
CS260: Machine Learning Algorithms
Lecture 6: Nonlinear mapping, Model complexity

Cho-Jui Hsieh
UCLA

Jan 28, 2019

Nonlinear Transformation

Linear Hypotheses

Up to now: linear hypotheses

Perceptron, Linear regression, Logistic regression, · · ·
Many problems are not linearly separable

Circular Separable

Data is not linear separable

but circular separable by a circle of radius
√

0.6 centered at origin:

hSEP(x) = sign(−x2
1 − x2

2 + 0.6)

Circular Separable

Data is not linear separable

but circular separable by a circle of radius
√

0.6 centered at origin:

hSEP(x) = sign(−x2
1 − x2

2 + 0.6)

Circular Separable and Linear Separable

h(x) = sign(0.6 · 1 + (−1) · x2
1 + (−1) · x2

2)

Circular Separable and Linear Separable

h(x) = sign(0.6︸︷︷︸
w̃0

· 1︸︷︷︸
z0

+ (−1)︸︷︷︸
w̃1

· x2
1︸︷︷︸
z1

+ (−1)︸︷︷︸
w̃2

· x2
2︸︷︷︸
z2

)

= sign(w̃Tz)

{(xn, yn)} circular separable ⇒ {(zn, yn)} linear separable

x ∈ X → z ∈ Z (using a nonlinear transformation Φ)

Circular Separable and Linear Separable

h(x) = sign(0.6︸︷︷︸
w̃0

· 1︸︷︷︸
z0

+ (−1)︸︷︷︸
w̃1

· x2
1︸︷︷︸
z1

+ (−1)︸︷︷︸
w̃2

· x2
2︸︷︷︸
z2

)

= sign(w̃Tz)

{(xn, yn)} circular separable ⇒ {(zn, yn)} linear separable

x ∈ X → z ∈ Z (using a nonlinear transformation Φ)

Circular Separable and Linear Separable

h(x) = sign(0.6︸︷︷︸
w̃0

· 1︸︷︷︸
z0

+ (−1)︸︷︷︸
w̃1

· x2
1︸︷︷︸
z1

+ (−1)︸︷︷︸
w̃2

· x2
2︸︷︷︸
z2

)

= sign(w̃Tz)

{(xn, yn)} circular separable ⇒ {(zn, yn)} linear separable

x ∈ X → z ∈ Z (using a nonlinear transformation Φ)

Nonlinear Transformation

Define nonlinear transformation

Φ(x) = (1, x2
1 , x

2
2) = (z0, z1, z2) = z

Linear hypotheses in Z space:

sign(h̃(z)) = sign(h̃(Φ(x))) = sign(wTΦ(x))

Lines in Z space ⇔ some quadratic curves in X -space

Nonlinear Transformation

Define nonlinear transformation

Φ(x) = (1, x2
1 , x

2
2) = (z0, z1, z2) = z

Linear hypotheses in Z space:

sign(h̃(z)) = sign(h̃(Φ(x))) = sign(wTΦ(x))

Lines in Z space ⇔ some quadratic curves in X -space

Nonlinear Transformation

Define nonlinear transformation

Φ(x) = (1, x2
1 , x

2
2) = (z0, z1, z2) = z

Linear hypotheses in Z space:

sign(h̃(z)) = sign(h̃(Φ(x))) = sign(wTΦ(x))

Lines in Z space ⇔ some quadratic curves in X -space

General Quadratic Hypothesis Set

A “bigger” Z-space:

Φ2(x) = (1, x1, x2, x
2
1 , x1x2, x

2
2)

Linear in Z-space ⇔ quadratic hypotheses in X -space

The hypotheses space:

HΦ2 = {h(x) : h(x) = w̃TΦ2(x) for some w̃}

(Quadratic hypotheses)

Also include linear model as a degenerate case

General Quadratic Hypothesis Set

A “bigger” Z-space:

Φ2(x) = (1, x1, x2, x
2
1 , x1x2, x

2
2)

Linear in Z-space ⇔ quadratic hypotheses in X -space

The hypotheses space:

HΦ2 = {h(x) : h(x) = w̃TΦ2(x) for some w̃}

(Quadratic hypotheses)

Also include linear model as a degenerate case

General Quadratic Hypothesis Set

A “bigger” Z-space:

Φ2(x) = (1, x1, x2, x
2
1 , x1x2, x

2
2)

Linear in Z-space ⇔ quadratic hypotheses in X -space

The hypotheses space:

HΦ2 = {h(x) : h(x) = w̃TΦ2(x) for some w̃}

(Quadratic hypotheses)

Also include linear model as a degenerate case

General Quadratic Hypothesis Set

A “bigger” Z-space:

Φ2(x) = (1, x1, x2, x
2
1 , x1x2, x

2
2)

Linear in Z-space ⇔ quadratic hypotheses in X -space

The hypotheses space:

HΦ2 = {h(x) : h(x) = w̃TΦ2(x) for some w̃}

(Quadratic hypotheses)

Also include linear model as a degenerate case

Learning a good quadratic function

Transform original data {xn, yn} to {zn = Φ(xn), yn}
Solve a linear problem on {zn, yn} using your favorite algorithm A to
get a good model w̃
Return the model h(x) = sign(w̃TΦ(x))

Polynomial mappings

Can now freely do quadratic classification, quadratic regression, · · ·

Can easily extend to any degree of polynomial mappings

E.g., Φ(x) =
(x1, x2, x3, x1x2, x1x3, x2x3, x1x2

2 , x1x
2
3 , x1x

2
2 , x

2
2x3, x

2
1x3, x

2
2x3, x

3
1 , x

3
2 , x

3
3)

Polynomial mappings

Can now freely do quadratic classification, quadratic regression, · · ·
Can easily extend to any degree of polynomial mappings

E.g., Φ(x) =
(x1, x2, x3, x1x2, x1x3, x2x3, x1x2

2 , x1x
2
3 , x1x

2
2 , x

2
2x3, x

2
1x3, x

2
2x3, x

3
1 , x

3
2 , x

3
3)

The price we pay: Computational complexity

Q-th order polynomial transform:

Φ(x) = (1, x1, x2, · · · , xd ,
x2

1 , x1x2, · · · , x2
d ,

· · ·
xQ1 , x

Q−1
1 x2, · · · , xQd)

O(dQ) dimensional vector ⇒ High computational cost

The price we pay: overfitting

Overfitting: the model has low training error but high prediction error.

Theory of Generalization

Material is from “Learning from data”

Training versus testing

Machine learning pipeline:

Training phase:

Obtain the best model h by minimizing training error

Test (inference) phase:

For any incoming test data x :
Make prediction by h(x)

Measure the performance of h: test error

Training versus testing

Does low training error imply low test error?

They can be totally different if

train distribution 6= test distribution

Even under the same distribution, they can be very different:

Because h is picked to minimize training error, not test error

Training versus testing

Does low training error imply low test error?

They can be totally different if

train distribution 6= test distribution

Even under the same distribution, they can be very different:

Because h is picked to minimize training error, not test error

Formal definition

Assume training and test data are both sampled from D

The ideal function (for generating labels) is f : f (x)→ y

Training error: Sample x1, · · · , xN from D and

Etr(h) =
1

N

∑N

n=1
e(h(xn), f (xn))

h is determined by x1, · · · , xN
Test error: Sample x1, · · · , xM from D and

Ete(h) =
1

M

∑M

m=1
e(h(xm), f (xm))

h is independent to x1, · · · , xM

Generalization error = Test error = Expected performance on D:

E (h) = Ex∼D [e(h(x), f (x))] = Ete(h)

Formal definition

Assume training and test data are both sampled from D

The ideal function (for generating labels) is f : f (x)→ y

Training error: Sample x1, · · · , xN from D and

Etr(h) =
1

N

∑N

n=1
e(h(xn), f (xn))

h is determined by x1, · · · , xN
Test error: Sample x1, · · · , xM from D and

Ete(h) =
1

M

∑M

m=1
e(h(xm), f (xm))

h is independent to x1, · · · , xM
Generalization error = Test error = Expected performance on D:

E (h) = Ex∼D [e(h(x), f (x))] = Ete(h)

The 2 questions of learning

E (h) ≈ 0 is achieved through:

E (h) ≈ Etr(h) and Etr(h) ≈ 0

Learning is split into 2 questions:

Can we make sure that E (h) ≈ Etr(h)?
today’s focus

Can we make Etr(h) small?
Optimization (done)

The 2 questions of learning

E (h) ≈ 0 is achieved through:

E (h) ≈ Etr(h) and Etr(h) ≈ 0

Learning is split into 2 questions:

Can we make sure that E (h) ≈ Etr(h)?
today’s focus

Can we make Etr(h) small?
Optimization (done)

How to bound ‖E (h)− Etr(h)‖?

Inferring Something Unknown

Consider a bin with red and green marbles

P[picking a red marble] = µ

P[picking a green marble] = 1− µ

The value of µ is unknown to us
How to infer µ?

Pick N marbles independently
ν: the fraction of red marbles

Inferring with probability

Do you know µ?

No

Sample can be mostly green while bin is mostly red

Can you say something about µ?

Yes

ν is “probably” close to µ

Hoeffding’s Inequality

In big sample (large N), ν (sample mean) is probably close to µ:

P[|ν − µ| > ε] ≤ 2e−2ε2N

This is called Hoeffding’s inequality

The statement “µ = ν” is probably approximately correct (PAC)

Hoffding’s Inequality

P[|ν − µ| > ε] ≤ 2e−2ε2N

Valid for all N and ε > 0

Does not depend on µ (no need to know µ)

Larger sample size N or looser gap ε

⇒ higher probability for µ ≈ ν

Connection to Learning

How to connect this to learning?

Each marble (uncolored) is a data point x ∈ X

Connection to Learning

How to connect this to learning?

Each marble (uncolored) is a data point x ∈ X
red marble: h(x) 6=f (x) (h is correct)

green marble: h(x)=f (x) (h is wrong)

Connection to Learning

Given a function h:

If we randomly draw x1, · · · , xN (independent to h):

E (h) = Ex∼D [h(x) 6= f (x)] (generalization error, unknown)
⇔ µ

1
N

∑N
n=1[h(xn) 6= yn] (error on sampled data, known)

⇔ ν

Based on Hoeffding’s inequality:

P[|µ− ν| > ε] ≤ 2e−2ε2N

“µ = ν” is probably approximately correct (PAC)

However, this can only “verify” the error of a hypothesis:

h and x1, · · · , xN must be independent

Connection to Learning

Given a function h:

If we randomly draw x1, · · · , xN (independent to h):

E (h) = Ex∼D [h(x) 6= f (x)] (generalization error, unknown)
⇔ µ

1
N

∑N
n=1[h(xn) 6= yn] (error on sampled data, known)

⇔ ν

Based on Hoeffding’s inequality:

P[|µ− ν| > ε] ≤ 2e−2ε2N

“µ = ν” is probably approximately correct (PAC)

However, this can only “verify” the error of a hypothesis:

h and x1, · · · , xN must be independent

Connection to Learning

Given a function h:

If we randomly draw x1, · · · , xN (independent to h):

E (h) = Ex∼D [h(x) 6= f (x)] (generalization error, unknown)
⇔ µ

1
N

∑N
n=1[h(xn) 6= yn] (error on sampled data, known)

⇔ ν

Based on Hoeffding’s inequality:

P[|µ− ν| > ε] ≤ 2e−2ε2N

“µ = ν” is probably approximately correct (PAC)

However, this can only “verify” the error of a hypothesis:

h and x1, · · · , xN must be independent

Apply to multiple bins (hypothesis)

Can we apply to multiple hypothesis?

Color in each bin depends on different hypothesis
Bingo when getting all green balls?

Coin Game

If you have 150 fair coins, flip each coin 5 times, and one of them gets
5 heads. Is this coin (g) special?

No. The probability of existing one of the coin results in 5 heads is
1− (31

32)150 > 99%

Because: there can exist some h such that E and Etr are far away if M
is large.

Coin Game

If you have 150 fair coins, flip each coin 5 times, and one of them gets
5 heads. Is this coin (g) special?

No. The probability of existing one of the coin results in 5 heads is
1− (31

32)150 > 99%

Because: there can exist some h such that E and Etr are far away if M
is large.

Coin Game

If you have 150 fair coins, flip each coin 5 times, and one of them gets
5 heads. Is this coin (g) special?

No. The probability of existing one of the coin results in 5 heads is
1− (31

32)150 > 99%

Because: there can exist some h such that E and Etr are far away if M
is large.

A Simple Solution

For each particular h,

P

[
|Etr (h)− E (h)| > ε

]
≤ 2e−2ε2N

We want a “union bound”:

P

[
|Etr (h1)− E (h1)| > ε or · · · or |Etr (hM)− E (hM)| > ε

]
≤

M∑
m=1

P

[
|Etr (hm)− E (hm)|

]
≤ 2Me−2ε2N

When is learning successful?

When our Learning Algorithm A picks the hypothesis g :

P[|Etr (g)− E (g)| > ε] ≤ 2Me−2ε2N

If M is small and N is large enough:

If A finds Etr (g) ≈ 0

⇒ E (g) ≈ 0 (Learning is successful!)

Feasibility of Learning

P[|Etr (g)− E (g)| > ε] ≤ 2Me−2ε2N

Two questions:

(1) Can we make sure E (g) ≈ Etr (g)?

(2) Can we make sure E (g) ≈ 0?

M: complexity of model

Small M: (1) holds, but (2) may not hold (too few choices)

(under-fitting)

Large M: (1) doesn’t hold, but (2) may hold

(over-fitting)

Feasibility of Learning

P[|Etr (g)− E (g)| > ε] ≤ 2Me−2ε2N

Two questions:

(1) Can we make sure E (g) ≈ Etr (g)?

(2) Can we make sure E (g) ≈ 0?

M: complexity of model

Small M: (1) holds, but (2) may not hold (too few choices)

(under-fitting)

Large M: (1) doesn’t hold, but (2) may hold

(over-fitting)

Feasibility of Learning

P[|Etr (g)− E (g)| > ε] ≤ 2Me−2ε2N

Two questions:

(1) Can we make sure E (g) ≈ Etr (g)?

(2) Can we make sure E (g) ≈ 0?

M: complexity of model

Small M: (1) holds, but (2) may not hold (too few choices)

(under-fitting)

Large M: (1) doesn’t hold, but (2) may hold

(over-fitting)

What the theory will achieve

Currently we only know

P[|Etr(g)− E (g)| > ε] ≤ 2Me−2ε2N

What if M =∞?

(e.g., linear hyperplanes)

Todo:

We will establish a finite quantity to replace M

P[|Etr(g)− E (g)| > ε]
?
≤ 2mH(N)e−2ε2N

Study mH(N) to understand the trade-off for model complexity

What the theory will achieve

Currently we only know

P[|Etr(g)− E (g)| > ε] ≤ 2Me−2ε2N

What if M =∞?

(e.g., linear hyperplanes)

Todo:

We will establish a finite quantity to replace M

P[|Etr(g)− E (g)| > ε]
?
≤ 2mH(N)e−2ε2N

Study mH(N) to understand the trade-off for model complexity

What the theory will achieve

Currently we only know

P[|Etr(g)− E (g)| > ε] ≤ 2Me−2ε2N

What if M =∞?

(e.g., linear hyperplanes)

Todo:

We will establish a finite quantity to replace M

P[|Etr(g)− E (g)| > ε]
?
≤ 2mH(N)e−2ε2N

Study mH(N) to understand the trade-off for model complexity

Conclusions

Polynomial feature expansion: Our first nonlinear model

Bounding the generalization (test) error

Questions?

