
CS260: Machine Learning Algorithms
Lecture 5: Clustering

Cho-Jui Hsieh
UCLA

Jan 23, 2019

Supervised versus Unsupervised Learning

Supervised Learning:

Learning from labeled observations

Classification, regression, . . .

Unsupervised Learning:

Learning from unlabeled observations

Discover hidden patterns

Clustering (today)

Kmeans Clustering

Clustering

Given {x1, x2, . . . , xn} and K (number of clusters)

Output A(xi) ∈ {1, 2, . . . ,K} (cluster membership)

Two circles

Can we split the data into two clusters?

Two circles

Can we split the data into two clusters?

Clustering is Subjective

Non-trivial to say one partition is better than others

Each algorithm has two parts:
Define the objective function
Design an algorithm to minimize this objective function

K-means Objective Function

Partition dataset into C1,C2, . . . ,CK to minimize the following
objective:

J =
K∑

k=1

∑
x∈Ck

‖x −mk‖22,

where mk is the mean of Ck .

Multiple ways to minimize this objective

Hierarchical Agglomerative Clustering
Kmeans Algorithm (Today)
. . .

K-means Objective Function

Partition dataset into C1,C2, . . . ,CK to minimize the following
objective:

J =
K∑

k=1

∑
x∈Ck

‖x −mk‖22,

where mk is the mean of Ck .

Multiple ways to minimize this objective

Hierarchical Agglomerative Clustering
Kmeans Algorithm (Today)
. . .

K-means Algorithm

K-means Algorithm

Re-write objective:

J =
N∑

n=1

K∑
k=1

rnk‖xn −mk‖22,

where rnk ∈ {0, 1} is an indicator variable

rnk = 1 if and only if xn ∈ Ck

Alternative optimization between {rnk} and {mk}
Fix {mk} and update {rnk}
Fix {rnk} and update {mk}

K-means Algorithm

Step 0: Initialize {mk} to some values

Step 1: Fix {mk} and minimize over {rnk}:

rnk =

{
1 if k = arg minj ‖xn −mj‖22
0 otherwise

Step 2: Fix {rnk} and minimize over {mk}:

mk =

∑
n rnkxn∑
n rnk

Step 3: Return to step 1 unless stopping criterion is met

K-means Algorithm

Step 0: Initialize {mk} to some values

Step 1: Fix {mk} and minimize over {rnk}:

rnk =

{
1 if k = arg minj ‖xn −mj‖22
0 otherwise

Step 2: Fix {rnk} and minimize over {mk}:

mk =

∑
n rnkxn∑
n rnk

Step 3: Return to step 1 unless stopping criterion is met

K-means Algorithm

Step 0: Initialize {mk} to some values

Step 1: Fix {mk} and minimize over {rnk}:

rnk =

{
1 if k = arg minj ‖xn −mj‖22
0 otherwise

Step 2: Fix {rnk} and minimize over {mk}:

mk =

∑
n rnkxn∑
n rnk

Step 3: Return to step 1 unless stopping criterion is met

K-means Algorithm

Step 0: Initialize {mk} to some values

Step 1: Fix {mk} and minimize over {rnk}:

rnk =

{
1 if k = arg minj ‖xn −mj‖22
0 otherwise

Step 2: Fix {rnk} and minimize over {mk}:

mk =

∑
n rnkxn∑
n rnk

Step 3: Return to step 1 unless stopping criterion is met

K-means Algorithm

Equivalent to the following procedure:

Step 0: Initialize centers {mk} to some values

Step 1: Assign each xn to the nearest center:

A(xn) = arg min
j
‖xn −mj‖22

Update clusters:

Ck = {xn : A(xn) = k} ∀k = 1, . . . ,K

Step 2: Calculate mean of each cluster Ck :

mk =
1

|Ck |
∑

xn∈Ck

xn

Step 3: Return to step 1 unless stopping criterion is met

More on K-means Algorithm

Always decrease the objective function for each update

Objective function will remain unchanged when step 1 doesn’t change
cluster assignment ⇒ Converged

May not converge to global minimum

Sensitive to initial values

Kmeans++: A better way to initialize the clusters

More on K-means Algorithm

Always decrease the objective function for each update

Objective function will remain unchanged when step 1 doesn’t change
cluster assignment ⇒ Converged

May not converge to global minimum

Sensitive to initial values

Kmeans++: A better way to initialize the clusters

More on K-means Algorithm

Always decrease the objective function for each update

Objective function will remain unchanged when step 1 doesn’t change
cluster assignment ⇒ Converged

May not converge to global minimum

Sensitive to initial values

Kmeans++: A better way to initialize the clusters

Graph Clustering

Graph Clustering

Given a graph G = (V ,E ,W)

V : nodes {v1, · · · , vn}
E : edges {e1, · · · , em}
W : weight matrix

Wij =

{
wij , if (i , j) ∈ E

0 otherwise

Goal: Partition V into k clusters of nodes

V = V1 ∪ V2 ∪ · · · ∪ Vk , Vi ∩ Vj = ϕ, ∀i , j

Similarly Graph

Example: similarity graph

Given samples x1, . . . , xn
Weight (similarities) indicates “closeness of samples”

Similarity Graph

E.g., Gaussian kernel Wij = e−‖xi−xj‖2/σ2

Social graph

Nodes: users in social network

Edges: Wij = 1 if user i and j are friends,

otherwise Wij = 0

Partitioning into Two Clusters

Partition graph into two sets V1,V2 to minimize the cut value:

cut(V1,V2) =
∑

vi∈V1,vj∈V2

Wij

Also, the size of V1,V2 needs to be similar (balance)

One classical way of enforcing balance:

min
V1,V2

cut(V1,V2)

s.t. |V1| = |V2|, V1 ∪ V2 = {1, · · · , n},V1 ∩ V2 = ϕ

⇒ this is NP-hard (cannot be solved in polynomial time)

Partitioning into Two Clusters

Partition graph into two sets V1,V2 to minimize the cut value:

cut(V1,V2) =
∑

vi∈V1,vj∈V2

Wij

Also, the size of V1,V2 needs to be similar (balance)

One classical way of enforcing balance:

min
V1,V2

cut(V1,V2)

s.t. |V1| = |V2|, V1 ∪ V2 = {1, · · · , n},V1 ∩ V2 = ϕ

⇒ this is NP-hard (cannot be solved in polynomial time)

Partitioning into Two Clusters

Partition graph into two sets V1,V2 to minimize the cut value:

cut(V1,V2) =
∑

vi∈V1,vj∈V2

Wij

Also, the size of V1,V2 needs to be similar (balance)

One classical way of enforcing balance:

min
V1,V2

cut(V1,V2)

s.t. |V1| = |V2|, V1 ∪ V2 = {1, · · · , n},V1 ∩ V2 = ϕ

⇒ this is NP-hard (cannot be solved in polynomial time)

Kernighan-Lin Algorithm

Starts with some partitioning V1,V2

Calculate change in cut if 2 vertices are swapped

Swap the vertices (1 in V1 & 1 in V2) that decease the cut the most

Iterative until convergence

Used when we need exact balanced clusters

(e.g., circuit design)

Kernighan-Lin Algorithm

Starts with some partitioning V1,V2

Calculate change in cut if 2 vertices are swapped

Swap the vertices (1 in V1 & 1 in V2) that decease the cut the most

Iterative until convergence

Used when we need exact balanced clusters

(e.g., circuit design)

Objective function that considers balance

Ratio-Cut:

min
V1,V2

{
Cut(V1,V2)

|V1|
+

Cut(V1,V2)

|V2|

}
:= RC(V1,V2)

Normalized-Cut:

min
V1,V2

{
Cut(V1,V2)

deg(V1)
+

Cut(V1,V2)

deg(V2)

}
:= NC(V1,V2),

where
deg(Vc) :=

∑
vi∈Vc ,(i ,j)∈E

Wi ,j = links(Vc ,V)

Generalize to k clusters

Ratio-Cut:

min
V1,··· ,Vk

k∑
c=1

Cut(Vc ,V − Vc)

|Vc |

Normalized-Cut:

min
V1,··· ,Vk

k∑
c=1

Cut(Vc ,V − Vc)

deg(Vc)

Reformulation

Recall deg(Vc) = links(Vc ,V)

Define a diagonal matrix

D =


deg(V1) 0 0 · · ·

0 deg(V2) 0 · · ·
0 0 deg(V3) · · ·
...

...
...

. . .


yc = {0, 1}n: indicator vector for the c-th cluster

We have

yTc yc = |Vc |
yTc Dyc = deg(Vc)

yTc W yc = links(Vc ,Vc)

Reformulation

Recall deg(Vc) = links(Vc ,V)

Define a diagonal matrix

D =


deg(V1) 0 0 · · ·

0 deg(V2) 0 · · ·
0 0 deg(V3) · · ·
...

...
...

. . .


yc = {0, 1}n: indicator vector for the c-th cluster

We have

yTc yc = |Vc |
yTc Dyc = deg(Vc)

yTc W yc = links(Vc ,Vc)

Ratio Cut

Rewrite the ratio-cut objective:

RC (V1, · · · ,Vk) =
k∑

c=1

Cut(Vc ,V − Vc)

|Vc |

=
k∑

c=1

deg(Vc)− links(Vc ,Vc)

|Vc |

=
k∑

c=1

yTc Dyc − yTc W yc
yTc yc

=
k∑

c=1

yTc (D −W)yc
yTc yc

=
k∑

c=1

yTc Lyc
yTc yc

(L = D −W is “Graph Laplacian”)

More on Graph Laplacian

L is symmetric positive semi-definite

For any x ,

xTLx =
1

2

∑
(i ,j)

Wij(xi − xj)
2

More on Graph Laplacian

L is symmetric positive semi-definite

For any x ,

xTLx =
1

2

∑
(i ,j)

Wij(xi − xj)
2

Solving Ratio-Cut

We have shown Ratio-Cut is equivalent to

RCut =
k∑

c=1

yTc Lyc
yTc yc

=
k∑

c=1

(
yc
‖yc‖

)TL
yc
‖yc‖

Define ȳc = yc/‖yc‖ (normalized indicator),

Y = [ȳ1, ȳ2, · · · , ȳk] ⇒ Y TY = I

Relaxed to real valued problem:

min
Y TY=I

Trace(Y TLY)

Solution: Eigenvectors corresponding to the smallest k eigenvalues of L

Solving Ratio-Cut

We have shown Ratio-Cut is equivalent to

RCut =
k∑

c=1

yTc Lyc
yTc yc

=
k∑

c=1

(
yc
‖yc‖

)TL
yc
‖yc‖

Define ȳc = yc/‖yc‖ (normalized indicator),

Y = [ȳ1, ȳ2, · · · , ȳk] ⇒ Y TY = I

Relaxed to real valued problem:

min
Y TY=I

Trace(Y TLY)

Solution: Eigenvectors corresponding to the smallest k eigenvalues of L

Solving Ratio-Cut

We have shown Ratio-Cut is equivalent to

RCut =
k∑

c=1

yTc Lyc
yTc yc

=
k∑

c=1

(
yc
‖yc‖

)TL
yc
‖yc‖

Define ȳc = yc/‖yc‖ (normalized indicator),

Y = [ȳ1, ȳ2, · · · , ȳk] ⇒ Y TY = I

Relaxed to real valued problem:

min
Y TY=I

Trace(Y TLY)

Solution: Eigenvectors corresponding to the smallest k eigenvalues of L

Solving Ratio-Cut

Let Y ∗ ∈ Rn×k be these eigenvectors. Are we done?

No, Y ∗ does not have 0/1 values (not indicators)

(since we are solving a relaxed problem)

Solution: Run k-means on the rows of Y ∗

Summary of Spectral clustering algorithms:

Compute Y ∗ ∈ Rn×k : eigenvectors corresponds to k smallest eigenvalues
of (normalized) Laplacian matrix
Run k-means to cluster rows of Y ∗

Solving Ratio-Cut

Let Y ∗ ∈ Rn×k be these eigenvectors. Are we done?

No, Y ∗ does not have 0/1 values (not indicators)

(since we are solving a relaxed problem)

Solution: Run k-means on the rows of Y ∗

Summary of Spectral clustering algorithms:

Compute Y ∗ ∈ Rn×k : eigenvectors corresponds to k smallest eigenvalues
of (normalized) Laplacian matrix
Run k-means to cluster rows of Y ∗

Solving Ratio-Cut

Let Y ∗ ∈ Rn×k be these eigenvectors. Are we done?

No, Y ∗ does not have 0/1 values (not indicators)

(since we are solving a relaxed problem)

Solution: Run k-means on the rows of Y ∗

Summary of Spectral clustering algorithms:

Compute Y ∗ ∈ Rn×k : eigenvectors corresponds to k smallest eigenvalues
of (normalized) Laplacian matrix
Run k-means to cluster rows of Y ∗

Solving Ratio-Cut

Let Y ∗ ∈ Rn×k be these eigenvectors. Are we done?

No, Y ∗ does not have 0/1 values (not indicators)

(since we are solving a relaxed problem)

Solution: Run k-means on the rows of Y ∗

Summary of Spectral clustering algorithms:

Compute Y ∗ ∈ Rn×k : eigenvectors corresponds to k smallest eigenvalues
of (normalized) Laplacian matrix
Run k-means to cluster rows of Y ∗

Eigenvectors of Laplacian

If graph is disconnected (k connected components), Laplacian is block
diagonal and first k eigen-vectors are:

Eigenvectors of Laplacian

What if the graph is connected?

There will be only one smallest eigenvalue/eigenvector:

L1 = (D − A)1 = 0

(1 = [1, 1, · · · , 1]T is the eigenvector with eigenvalue 0)

However, the 2nd to k-th smallest eigenvectors are still useful for
clustering

Eigenvectors of Laplacian

What if the graph is connected?

There will be only one smallest eigenvalue/eigenvector:

L1 = (D − A)1 = 0

(1 = [1, 1, · · · , 1]T is the eigenvector with eigenvalue 0)

However, the 2nd to k-th smallest eigenvectors are still useful for
clustering

Eigenvectors of Laplacian

What if the graph is connected?

There will be only one smallest eigenvalue/eigenvector:

L1 = (D − A)1 = 0

(1 = [1, 1, · · · , 1]T is the eigenvector with eigenvalue 0)

However, the 2nd to k-th smallest eigenvectors are still useful for
clustering

Normalized Cut

Rewrite Normalized Cut:

NCut =
k∑

c=1

Cut(Vc ,V − Vc)

deg(Vc)

=
k∑

c=1

yTc (D − A)yc
yTc Dyc

Let ỹc = D1/2yc
‖D1/2yc‖

, then

NCut =
k∑

c=1

ỹTc D
−1/2(D − A)D−1/2ỹc

ỹTc ỹc

Normalized Laplacian:

L̃ = D−1/2(D − A)D−1/2 = I − D−1/2AD−1/2

Normalized Cut → eigenvectors correspond to the smallest eigenvalues
of L̃

Kmeans vs Spectral Clustering

Kmeans: decision boundary is linear

Spectral clustering: boundary can be non-convex curves

σ in Wij = e
−‖xi−xj‖

2

σ2 controls the clustering results (focus on local or
global structure)

Kmeans vs Spectral Clustering

Conclusions

Kmeans objective: minimize the distance to centers

Kmeans algorithm: an optimization algorithm to minimize this objective

Graph clustering ⇒ related to eigenvectors of graphs

Questions?

