset into Ci, G, ..., Ckx to minimize the following

K
_ 2
J=0 > llx—myl3,
k=1 xeCy
where my is the mean of C.
@ Multiple ways to minimize this objective

e Hierarchical Agglomerative Clustering
o Kmeans Algorithm (Today)
o ...
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@ Re-write objective:

K
J= ernknxn — myf3,
n

=1k=1
where rp € {0,1} is an indicator variable

e =1 if and only if x, € Ci

o Alternative optimization between {rpc} and {my}
o Fix {my} and update {r,}

o Fix {rnc} and update {my}
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e Step 0: Initialize {my} to some values
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e Step 0: Initialize {my} to some values

@ Step 1: Fix {my} and minimize over {r,}:

1 if k =argminj||x, — mj”%
'nk = 0

otherwise
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e Step 0: Initialize {my} to some values

@ Step 1: Fix {my} and minimize over {r,}:

1 if k =argminj||x, — mj“%
'nk = 0

otherwise

e Step 2: Fix {rnx} and minimize over {my}:

my = En I'nkXn

Zn Ik
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e Step 0: Initialize {my} to some values

@ Step 1: Fix {my} and minimize over {r,}:

1 if k =argminj||x, — mj“%
'nk = 0

otherwise

@ Step 2: Fix {ryc} and minimize over {my}

my = En I'nkXn

Zn Ik

@ Step 3: Return to step 1 unless stopping criterion is met
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Equivalent to the following procedure

@ Step 0: Initialize centers {my} to some values

@ Step 1: Assign each x, to the nearest center

A(xn) = arg min ||x,
Update clusters

— mj|3

Co ={xn: Alxn) =k} Yk=1,....K
@ Step 2: Calculate mean of each cluster Cj

|ck| 2

xn€ Cy
@ Step 3: Return to step 1 unless stopping criterion is met
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@ Always decrease the objective function for each update

@ Objective function will remain unchanged when step 1 doesn't change
cluster assignment =- Converged
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@ Always decrease the objective function for each update

@ Objective function will remain unchanged when step 1 doesn't change
cluster assignment =- Converged
@ May not converge to global minimum

Sensitive to initial values
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@ Always decrease the objective function for each update

@ Objective function will remain unchanged when step 1 doesn't change
cluster assignment =- Converged

@ May not converge to global minimum

Sensitive to initial values

@ Kmeans++: A better way to initialize the clusters
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Graph Clustering



e Given a graph G = (V,E, W)

o V: nodes {vi,-

. Vn}
o E: edges {e1, - ,em}
o W: weight matrix

w,— [win ) EE
0 otherwise
@ Goal: Partition V into k clusters of nodes

V=wvuWu..- UV,

VinVi=e, Vi,j
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Similarly Graph

o Example: similarity graph
@ Given samples xi,..., X,
@ Weight (similarities) indicates “closeness of samples”

Similarity Graph: G(V,E,W) V — Vertices (Data points)
E — Edge if similarity > 0
W - Edge weights (similarities)

FX
@ o
eo°
e
@
Data Similarities Similarity graph

Partition the graph so that edges within a group have large weights and
edges across groups have small weights.




. —
E.g., Gaussian kernel Wj; = e xi—xi[12/

h t‘
ﬂi‘é EM

Data clustering

G ={V.E}



@ Nodes: users in social network
o Edges: Wj; =1 if user / and j are friends,
otherwise Wj; =0

| Graph Representation | Matrix Representation
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@ Partition graph into two sets Vi, V5 to minimize the cut value:

cut( Vi, V2) =

> W

vieVL,v;eV,
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@ Partition graph into two sets Vi, V5 to minimize the cut value:

cut( Vi, V2) =

> W

vieVL,v;eV,

@ Also, the size of Vi, V5 needs to be similar (balance)
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@ Partition graph into two sets Vi, V5 to minimize the cut value:

CUt(Vl, V2) =

> W

vieVL,vieV?
@ Also, the size of Vi, V5 needs to be similar (balance)
@ One classical way of enforcing balance:

[ t(V1, V;
i, otV )

s.t. |V1| = |V2|,

V1UV2:{1,--- ,n}, VinVo =9
= this is NP-hard (cannot be solved in polynomial time)
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@ Starts with some partitioning V1, V>
o Calculate change in cut if 2 vertices are swapped

@ Swap the vertices (1 in V4 & 1 in V5) that decease the cut the most
@ lterative until convergence
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@ Starts with some partitioning V1, V>
o Calculate change in cut if 2 vertices are swapped
@ Swap the vertices (1 in V4 & 1 in V5) that decease the cut the most
@ lterative until convergence
@ Used when we need exact balanced clusters
(e.g., circuit design)
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@ Ratio-Cut:

min
Vi, Vo

+
V1|

:RC V’V
v } (V1, V2)

@ Normalized-Cut:

. {Cut(Vl, V2)
min
Vi, Vo

4 Cut( Vl, V2)
deg(V1)

ey | = NV Vo)

deg( Vc) -

> Wiy =links(Ve, V)
Vi Ve (i) €E
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@ Ratio-Cut:

k
. Cut( Vc, V _ VC)
min
Vi, Vi CEZI ‘VC|
@ Normalized-Cut:
min Ekj Cut(Ve, V - Vo)
e c=1 deg( Vc)
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@ Recall deg(V,) = links(V¢, V)

@ Define a diagonal matrix

deg(V1) 0 0
0 deg(V2) 0
D=1 o 0

deg(V3)

o y. = {0,1}": indicator vector for the c-th cluster
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@ Recall deg(V,) = links(V¢, V)

@ Define a diagonal matrix

deg(V1) 0 0
0 deg(V2) 0
D=1 o 0

deg(V3)

o y. = {0,1}": indicator vector for the c-th cluster
@ We have

Y;ryc = | V(|
yTDYC = deg(Vc)
y! Wy = links(V,, V,)

[m]
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@ Rewrite the ratio-cut objective:

k
RO, iy 3 Sl V= )

c=1 |VC|

—Z

deg(Ve) — links( V¢, V)

Ve

_ Z yl Dyc —yI Wy
ylye

Zyc (D — W)y

c=1

yc yC

_ZycTLyc

CyC

(L= D — W is “Graph Laplacian”)

[m]
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@ L is symmetric positive semi-definite
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@ L is symmetric positive semi-definite
e For any x,
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@ We have shown Ratio-Cut is equivalent to

k T
RCut — yC LyC

k
Yc
=2 G
prt ylye ; lyell
o Define y. = y./|lyc|| (normalized indicator),

T Yc

[yl

Y=[y_17y_2; 7y_k] = YTY=I
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@ We have shown Ratio-Cut is equivalent to

k T
RCut — yC LyC

k
Yc
=2 G
prt ylye ; lyell
o Define y. = y./|lyc|| (normalized indicator),

T Yc

[yl

Y=[y_17y_2; 7y_k] = YTY=I
@ Relaxed to real valued problem:

min Trace(YTLY)
YTY=I
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@ We have shown Ratio-Cut is equivalent to

“yllye &y y
RCut = €2 =) (T2
—~ ylyc 2 lyell” llyell

c=1
o Define y. = y./|lyc|| (normalized indicator),

Y = [y_lay_2a"' 7y_k] = YTYZI

@ Relaxed to real valued problem:

min Trace(YTLY)
YTY=I

@ Solution: Eigenvectors corresponding to the smallest k eigenvalues of L

o F - = E 9Oace



o Let Y* € R"*k be these eigenvectors. Are we done?
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o Let Y* € R"*k be these eigenvectors. Are we done?

@ No, Y* does not have 0/1 values (not indicators)

(since we are solving a relaxed problem)
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o Let Y* € R"*k be these eigenvectors. Are we done?

@ No, Y* does not have 0/1 values (not indicators)
(since we are solving a relaxed problem)
@ Solution: Run k-means on the rows of Y*
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o Let Y* € R"*k be these eigenvectors. Are we done?

@ No, Y* does not have 0/1 values (not indicators)
(since we are solving a relaxed problem)
@ Solution: Run k-means on the rows of Y*

@ Summary of Spectral clustering algorithms:

of (normalized) Laplacian matrix

o Compute Y* € R": eigenvectors corresponds to k smallest eigenvalues
e Run k-means to cluster rows of Y*
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e If graph is disconnected ( k connected components), Laplacian is block
diagonal and first k eigen-vectors are:

First three eigenvectors
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@ What if the graph is connected?
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@ What if the graph is connected?

@ There will be only one smallest eigenvalue/eigenvector:

[1=(D—A)1=0

(1 =1[1,1,---,1]7 is the eigenvector with eigenvalue 0)
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@ What if the graph is connected?

@ There will be only one smallest eigenvalue/eigenvector:
[1=(D-A1=0

(1 =1[1,1,---,1]7 is the eigenvector with eigenvalue 0)

@ However, the 2nd to k-th smallest eigenvectors are still useful for
clustering

1 1 200 .50 .47

‘ 2101 |1 50 -47

oAl .50 -52
1stevec is constant Sign of 2" evec
since graph is connected indicates blocks
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@ Rewrite Normalized Cut:

k
Ncut:ZCut(Vc,V— Vo)

— deg(Vc)

_ Z yc (D — Ay
~  yIDy.
~ 1/2
o Let y. ”gl/—2” then
k &Tp-1/2 1/25
D D - A)D
NCutzzyc (NTN ) c
c=1 yc yC
@ Normalized Laplacian

[=DY*D-AD?

=/—D2AD7/?

@ Normalized Cut — eigenvectors correspond to the smallest eigenvalues
of L

[m]
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@ Kmeans: decision boundary is linear

@ Spectral clustering: boundary can be non-convex curves

llxj =11
oinWj=e - controls the clustering results (focus on local or
global structure)
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@ Kmeans objective: minimize the distance to centers

@ Kmeans algorithm: an optimization algorithm to minimize this objective
@ Graph clustering = related to eigenvectors of graphs

Questions?
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