CS260: Machine Learning Algorithms

Lecture 6: Nonlinear mapping, Model complexity

Cho-Jui Hsieh UCLA

Jan 28, 2019

Linear Hypotheses

Up to now: linear hypotheses
 Perceptron, Linear regression, Logistic regression, ...

• Many problems are not linearly separable

Circular Separable

• Data is not linear separable

Circular Separable

- Data is not linear separable
- but circular separable by a circle of radius $\sqrt{0.6}$ centered at origin:

$$h_{\text{SEP}}(\mathbf{x}) = \text{sign}(-x_1^2 - x_2^2 + 0.6)$$

$$h(\mathbf{x}) = \text{sign}(0.6 \cdot 1 + (-1) \cdot x_1^2 + (-1) \cdot x_2^2)$$

$$h(\mathbf{x}) = \operatorname{sign}(\underbrace{0.6}_{\tilde{w}_0} \cdot \underbrace{1}_{z_0} + \underbrace{(-1)}_{\tilde{w}_1} \cdot \underbrace{x_1^2}_{z_1} + \underbrace{(-1)}_{\tilde{w}_2} \cdot \underbrace{x_2^2}_{z_2})$$
$$= \operatorname{sign}(\tilde{\mathbf{w}}^T \mathbf{z})$$

$$h(\mathbf{x}) = \operatorname{sign}(\underbrace{\frac{0.6}{\tilde{w}_0}} \cdot \underbrace{\frac{1}{z_0}} + \underbrace{(-1)}_{\tilde{w}_1} \cdot \underbrace{x_1^2}_{z_1} + \underbrace{(-1)}_{\tilde{w}_2} \cdot \underbrace{x_2^2}_{z_2})$$
$$= \operatorname{sign}(\tilde{\mathbf{w}}^T \mathbf{z})$$

• $\{(x_n, y_n)\}$ circular separable $\Rightarrow \{(z_n, y_n)\}$ linear separable

$$h(\mathbf{x}) = \operatorname{sign}(\underbrace{\frac{0.6}{\tilde{w}_0}} \cdot \underbrace{\frac{1}{z_0}} + \underbrace{(-1)}_{\tilde{w}_1} \cdot \underbrace{x_1^2}_{z_1} + \underbrace{(-1)}_{\tilde{w}_2} \cdot \underbrace{x_2^2}_{z_2})$$
$$= \operatorname{sign}(\tilde{\mathbf{w}}^T \mathbf{z})$$

- $\{(x_n, y_n)\}$ circular separable $\Rightarrow \{(z_n, y_n)\}$ linear separable
- $x \in \mathcal{X} \to z \in \mathcal{Z}$ (using a nonlinear transformation Φ)

Define nonlinear transformation

$$\Phi(\mathbf{x}) = (1, x_1^2, x_2^2) = (z_0, z_1, z_2) = \mathbf{z}$$

Define nonlinear transformation

$$\Phi(\mathbf{x}) = (1, x_1^2, x_2^2) = (z_0, z_1, z_2) = \mathbf{z}$$

• Linear hypotheses in \mathcal{Z} space:

$$\operatorname{sign}(\tilde{h}(z)) = \operatorname{sign}(\tilde{h}(\Phi(x))) = \operatorname{sign}(w^T \Phi(x))$$

Define nonlinear transformation

$$\Phi(\mathbf{x}) = (1, x_1^2, x_2^2) = (z_0, z_1, z_2) = \mathbf{z}$$

• Linear hypotheses in $\mathcal Z$ space:

$$\operatorname{sign}(\tilde{h}(z)) = \operatorname{sign}(\tilde{h}(\Phi(x))) = \operatorname{sign}(\boldsymbol{w}^T \Phi(x))$$

ullet Lines in ${\mathcal Z}$ space \Leftrightarrow some quadratic curves in ${\mathcal X}$ -space

• A "bigger" \mathcal{Z} -space:

$$\Phi_2(\mathbf{x}) = (1, x_1, x_2, x_1^2, x_1 x_2, x_2^2)$$

• A "bigger" \mathcal{Z} -space:

$$\Phi_2(\mathbf{x}) = (1, x_1, x_2, x_1^2, x_1 x_2, x_2^2)$$

ullet Linear in \mathcal{Z} -space \Leftrightarrow quadratic hypotheses in \mathcal{X} -space

• A "bigger" \mathcal{Z} -space:

$$\Phi_2(\mathbf{x}) = (1, x_1, x_2, x_1^2, x_1 x_2, x_2^2)$$

- Linear in \mathcal{Z} -space \Leftrightarrow quadratic hypotheses in \mathcal{X} -space
- The hypotheses space:

$$\mathcal{H}_{\Phi_2} = \{ h(\mathbf{x}) : h(\mathbf{x}) = \tilde{\mathbf{w}}^T \Phi_2(\mathbf{x}) \text{ for some } \tilde{\mathbf{w}} \}$$

(Quadratic hypotheses)

• A "bigger" \mathcal{Z} -space:

$$\Phi_2(\mathbf{x}) = (1, x_1, x_2, x_1^2, x_1 x_2, x_2^2)$$

- Linear in \mathcal{Z} -space \Leftrightarrow quadratic hypotheses in \mathcal{X} -space
- The hypotheses space:

$$\mathcal{H}_{\Phi_2} = \{ h(\mathbf{x}) : h(\mathbf{x}) = \tilde{\mathbf{w}}^T \Phi_2(\mathbf{x}) \text{ for some } \tilde{\mathbf{w}} \}$$

(Quadratic hypotheses)

Also include linear model as a degenerate case

Learning a good quadratic function

- Transform original data $\{x_n, y_n\}$ to $\{z_n = \Phi(x_n), y_n\}$
- Solve a linear problem on $\{z_n, y_n\}$ using your favorite algorithm $\mathcal A$ to get a good model $\tilde{\boldsymbol w}$
- Return the model $h(x) = \operatorname{sign}(\tilde{\mathbf{w}}^T \Phi(x))$

Polynomial mappings

• Can now freely do quadratic classification, quadratic regression, · · ·

Polynomial mappings

- Can now freely do quadratic classification, quadratic regression, · · ·
- Can easily extend to any degree of polynomial mappings

E.g.,
$$\Phi(\mathbf{x}) = (x_1, x_2, x_3, x_1x_2, x_1x_3, x_2x_3, x_1x_2^2, x_1x_3^2, x_1x_2^2, x_2^2x_3, x_1^2x_3, x_2^2x_3, x_1^3, x_2^3, x_3^3)$$

The price we pay: Computational complexity

• *Q*-th order polynomial transform:

$$\Phi(\mathbf{x}) = (1, x_1, x_2, \dots, x_d, x_1^2, x_1 x_2, \dots, x_d^2, \dots x_1^Q, x_1^{Q-1} x_2, \dots, x_d^Q)$$

• $O(d^Q)$ dimensional vector \Rightarrow High computational cost

The price we pay: overfitting

• Overfitting: the model has low training error but high prediction error.

Theory of Generalization

Material is from "Learning from data"

Training versus testing

Machine learning pipeline:

- Training phase:
 - Obtain the best model h by minimizing training error
- Test (inference) phase:
 - For any incoming test data x: Make prediction by h(x)
 - Measure the performance of h: test error

Training versus testing

Does low training error imply low test error?

• They can be totally different if

train distribution ≠ test distribution

Training versus testing

Does low training error imply low test error?

They can be totally different if

train distribution \neq test distribution

Even under the same distribution, they can be very different:
 Because h is picked to minimize training error, not test error

Formal definition

- Assume training and test data are both sampled from D
- The ideal function (for generating labels) is $f: f(x) \to y$
- Training error: Sample x_1, \dots, x_N from D and

$$E_{tr}(h) = \frac{1}{N} \sum_{n=1}^{N} e(h(x_n), f(x_n))$$

h is determined by x_1, \dots, x_N

• Test error: Sample x_1, \dots, x_M from D and

$$E_{\text{te}}(h) = \frac{1}{M} \sum_{m=1}^{M} e(h(x_m), f(x_m))$$

h is independent to x_1, \dots, x_M

Formal definition

- Assume training and test data are both sampled from D
- The ideal function (for generating labels) is $f: f(x) \to y$
- Training error: Sample x_1, \dots, x_N from D and

$$E_{tr}(h) = \frac{1}{N} \sum_{n=1}^{N} e(h(x_n), f(x_n))$$

h is determined by x_1, \dots, x_N

• Test error: Sample x_1, \dots, x_M from D and

$$E_{\text{te}}(h) = \frac{1}{M} \sum_{m=1}^{M} e(h(x_m), f(x_m))$$

h is independent to x_1, \dots, x_M

• Generalization error = Test error = Expected performance on *D*:

$$E(h) = E_{x \sim D}[e(h(x), f(x))] = E_{te}(h)$$

The 2 questions of learning

• $E(h) \approx 0$ is achieved through:

$$E(h) \approx E_{\rm tr}(h)$$
 and $E_{\rm tr}(h) \approx 0$

The 2 questions of learning

• $E(h) \approx 0$ is achieved through:

$$E(h) \approx E_{\rm tr}(h)$$
 and $E_{\rm tr}(h) \approx 0$

- Learning is split into 2 questions:
 - Can we make sure that $E(h) \approx E_{tr}(h)$? today's focus
 - Can we make $E_{tr}(h)$ small? Optimization (done)

How to bound $||E(h) - E_{tr}(h)||$?

Inferring Something Unknown

Consider a bin with red and green marbles

$$\begin{split} P[\text{picking a red marble}] &= \mu \\ P[\text{picking a green marble}] &= 1 - \mu \end{split}$$

- ullet The value of μ is unknown to us
- How to infer μ ?
 - Pick N marbles independently
 - ν : the fraction of red marbles

Inferring with probability

• Do you **know** μ ?

No

Sample can be mostly green while bin is mostly red

• Can you say something about μ ?

Yes

u is "probably" close to μ

Hoeffding's Inequality

• In big sample (large N), ν (sample mean) is probably close to μ :

$$P[|\nu - \mu| > \epsilon] \le 2e^{-2\epsilon^2 N}$$

This is called Hoeffding's inequality

• The statement " $\mu = \nu$ " is probably approximately correct (PAC)

Hoffding's Inequality

$$P[|\nu - \mu| > \epsilon] \le 2e^{-2\epsilon^2 N}$$

- Valid for all N and $\epsilon > 0$
- ullet Does not depend on μ (no need to know μ)
- ullet Larger sample size N or looser gap ϵ
 - \Rightarrow higher probability for $\mu \approx \nu$

Connection to Learning

How to connect this to learning?

ullet Each marble (uncolored) is a data point ${m x} \in {\mathcal X}$

Connection to Learning

How to connect this to learning?

- ullet Each marble (uncolored) is a data point ${m x} \in {\mathcal X}$
- red marble: $h(x) \neq f(x)$ (h is correct) green marble: h(x) = f(x) (h is wrong)

Connection to Learning

- Given a function h:
- If we randomly draw x_1, \dots, x_N (independent to h):
 - $E(h) = E_{\mathbf{x} \sim D}[h(\mathbf{x}) \neq f(\mathbf{x})]$ (generalization error, unknown) $\Leftrightarrow \mu$
 - $\frac{1}{N} \sum_{n=1}^{N} [h(\mathbf{x}_n) \neq y_n]$ (error on sampled data, known) $\Leftrightarrow \nu$

Connection to Learning

- Given a function h:
- If we randomly draw x_1, \dots, x_N (independent to h):
 - $E(h) = E_{\mathbf{x} \sim D}[h(\mathbf{x}) \neq f(\mathbf{x})]$ (generalization error, unknown) $\Leftrightarrow \mu$
 - $\frac{1}{N} \sum_{n=1}^{N} [h(\mathbf{x}_n) \neq y_n]$ (error on sampled data, known) $\Leftrightarrow \nu$
- Based on Hoeffding's inequality:

$$P[|\mu - \nu| > \epsilon] \le 2e^{-2\epsilon^2 N}$$

• " $\mu = \nu$ " is probably approximately correct (PAC)

Connection to Learning

- Given a function h:
- If we randomly draw x_1, \dots, x_N (independent to h):
 - $E(h) = E_{\mathbf{x} \sim D}[h(\mathbf{x}) \neq f(\mathbf{x})]$ (generalization error, unknown) $\Leftrightarrow \mu$
 - $\frac{1}{N} \sum_{n=1}^{N} [h(\mathbf{x}_n) \neq y_n]$ (error on sampled data, known) $\Leftrightarrow \nu$
- Based on Hoeffding's inequality:

$$P[|\mu - \nu| > \epsilon] \le 2e^{-2\epsilon^2 N}$$

- " $\mu = \nu$ " is probably approximately correct (PAC)
- However, this can only "verify" the error of a hypothesis:

h and x_1, \dots, x_N must be independent

Apply to multiple bins (hypothesis)

Can we apply to multiple hypothesis?

Color in each bin depends on different hypothesis **Bingo** when getting all green balls?

Coin Game

If you have 150 fair coins, flip each coin 5 times, and one of them gets
 5 heads. Is this coin (g) special?

Coin Game

- If you have 150 fair coins, flip each coin 5 times, and one of them gets
 5 heads. Is this coin (g) special?
- No. The probability of existing one of the coin results in 5 heads is $1-(\frac{31}{32})^{150}>99\%$

Coin Game

- If you have 150 fair coins, flip each coin 5 times, and one of them gets
 5 heads. Is this coin (g) special?
- No. The probability of existing one of the coin results in 5 heads is $1-(\frac{31}{32})^{150}>99\%$
- Because: there can exist some h such that E and E_{tr} are far away if M is large.

A Simple Solution

For each particular h,

$$P\Big[|E_{tr}(h)-E(h)|>\epsilon\Big]\leq 2e^{-2\epsilon^2N}$$

• We want a "union bound":

$$P\bigg[|E_{tr}(h_1) - E(h_1)| > \epsilon \text{ or } \cdots \text{ or } |E_{tr}(h_M) - E(h_M)| > \epsilon\bigg]$$

$$\leq \sum_{m=1}^{M} P\bigg[|E_{tr}(h_m) - E(h_m)|\bigg] \leq 2Me^{-2\epsilon^2N}$$

When is learning successful?

When our Learning Algorithm A picks the hypothesis g:

$$P[|E_{tr}(g) - E(g)| > \epsilon] \le 2Me^{-2\epsilon^2N}$$

• If *M* is small and *N* is large enough:

If
$$\mathcal{A}$$
 finds $E_{tr}(g) \approx 0$
 $\Rightarrow E(g) \approx 0$ (Learning is successful!)

Feasibility of Learning

$$P[|E_{tr}(g) - E(g)| > \epsilon] \le 2Me^{-2\epsilon^2N}$$

Two questions:

- (1) Can we make sure $E(g) \approx E_{tr}(g)$?
- (2) Can we make sure $E(g) \approx 0$?

Feasibility of Learning

$$P[|E_{tr}(g) - E(g)| > \epsilon] \le 2Me^{-2\epsilon^2N}$$

Two questions:

- (1) Can we make sure $E(g) \approx E_{tr}(g)$?
- (2) Can we make sure $E(g) \approx 0$?

M: complexity of model

 Small M: (1) holds, but (2) may not hold (too few choices) (under-fitting)

Feasibility of Learning

$$P[|E_{tr}(g) - E(g)| > \epsilon] \le 2Me^{-2\epsilon^2N}$$

Two questions:

- (1) Can we make sure $E(g) \approx E_{tr}(g)$?
- (2) Can we make sure $E(g) \approx 0$?

M: complexity of model

- Small M: (1) holds, but (2) may not hold (too few choices) (under-fitting)
- Large M: (1) doesn't hold, but (2) may hold (over-fitting)

What the theory will achieve

Currently we only know

$$P[|E_{\mathsf{tr}}(g) - E(g)| > \epsilon] \le 2Me^{-2\epsilon^2N}$$

What the theory will achieve

Currently we only know

$$P[|E_{\mathsf{tr}}(g) - E(g)| > \epsilon] \le 2Me^{-2\epsilon^2N}$$

• What if $M = \infty$? (e.g., linear hyperplanes)

What the theory will achieve

Currently we only know

$$P[|E_{\mathsf{tr}}(g) - E(g)| > \epsilon] \le 2Me^{-2\epsilon^2N}$$

- What if $M = \infty$? (e.g., linear hyperplanes)
- Todo:

We will establish a finite quantity to replace M

$$P[|E_{\mathsf{tr}}(g) - E(g)| > \epsilon] \stackrel{?}{\leq} 2m_{\mathcal{H}}(N)e^{-2\epsilon^2N}$$

• Study $m_{\mathcal{H}}(N)$ to understand the trade-off for model complexity

Conclusions

- Polynomial feature expansion: Our first nonlinear model
- Bounding the generalization (test) error

Questions?