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Nonlinear Transformation



@ Up to now: linear hypotheses

Perceptron, Linear regression, Logistic regression,
Data:

@ Many problems are not linearly separable
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x x 1
x o x|
x o
o
o
0
0 ° o
o
x x
| *x * -1
=1 0

DA



Data:

1
x
* o
x o
o o
0 o
° o
o
—1 x:" x
=1 0

@ Data is not linear separable

Hypothesis:
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Data:
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@ Data is not linear separable

@ but circular separable by a circle of radius /0.6 centered at origin:

hsep(x) = sign(—x? — x2 4 0.6)
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h(x) = sign(0.6 - 1+ (1) - xZ + (—1) - x3)
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wo e
= Sign(WTz)
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h(x) =sign(0.6 - 1 +
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Wy
= sign( ' 2)

@ {(xn,yn)} circular separable = {(z,,yn)} linear separable
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h(x) =sign(0.6 - 1 +

I

20

+(-1)-
—~ ~~

Wy
= sign( ' 2)

@ {(xn,yn)} circular separable = {(z,,yn)} linear separable

@ xe X —ze Z (using a nonlinear transformation ®)
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@ Define nonlinear transformation

(D(X) = (1:X]?7X22) = (ZOazlaz2) =z
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@ Define nonlinear transformation

(D(X) = (1:X]?7X22) = (20721722) =z

@ Linear hypotheses in Z space:

sign(h(z)) = sign(h(®(x))) = sign(w " ®(x))
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@ Define nonlinear transformation

(D(X) = (1:X]?7X22) = (20721722) =z

@ Linear hypotheses in Z space:

sign(h(z)) = sign(h(®(x))) = sign(w " ®(x))

@ Lines in Z space < some quadratic curves in X'-space
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e A "bigger’ Z-space:

®o(x) = (1,1, X2, X7, x1%2, X3)
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o A "bigger' Z-space:

®o(x) = (1, x1, x2, X3, x1%2, X3

@ Linear in Z-space < quadratic hypotheses in X'-space
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o A "bigger' Z-space:

®o(x) = (1, x1, x2, X3, x1%2, X3

@ Linear in Z-space < quadratic hypotheses in X'-space
@ The hypotheses space:

Ho, = {h(x) : h(x) = w T dy(x) for some W}
(Quadratic hypotheses)
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o A "bigger' Z-space:

®o(x) = (1, x1, x2, X3, x1%2, X3

@ Linear in Z-space < quadratic hypotheses in X'-space
@ The hypotheses space:

Ho, = {h(x) : h(x) = w T dy(x) for some W}
(Quadratic hypotheses)

@ Also include linear model as a degenerate case
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Learning a good quadratic function

e Transform original data {xp, yn} to {z, = ®(x,), yn}

@ Solve a linear problem on {z,,y,} using your favorite algorithm A to
get a good model w

@ Return the model h(x) = sign(w ' ®(x))
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@ Can now freely do quadratic classification, quadratic regression,
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@ Can now freely do quadratic classification, quadratic regression,

@ Can easily extend to any degree of polynomial mappings
Eg., ®(x) =

2 2 3 .3
(Xl,X2,X37X1X2aX1X3,X2X37X1X2aX1X3,X1X27X2X3>X1X3aX2X3,X1,XQ,X3)
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@ Q-th order polynomial transform:

¢(X)=(1,X]_,X2, © 5 Xds
X1, X1X2, 7X§7
-1
le,xQ X, ,x‘?)
o O(d®) dimensional vector = High computational cost
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Model: 9t order polynomial
Target: sin(2mx) + noise

—©— Training
—O6— Test

0
z 1

3 degree 6
e Overfitting: the model has low training error but high prediction error.
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Theory of Generalization

Material is from “Learning from data”



Machine learning pipeline:
@ Training phase:

o Obtain the best model h by minimizing training error
o Test (inference) phase:
e For any incoming test data x:

Make prediction by h(x)

e Measure the performance of h: test error
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Does low training error imply low test error?

@ They can be totally different if

train distribution = test distribution

DA



Does low training error imply low test error?

@ They can be totally different if

train distribution = test distribution

@ Even under the same distribution, they can be very different

Because h is picked to minimize training error, not test error
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@ Assume training and test data are both sampled from D
@ The ideal function (for generating labels) is f: f(x) — y
@ Training error: Sample xj, xp from D and

Eu(h) = 3 Zn .
h is determined by xi,

h(xa), f(xn))
PR 7XN
@ Test error: Sample xq,

xy from D and

M
Eie(h) = i Zm:l e(h(xm), f(xm))
h is independent to xq,

» XM
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@ Assume training and test data are both sampled from D
@ The ideal function (for generating labels) is f: f(x) — y
@ Training error: Sample xj, xp from D and

Eu(h) = 3 Zn .
h is determined by xi,

h(xa), f(xn))
PR 7XN
@ Test error: Sample xq,

xy from D and

M
Eie(h) = i Zm:l e(h(xm), f(xm))
h is independent to xi,

» XM
@ Generalization error = Test error = Expected performance on D
E(h) = Ex~ple(h(x), f(x))] = Ete(h)

[m]
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e E(h) ~ 0 is achieved through:

E(h) =~ Ey(h) and Ey(h) =0
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e E(h) = 0 is achieved through:

E(h) = E(h)

and Ey(h)~0
@ Learning is split into 2 questions:

o Can we make sure that E(h) ~ E.(h)?

today's focus

o Can we make E(h) small?
Optimization (done)
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How to bound || E(h) — Ew(h)||?



@ Consider a bin with red and green marbles

Plpicking a red marble] =
P[picking a green marble] =1 —

@ The value of y is unknown to us

@ How to infer p?

e Pick N marbles independently
e v: the fraction of red marbles

V = fraction
of red marbles

W = probability
of red marbles



e Do you know p?
No

Sample can be mostly green while bin is mostly red
@ Can you say something about ©?
Yes

v is “probably” close to

SAMPLE

V = fraction
of red marbles

W = probability
of red marbles



@ In big sample (large N), v (sample mean) is probably close to p

Pllv — p| > ] < 272N
This is called Hoeffding’s inequality

@ The statement “u = 1" is probably approximately correct (PAC)
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Pllv — p| > ] < 272N

SAMPLE
LXIITTLT T )

V = fraction
of red marbles

W = probability
of red marbles

@ Valid for all N and ¢ > 0

@ Does not depend on p (no need to know 1)
o Larger sample size N or looser gap ¢

= higher probability for p ~ v
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How to connect this to learning?

e Each marble (uncolored) is a data point x € X
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How to connect this to learning?

e Each marble (uncolored) is a data point x € X
e red marble: h(x)=£f(x) (h is correct)

green marble: h(x)=f(x) (h is wrong)

® h(x)#f(x)

® h(x)=f(x)




@ Given a function h:

o If we randomly draw xi, -+, xy (independent to h):
o E(h) = Exp[h(x) # f(x)] (generalization error, unknown)
< p

<>V

o LN [h(xs) # ya] (error on sampled data, known)



@ Given a function h:

o If we randomly draw xi, -+, xy (independent to h):
o E(h) = Exp[h(x) # f(x)] (generalization error, unknown)
< p

<>V

o LN [h(xs) # ya] (error on sampled data, known)

@ Based on Hoeffding's inequality:

Pl —v| > ] < 262N

e "“u =" is probably approximately correct (PAC)
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@ Given a function h:

o If we randomly draw xi, -+, xy (independent to h):
o E(h) = Exp[h(x) # f(x)] (generalization error, unknown)
< p

o LN [h(xs) # ya] (error on sampled data, known)
a4

@ Based on Hoeffding's inequality:
Pl —v| > ] < 262N

e "“u =" is probably approximately correct (PAC)
@ However, this can only “verify” the error of a hypothesis:

h and xi,--- ,xy must be independent
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Apply to multiple bins (hypothesis)

Can we apply to multiple hypothesis?

h, h, hy,

Eou(h) Eou(hy) Eou(h,,)

v

Ein(hj) Ein(hg) Ein(hM)

Color in each bin depends on different hypothesis
Bingo when getting all green balls?



@ If you have 150 fair coins, flip each coin 5 times, and one of them gets
5 heads. Is this coin (g) special?
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1—

@ No. The probability of existing one of the coin results in 5 heads is
(%)150 > 99%

@ If you have 150 fair coins, flip each coin 5 times, and one of them gets
5 heads. Is this coin (g) special?



@ If you have 150 fair coins, flip each coin 5 times, and one of them gets
5 heads. Is this coin (g) special?

@ No. The probability of existing one of the coin results in 5 heads is
1—(35)1° > 99%

@ Because: there can exist some h such that E and E;, are far away if M
is large.
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@ For each particular h,

['Etr(h) — E(h)| > e] < 262N

@ We want a “union bound”

M
Z P|:|Etr(h E(hm)|] < 2Me 26N

m=1

[|Et,(h1) — E(hy)| > e or -+ or |Eu(hm) — E(hy)| > €
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When our Learning Algorithm A picks the hypothesis g

PlE:r(g) — Eg)] > €] < 2Me >N

e If M is small and N is large enough:
If A finds Et(g) =0

= E(g) ~ 0 (Learning is successful!)
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PlEir(g) — E(g)l > € < 2Me™>N
Two questions:

(1) Can we make sure E(g) ~ Ex(g)?
(2) Can we make sure E(g) ~ 0?7
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PlEu(g) — E(g)| > ] < 2Me™>""
Two questions:

(1) Can we make sure E(g) ~ E:(g)?
(2) Can we make sure E(g) ~ 07?
M: complexity of model

e Small M: (1) holds, but (2) may not hold (too few choices)
(under-fitting)
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PlEu(g) — E(g)| > ] < 2Me™>""
Two questions:

(1) Can we make sure E(g) ~ E:(g)?
(2) Can we make sure E(g) ~ 07?
M: complexity of model

e Small M: (1) holds, but (2) may not hold (too few choices)
(under-fitting)

o Large M: (1) doesn't hold, but (2) may hold
(over-fitting)
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@ Currently we only know

PlIEw(g) — E(g)] > ¢] < 2Me>""
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@ Currently we only know

PllEx(g) — E(g)| > ¢] < 2Me 2N
o What if M — co?

(e.g., linear hyperplanes)
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@ Currently we only know

PllEx(g) — E(g)| > ¢] < 2Me 2N
o What if M — co?

(e.g., linear hyperplanes)
@ Todo:

We will establish a finite quantity to replace M

PllEu(g) — E(8)] > o] < 2my(N)e 2N

e Study my(N) to understand the trade-off for model complexity
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@ Polynomial feature expansion: Our first nonlinear model
e Bounding the generalization (test) error

Questions?
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