CS260: Machine Learning Algorithms

Lecture 5: Clustering

Cho-Jui Hsieh UCLA

Jan 23, 2019

Supervised versus Unsupervised Learning

Supervised Learning:

- Learning from labeled observations
- Classification, regression, ...

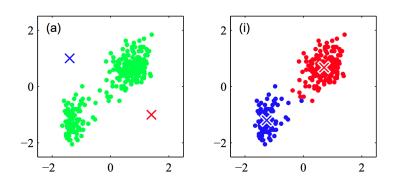
Unsupervised Learning:

- Learning from unlabeled observations
- Discover hidden patterns
- Clustering (today)

Kmeans Clustering

Clustering

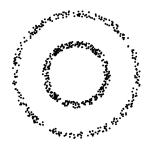
- Given $\{x_1, x_2, \dots, x_n\}$ and K (number of clusters)
- Output $A(\mathbf{x}_i) \in \{1, 2, \dots, K\}$ (cluster membership)



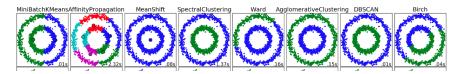
Two circles

Can we split the data into two clusters?

Two circles

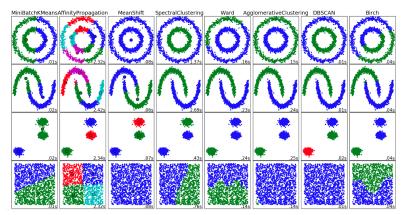


Can we split the data into two clusters?



Clustering is Subjective

- Non-trivial to say one partition is better than others
- Each algorithm has two parts:
 - Define the objective function
 - Design an algorithm to minimize this objective function



K-means Objective Function

• Partition dataset into C_1, C_2, \ldots, C_K to minimize the following objective:

$$J = \sum_{k=1}^K \sum_{\boldsymbol{x} \in C_k} \|\boldsymbol{x} - \boldsymbol{m}_k\|_2^2,$$

where m_k is the mean of C_k .

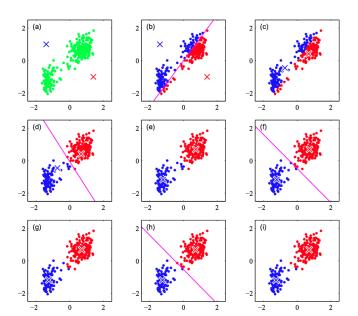
K-means Objective Function

• Partition dataset into C_1, C_2, \ldots, C_K to minimize the following objective:

$$J = \sum_{k=1}^K \sum_{\mathbf{x} \in C_k} \|\mathbf{x} - \mathbf{m}_k\|_2^2,$$

where \mathbf{m}_k is the mean of C_k .

- Multiple ways to minimize this objective
 - Hierarchical Agglomerative Clustering
 - Kmeans Algorithm (Today)
 - ...



• Re-write objective:

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \|\mathbf{x}_n - \mathbf{m}_k\|_2^2,$$

where $r_{nk} \in \{0,1\}$ is an indicator variable

$$\mathit{r}_{\mathit{nk}} = 1$$
 if and only if $\mathit{x}_{\mathit{n}} \in \mathit{C}_{\mathit{k}}$

- Alternative optimization between $\{r_{nk}\}$ and $\{m{m}_k\}$
 - Fix $\{\boldsymbol{m}_k\}$ and update $\{r_{nk}\}$
 - Fix $\{r_{nk}\}$ and update $\{\boldsymbol{m}_k\}$

• Step 0: Initialize $\{m_k\}$ to some values

- Step 0: Initialize $\{m_k\}$ to some values
- Step 1: Fix $\{m_k\}$ and minimize over $\{r_{nk}\}$:

$$r_{nk} = egin{cases} 1 & ext{ if } k = rg \min_j \| \mathbf{x}_n - \mathbf{m}_j \|_2^2 \ 0 & ext{ otherwise} \end{cases}$$

- Step 0: Initialize $\{m_k\}$ to some values
- Step 1: Fix $\{m_k\}$ and minimize over $\{r_{nk}\}$:

$$r_{nk} = egin{cases} 1 & ext{if } k = rg \min_j \| \mathbf{x}_n - \mathbf{m}_j \|_2^2 \ 0 & ext{otherwise} \end{cases}$$

• Step 2: Fix $\{r_{nk}\}$ and minimize over $\{\boldsymbol{m}_k\}$:

$$\boldsymbol{m}_k = \frac{\sum_n r_{nk} \boldsymbol{x}_n}{\sum_n r_{nk}}$$

- Step 0: Initialize $\{m_k\}$ to some values
- Step 1: Fix $\{m_k\}$ and minimize over $\{r_{nk}\}$:

$$r_{nk} = egin{cases} 1 & ext{if } k = rg \min_j \| \mathbf{x}_n - \mathbf{m}_j \|_2^2 \ 0 & ext{otherwise} \end{cases}$$

• Step 2: Fix $\{r_{nk}\}$ and minimize over $\{\boldsymbol{m}_k\}$:

$$\boldsymbol{m}_k = \frac{\sum_n r_{nk} \boldsymbol{x}_n}{\sum_n r_{nk}}$$

• Step 3: Return to step 1 unless stopping criterion is met

Equivalent to the following procedure:

- Step 0: Initialize centers $\{m_k\}$ to some values
- Step 1: Assign each x_n to the nearest center:

$$A(\boldsymbol{x}_n) = \arg\min_{j} \|\boldsymbol{x}_n - \boldsymbol{m}_j\|_2^2$$

Update clusters:

$$C_k = \{ \mathbf{x}_n : A(\mathbf{x}_n) = k \} \quad \forall k = 1, \dots, K$$

• Step 2: Calculate mean of each cluster C_k :

$$\boldsymbol{m}_k = \frac{1}{|C_k|} \sum_{\boldsymbol{x}_n \in C_k} \boldsymbol{x}_n$$

• Step 3: Return to step 1 unless stopping criterion is met

More on K-means Algorithm

- Always decrease the objective function for each update
- Objective function will remain unchanged when step 1 doesn't change cluster assignment ⇒ Converged

More on K-means Algorithm

- Always decrease the objective function for each update
- ullet Objective function will remain unchanged when step 1 doesn't change cluster assignment \Rightarrow Converged
- May not converge to global minimum
 Sensitive to initial values

More on K-means Algorithm

- Always decrease the objective function for each update
- ullet Objective function will remain unchanged when step 1 doesn't change cluster assignment \Rightarrow Converged
- May not converge to global minimum
 Sensitive to initial values
- Kmeans++: A better way to initialize the clusters

Graph Clustering

Graph Clustering

- Given a graph G = (V, E, W)
 - V: nodes $\{v_1, \dots, v_n\}$
 - E: edges $\{e_1, \dots, e_m\}$
 - W: weight matrix

$$W_{ij} = \begin{cases} w_{ij}, & \text{if } (i,j) \in E \\ 0 & \text{otherwise} \end{cases}$$

• Goal: Partition V into k clusters of nodes

$$V = V_1 \cup V_2 \cup \cdots \cup V_k, \quad V_i \cap V_j = \varphi, \ \forall i, j$$

Similarly Graph

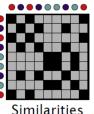
- Example: similarity graph
- Given samples x_1, \ldots, x_n
- Weight (similarities) indicates "closeness of samples"

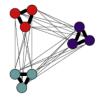
Similarity Graph: G(V,E,W)

V – Vertices (Data points)

E – Edge if similarity > 0

W - Edge weights (similarities)



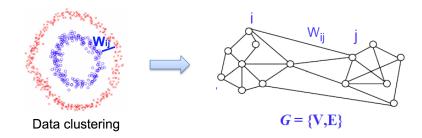


Similarity graph

Partition the graph so that edges within a group have large weights and edges across groups have small weights.

Similarity Graph

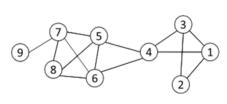
E.g., Gaussian kernel
$$W_{ij} = e^{-\|\mathbf{x}_i - \mathbf{x}_j\|^2/\sigma^2}$$



Social graph

- Nodes: users in social network
- Edges: $W_{ij} = 1$ if user i and j are friends, otherwise $W_{ij} = 0$

□ Graph Representation



Matrix Representation

Node	1	2	3	4	5	6	7	8	9
1	-	1	1	1	0	0	0	0	0
2	1	-	1	0	0	0	0	0	0
3	1	1	-	1	0	0	0	0	0
4	1	0	1	-	1	1	0	0	0
5	0	0	0	1	-	1	1	1	0
6	0	0	0	1	1	-	1	1	0
7	0	0	0	0	1	1	-	1	1
8	0	0	0	0	1	1	1	-	0
9	0	0	0	0	0	0	1	0	-

Partitioning into Two Clusters

• Partition graph into two sets V_1 , V_2 to minimize the cut value:

$$cut(V_1, V_2) = \sum_{v_i \in V_1, v_j \in V_2} W_{ij}$$

Partitioning into Two Clusters

• Partition graph into two sets V_1 , V_2 to minimize the cut value:

$$cut(V_1, V_2) = \sum_{v_i \in V_1, v_j \in V_2} W_{ij}$$

• Also, the size of V_1 , V_2 needs to be similar (balance)

Partitioning into Two Clusters

• Partition graph into two sets V_1 , V_2 to minimize the cut value:

$$cut(V_1, V_2) = \sum_{v_i \in V_1, v_j \in V_2} W_{ij}$$

- Also, the size of V_1 , V_2 needs to be similar (balance)
- One classical way of enforcing balance:

$$\begin{array}{ll} \min\limits_{V_1,V_2} & \mathsf{cut}\big(V_1,\,V_2\big) \\ \text{s.t.} & |V_1| = |V_2|, \quad V_1 \cup V_2 = \{1,\cdots,n\},\,V_1 \cap V_2 = \varphi \end{array}$$

⇒ this is NP-hard (cannot be solved in polynomial time)

Kernighan-Lin Algorithm

- Starts with some partitioning V_1, V_2
- Calculate change in cut if 2 vertices are swapped
- ullet Swap the vertices (1 in V_1 & 1 in V_2) that decease the cut the most
- Iterative until convergence

Kernighan-Lin Algorithm

- Starts with some partitioning V_1, V_2
- Calculate change in cut if 2 vertices are swapped
- Swap the vertices (1 in V_1 & 1 in V_2) that decease the cut the most
- Iterative until convergence
- Used when we need exact balanced clusters (e.g., circuit design)

Objective function that considers balance

Ratio-Cut:

$$\min_{V_1,V_2} \left\{ \frac{\mathsf{Cut}(V_1,V_2)}{|V_1|} + \frac{\mathsf{Cut}(V_1,V_2)}{|V_2|} \right\} := \mathsf{RC}(V_1,V_2)$$

Normalized-Cut:

$$\min_{V_1,V_2} \left\{ \frac{\mathsf{Cut}(V_1,V_2)}{\mathsf{deg}(V_1)} + \frac{\mathsf{Cut}(V_1,V_2)}{\mathsf{deg}(V_2)} \right\} := \mathsf{NC}(V_1,V_2),$$

where

$$\mathsf{deg}(\mathit{V}_\mathit{c}) := \sum_{\mathit{v}_i \in \mathit{V}_\mathit{c}, (i,j) \in \mathit{E}} \mathit{W}_{i,j} = \mathsf{links}(\mathit{V}_\mathit{c},\mathit{V})$$

Generalize to k clusters

Ratio-Cut:

$$\min_{V_1, \cdots, V_k} \sum_{c=1}^k \frac{\mathsf{Cut}(V_c, V - V_c)}{|V_c|}$$

Normalized-Cut:

$$\min_{V_1, \cdots, V_k} \sum_{c=1}^k \frac{\mathsf{Cut}(V_c, V - V_c)}{\mathsf{deg}(V_c)}$$

Reformulation

- Recall $deg(V_c) = links(V_c, V)$
- Define a diagonal matrix

$$D = egin{bmatrix} \deg(V_1) & 0 & 0 & \cdots \ 0 & \deg(V_2) & 0 & \cdots \ 0 & 0 & \deg(V_3) & \cdots \ dots & dots & dots & dots & dots \end{bmatrix}$$

• $\mathbf{y}_c = \{0,1\}^n$: indicator vector for the *c*-th cluster

Reformulation

- Recall $deg(V_c) = links(V_c, V)$
- Define a diagonal matrix

$$D = egin{bmatrix} \deg(V_1) & 0 & 0 & \cdots \ 0 & \deg(V_2) & 0 & \cdots \ 0 & 0 & \deg(V_3) & \cdots \ dots & dots & dots & dots & dots \end{bmatrix}$$

- $\mathbf{y}_c = \{0,1\}^n$: indicator vector for the *c*-th cluster
- We have

$$\mathbf{y}_c^T \mathbf{y}_c = |V_c|$$

 $\mathbf{y}_c^T D \mathbf{y}_c = \deg(V_c)$
 $\mathbf{y}_c^T W \mathbf{y}_c = \operatorname{links}(V_c, V_c)$

Ratio Cut

• Rewrite the ratio-cut objective:

$$RC(V_1, \dots, V_k) = \sum_{c=1}^k \frac{\text{Cut}(V_c, V - V_c)}{|V_c|}$$

$$= \sum_{c=1}^k \frac{\deg(V_c) - \text{links}(V_c, V_c)}{|V_c|}$$

$$= \sum_{c=1}^k \frac{\mathbf{y}_c^T D \mathbf{y}_c - \mathbf{y}_c^T W \mathbf{y}_c}{\mathbf{y}_c^T \mathbf{y}_c}$$

$$= \sum_{c=1}^k \frac{\mathbf{y}_c^T (D - W) \mathbf{y}_c}{\mathbf{y}_c^T \mathbf{y}_c}$$

$$= \sum_{c=1}^k \frac{\mathbf{y}_c^T L \mathbf{y}_c}{\mathbf{y}_c^T \mathbf{y}_c} \quad (L = D - W \text{ is "Graph Laplacian"})$$

More on Graph Laplacian

• *L* is symmetric positive semi-definite

More on Graph Laplacian

- L is symmetric positive semi-definite
- For any x,

$$\mathbf{x}^T L \mathbf{x} = \frac{1}{2} \sum_{(i,j)} W_{ij} (x_i - x_j)^2$$

We have shown Ratio-Cut is equivalent to

$$\mathsf{RCut} = \sum_{c=1}^{k} \frac{\mathbf{y}_{c}^{T} L \mathbf{y}_{c}}{\mathbf{y}_{c}^{T} \mathbf{y}_{c}} = \sum_{c=1}^{k} (\frac{\mathbf{y}_{c}}{\|\mathbf{y}_{c}\|})^{T} L \frac{\mathbf{y}_{c}}{\|\mathbf{y}_{c}\|}$$

• Define $\bar{\mathbf{y}}_c = \mathbf{y}_c / \|\mathbf{y}_c\|$ (normalized indicator),

$$Y = [\bar{\mathbf{y}}_1, \bar{\mathbf{y}}_2, \cdots, \bar{\mathbf{y}}_k] \Rightarrow Y^T Y = I$$

We have shown Ratio-Cut is equivalent to

$$\mathsf{RCut} = \sum_{c=1}^k \frac{\mathbf{y}_c^\mathsf{T} L \mathbf{y}_c}{\mathbf{y}_c^\mathsf{T} \mathbf{y}_c} = \sum_{c=1}^k (\frac{\mathbf{y}_c}{\|\mathbf{y}_c\|})^\mathsf{T} L \frac{\mathbf{y}_c}{\|\mathbf{y}_c\|}$$

• Define $\bar{\mathbf{y}}_c = \mathbf{y}_c / \|\mathbf{y}_c\|$ (normalized indicator),

$$Y = [\bar{\mathbf{y}}_1, \bar{\mathbf{y}}_2, \cdots, \bar{\mathbf{y}}_k] \Rightarrow Y^T Y = I$$

• Relaxed to real valued problem:

$$\min_{Y^T Y = I} \operatorname{Trace}(Y^T L Y)$$

We have shown Ratio-Cut is equivalent to

$$\mathsf{RCut} = \sum_{c=1}^k \frac{\mathbf{y}_c^\mathsf{T} L \mathbf{y}_c}{\mathbf{y}_c^\mathsf{T} \mathbf{y}_c} = \sum_{c=1}^k (\frac{\mathbf{y}_c}{\|\mathbf{y}_c\|})^\mathsf{T} L \frac{\mathbf{y}_c}{\|\mathbf{y}_c\|}$$

• Define $\bar{\mathbf{y}}_c = \mathbf{y}_c / \|\mathbf{y}_c\|$ (normalized indicator),

$$Y = [\bar{\mathbf{y}}_1, \bar{\mathbf{y}}_2, \cdots, \bar{\mathbf{y}}_k] \Rightarrow Y^T Y = I$$

Relaxed to real valued problem:

$$\min_{Y^T Y = I} \operatorname{Trace}(Y^T L Y)$$

• Solution: Eigenvectors corresponding to the smallest k eigenvalues of L

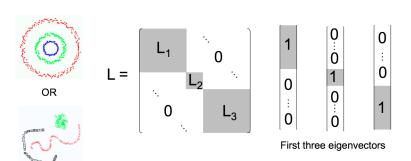
• Let $Y^* \in \mathbb{R}^{n \times k}$ be these eigenvectors. Are we done?

- Let $Y^* \in \mathbb{R}^{n \times k}$ be these eigenvectors. Are we done?
- No, Y^* does not have 0/1 values (not indicators) (since we are solving a **relaxed** problem)

- Let $Y^* \in \mathbb{R}^{n \times k}$ be these eigenvectors. Are we done?
- No, Y^* does not have 0/1 values (not indicators) (since we are solving a **relaxed** problem)
- \bullet Solution: Run k-means on the rows of Y^*

- Let $Y^* \in \mathbb{R}^{n \times k}$ be these eigenvectors. Are we done?
- No, Y^* does not have 0/1 values (not indicators) (since we are solving a **relaxed** problem)
- Solution: Run k-means on the rows of Y^*
- Summary of Spectral clustering algorithms:
 - Compute $Y^* \in \mathbb{R}^{n \times k}$: eigenvectors corresponds to k smallest eigenvalues of (normalized) Laplacian matrix
 - \bullet Run k-means to cluster rows of Y^*

• If graph is disconnected (*k* connected components), Laplacian is block diagonal and first *k* eigen-vectors are:



• What if the graph is connected?

- What if the graph is connected?
- There will be only one smallest eigenvalue/eigenvector:

$$L1 = (D - A)1 = 0$$

 $(\boldsymbol{1} = [1, 1, \cdots, 1]^{\mathcal{T}}$ is the eigenvector with eigenvalue 0)

- What if the graph is connected?
- There will be only one smallest eigenvalue/eigenvector:

$$L1 = (D - A)1 = 0$$

 $(\mathbf{1} = [1, 1, \dots, 1]^T)$ is the eigenvector with eigenvalue 0)

 However, the 2nd to k-th smallest eigenvectors are still useful for clustering

1	1	.2	0
1	1	0	.1
.2	0	1	1
0	.1	1	1

1st evec is constant since graph is connected

Sign of 2nd evec indicates blocks

Normalized Cut

Rewrite Normalized Cut:

$$\begin{aligned} \mathsf{NCut} &= \sum_{c=1}^k \frac{\mathsf{Cut}(V_c, V - V_c)}{\mathsf{deg}(V_c)} \\ &= \sum_{c=1}^k \frac{\mathbf{y}_c^T (D - A) \mathbf{y}_c}{\mathbf{y}_c^T D \mathbf{y}_c} \end{aligned}$$

ullet Let $ilde{\mathbf{y}_c} = rac{D^{1/2}\mathbf{y}_c}{\|D^{1/2}\mathbf{y}_c\|}$, then

$$\mathsf{NCut} = \sum_{c=1}^{k} \frac{\tilde{\mathbf{y}}_{c}^{\mathsf{T}} D^{-1/2} (D-A) D^{-1/2} \tilde{\mathbf{y}}_{c}}{\tilde{\mathbf{y}}_{c}^{\mathsf{T}} \tilde{\mathbf{y}}_{c}}$$

Normalized Laplacian:

$$\tilde{L} = D^{-1/2}(D - A)D^{-1/2} = I - D^{-1/2}AD^{-1/2}$$

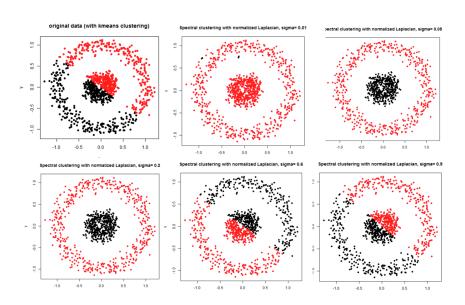
ullet Normalized Cut o eigenvectors correspond to the smallest eigenvalues of $ilde{L}$

Kmeans vs Spectral Clustering

- Kmeans: decision boundary is linear
- Spectral clustering: boundary can be non-convex curves

 σ in $W_{ij}=e^{rac{-\|x_i-x_j\|^2}{\sigma^2}}$ controls the clustering results (focus on local or global structure)

Kmeans vs Spectral Clustering



Conclusions

- Kmeans objective: minimize the distance to centers
- Kmeans algorithm: an optimization algorithm to minimize this objective
- Graph clustering ⇒ related to eigenvectors of graphs

Questions?