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Reducing M to finite number



@ The Bad events B,,:

Eee(hm) — E(hm)| > €' with probability < 2e~2¢*N
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@ The Bad events B,,:

@ The union bound:

- or Bu]
< P[By] + P[By] + - - - + P[Buy] < 2Me=2N

consider worst case: no overlaps

B,

()

By
No overlap: bound is tight

Large overlap

[m]

=

Eee(hm) — E(hm)| > €' with probability < 2e~2¢*N
P[B1 or By or
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o 5 = = E DA



=] 5 = = £ DA



@ The event that |Ey(h1) — E(h1)| > € and |Ex(h2) — E(h2)| > € are
largely overlapped.
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Instead of the whole input space

DA



Instead of the whole input space

Let's consider a finite set of input points
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Instead of the whole input space

Let's consider a finite set of input points
How many patterns of colors can you get?
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@ A hypothesis: h: X — {-1,+1}

e A dichotomy: h: {x1,x2,"

,XN} — {—1, -|-1}
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@ A hypothesis: h: X — {-1,+1}
o A dichotomy: h: {xi,xp, -+, xy} = {—1,+1}
@ Number of hypotheses || can be infinite
o Number of dichotomies |H(x1, X2, -, xn)|:
at most 2V
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@ A hypothesis: h: X — {-1,+1}
o A dichotomy: h: {xi,xp, -+, xy} = {—1,+1}
@ Number of hypotheses || can be infinite
@ Number of dichotomies |H(x1, x2, - -, xn)|:
at most 2V

=-Candidate for replacing M
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@ The growth function counts the most dichotomies on any N points:

my(N) max |H(x1, -, xn)
X1, XNEX
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@ The growth function counts the most dichotomies on any N points:

my(N) max  |[H(x1, -, Xn)
X1, XNEX

@ The growth function satisfies:

my(N) < 2N
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Compute my/(3) in 2-D space

What's |H(X1a X2, X3)|?
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Growth function for linear classifiers

Compute my(3) in 2-D space when H is perceptron (linear hyperplanes)
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Growth function for linear classifiers

Compute my(3) in 2-D space when H is perceptron (linear hyperplanes)




Growth function for linear classifiers

Compute my(3) in 2-D space when H is perceptron (linear hyperplanes)

Doesn’t matter because we only counts the most dichotomies



@ What's m’H(4)?
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e What's my(4)?

@ (At least) missing two dichotomies:
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e What's my(4)?

@ (At least) missing two dichotomies:

([
° m»H(4) =14 < 24
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+
o a h(z) = +1
ﬁ_xﬁ_x_x_e_e_e_e_
I ) T3 o

TN

H issetof h:R— {—1,+1}
hz) = sign(w ~ a)

mp(N) =N +1

Q>



H issetof h:R— {—1,+1}

Place interval ends in two of N + 1 spots

mu(N) = (N;l) +1=IN?+IN+1
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o Hissetof h:R? — {—1,+1}

h(x) = +1 is convex

@ How many dichotomies can we generate?
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o Hissetof h:R? — {—1,+1}
h(x) = +1 is convex

@ How many dichotomies can we generate?
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o Hissetof h:R? — {—1,+1}
h(x) = +1 is convex

@ How many dichotomies can we generate?

_—————

R
7 SN
N,
~ \,

————
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o H isset of h:R? — {—1,+1}

h(x) = +1 is convex
o my(N) = 2N for any N

= We say the N points are “shattered” by h
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@ H is positive rays:

me(N) =N+1
@ 7 is positive intervals:

1 1
my(N) = §N2 +5N+1
@ H is convex sets:

mH(N) = 2N
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@ Remember the inequality

P Ein

Eout] > €] < 2Me 2N
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@ Remember the inequality

P Ein

Eout] > €] < 2Me 2N

e What happens if we replace M by my(N)?
my(N) polynomial = Good!
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@ Remember the inequality

P Ein

Eout] > €] < 2Me 2N

e What happens if we replace M by my(N)?
my(N) polynomial = Good!

@ How to show my(N) is polynomial?
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When will my(N) be polynomial



for H

@ If no data set of size k can be shattered by #, then k is a break point

mH(k) < 2k
e VC dimension of H: k — 1 (the most points H can shatter)
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for H

@ If no data set of size k can be shattered by #, then k is a break point

mH(k) < 2k

e VC dimension of H: k — 1 (the most points H can shatter)
@ For 2-D perceptron: k = 4, VC dimension = 3

Shattered Not Shattered
[ J
° [ Y [ ]
[ [ J
Can’t generate
([ [
[ J
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e Positive rays: my(N) =N +1

Break point k=2, dyc =1
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e Positive rays: my(N) =N +1

Break point k=2, dyc =1

o Positive intervals: my(N) = IN?+ 1N +1
Break point k =3, dyc =2
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e Positive rays: my(N) =N +1

Break point k=2, dyc =1

o Positive intervals: my(N) = IN?+ 1N +1
Break point k =3, dyc =2

o Convex set: my/(N) = 2N

Break point k = 00, dyc = o0
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No break point = my (N) = 2N

Any break point = my(N) is polynomial in N
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@ Break point is k =2

X, Xy X

O 0O O
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@ Break point is k =2

X; X, X3
O O O
OO0 @
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@ Break pointis k =2

X, X; X5
O O O
O O e
O @ O
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@ Break point is k =2

x
=

x
N

x
w

OO0 0O
®e® OO
® O 00

. = = = z 9ac



@ Break point is k =2

x
[
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N
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@ Break point is k =2
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@ Break pointis k =2

x
=

x
N
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w
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@ Break point is k =2

x
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@ Break pointis k =2
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@ Break pointis k =2
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@ Break pointis k =2
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@ Break pointis k =2
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@ Break point is k =2

x
[

x
N

X
w

® O OO
O ®@ OO
OO @O0

. = = = z 9ac



o Key quantity:

B(N, k): Maximum number of dichotomies on N points, with break
point k

DA



o Key quantity:

B(N, k): Maximum number of dichotomies on N points, with break
point k

@ If the hypothesis space has break point k, then

my(N) < B(N, k)
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@ For any "valid” set of dichotomies, reorganize rows by

e Sp: pattern of xy,- -+, xy_1 only appears once
o S, S, pattern of xq,- -+, xy_1 appears twice

#ofrows | x; %o ... xy_1|xNn

+1 +1 ... +1 +1

-1 41 ... +1 [-1

S1 «@ ; : : g :

+1 -1 ... -1 |-1

-1 +1 ... -1 |+1

JHl =il oo. AR |[ 4R

-1 -1 ... +1 [+1

S 16} : : : : :

+1 -1 ... 41 |+1

Sy -1 -1 ... -1 [+41

ST T

-1 -1 ... +1 |-1

Sy B8 : : : : :

+1 -1 ... 41 |-1

=l =l .o =1 ||=1
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@ Focus on x1,x2,- -+ ,xy_1 columns:

a+ 8 < B(N—1,k)

#ofrows | X3 X2 ... Xn—1 |Xpn
+1 +1 ... +1
-1 41 ... +1 -1
S1 a : : : :
+1 -1 ... -1 —1
-1 +1 ... -1
+1 -1 ... +1
-1 -1 ... +1 +1
Sy 15} : ; : : :
+1 -1 ... 41
S5 -1 -1 ... -1 +1
+1 -1 ... +1 -1
-1 -1 ... +1 —1
&5 6]
+1 -1 ... arll -1
-1 -1 ... -1 -1
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@ Now focus on the Sy = 52+ US~ + 2 rows
B<B(N—-1k-1)

#of rows | x; Xo ... Xy_1|Xpn
+1 +1 ... 41 |+1
-1 41 ... +1 —1
Sl «
HL =1L oo —1 —1
-1 +1 ... =1 |+1
+1 -1 ... +1 |+1
-1 -1 ... +1 | +1
ey B : : : : :
+1 -1 ... +1 | +1
g -1 -1 ... =1 |+1
02 : - -
+1 -1 ... +1 |-1
-1 -1 ... 41 |-1
Sy B : : :
+1 -1 ... +1 | -1
-1 -1 ... —1 —1
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B(N,k)y=a+ 3+ 0

<B(N—-1,k)+B(N—-1,k—-1)
What's the upper bound for B(N, k)?
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B(N.k)=a+5+8
<B(N—1,k)+B(N—1,k—1)

k
1 2 3 4 5

2
v A W N B
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B(N,k) =a+ 3+ 8
<B(N—1,k)+B(N—1,k—1)

2
U B W N R
L = Y = N =Y
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B(N, k) =a+ B+ 8
<B(N—1,k)+B(N—1,k—1)

2
Ui & W N R
[ S = Y
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B(N,k) =a+ 3+ 8
<B(N—1,k)+B(N—1,k—1)

2
U A W N R
R OB R R R
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B(N,k)=a+ B+ 8
< B(N—1,k) +B(N -1,k —1)

2
v A W N R
Y = T = S S Y
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B(N, k) =a+ B+ 8
<B(N—1,k)+B(N—1,k—1)

k
1 2 3 4 5

2
u B W N R
=R R R R
A W N
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B(N, k) is upper bounded by C(N, k):

C(N,1)=1, N=1,2,---
C(l,k)=2, k=23,

C(N,k)=C(N = 1,k) + C(N — 1,k — 1)

@ Theorem: C(N, k) = Zf:_ol (

7)
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B(N, k) is upper bounded by C(N, k):

C(IN,1)=1, N=1,2,---
C(17k):27 k:2737
C(N,k)=C(N —1,k)+ C(N — 1,k — 1)

@ Theorem: C(N, k) = Zf:_ol (

7)

@ Boundary conditions: (easy to check)
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B(N, k) is upper bounded by C(N, k):

C(N,1)=1, N=1,2,---
C(l,k)=2, k=23,
C(N,k)=C(N —1,k)+ C(N —1,k—1)

@ Theorem: C(N, k) = Zf:_ol (N)

1

@ Boundary conditions: (easy to check)

() -5 -5

N J/ ~

VvV Vv
select < k from N items N-th item not chosen  N-th item chosen

@ Induction:
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o For a given H, the break point k is fixed:

k-1
my(N) <

> ()

———
Polynomial with degree kK — 1
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o For a given H, the break point k is fixed:

k—1
my(N) <

> ()

N—_——
Polynomial with degree k
e 7 is positive rays: (break point k = 2)

my(N)=N+1
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o For a given H, the break point k is fixed:

k—1
my(N) <

> ()

N—_——
Polynomial with degree k
@ 7 is 2D perceptrons: (break point k = 4)

mH(N) =7

DA



o For a given H, the break point k is fixed:

k—1
my(N) <

> ()

N—_——
Polynomial with degree k
@ 7 is 2D perceptrons: (break point k = 4)

1
mu(N)< ZNP + 2N 41

DA



@ Original bound:

P[3h € H st. |Ey(h) — E(h)| > €] < 2Me 2N
@ Replace M by my(N)

BAD

P[3h e H st. |En(h) — E(h)| > €] <2-2my(2N) - e~5<N

Vapnik-Chervonenkis (VC) bound

DA



VC Dimension



e The VC dimension of a hypothesis set #, denoted by dyc(H), is

the largest value of N for which my (N) = 2V

“the most points H can shatter”

DA



e The VC dimension of a hypothesis set #, denoted by dyc(H), is

the largest value of N for which my (N) = 2V

“the most points H can shatter”
o N < dyc(H) = H can shatter N points

DA



e The VC dimension of a hypothesis set #, denoted by dyc(H), is

the largest value of N for which my (N) = 2V

“the most points H can shatter”
o N < dyc(H) = H can shatter N points

@ k> dyc(H) = H cannot be shattered

@ The smallest break point is 1 above VC-dimension

DA



@ In terms of a break point k:

DA



o Ford =2, dyc =3

Q>



e Ford =2, dyc =3
@ What if d > 27
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e Ford =2, dyc =3
@ What if d > 27

@ In general,

Q>



o Ford=2,d\/c=3
e What if d > 27

@ In general,

dyc=d+1

@ We will prove dyc > d+1and dyc <d—+1

DA



@ To prove dyc > d +1

Q>



@ To prove dyc > d +1
o A set of N = d + 1 points in R? shattered by the linear hyperplane

—s— 100 ...0
—x]— 11 .0

X = —x;— =|101 0
: : .0

) — 10...0 1
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@ To prove dyc > d +1
o A set of N = d + 1 points in R? shattered by the linear hyperplane

—s— 100 ...0
—x]— 11 .0

X = —x;— =|101 0
: : .0

) — 10...0 1

@ X is invertible!
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y1

+1
Y2 +1
@ Foranyy=

, can we find w satisfying
Yd+1 +1

sign(Xw) =y

DA



Y1

+1
Y2 +1
@ Foranyy=

, can we find w satisfying
Yd+1 +1

sign(Xw) =y
o Easy! Just set w = X~ ly

DA



Y1

+1
Y2 +1
@ Foranyy=

Yd+1

, can we find w satisfying
+1

sign(Xw) =y
o Easy! Just set w = X~ ly
@ So,dyc >d+1

DA



@ To show dyc < d + 1, we need to show

We cannot shatter any set of d + 2 points

DA



@ To show dyc < d + 1, we need to show

We cannot shatter any set of d + 2 points
e For any d + 2 points

X1, X2, -

" Xd+1; Xd+2
@ More points than dimensions = linear dependent

Xj = E a; X

i#j
where not all a;'s are zeros



Xj = E a; Xj

i#j

@ Now we construct a dichotomy that cannot be generated

. {s_igln(a,-) if i # j

ifi=j

DA



Xj = E a; Xj

i#j

@ Now we construct a dichotomy that cannot be generated:

. {s_igln(a,-) if i # j

ifi=j
e For all i # j, assume the labels are correct: sign(a;) = sign(w’ x;)
= a,-wa,- >0

DA



Xj = E a; Xj

i#j

@ Now we construct a dichotomy that cannot be generated

. {s_igln(a,-) if i # j

ifi=j
= a,-wa,- >0

e For all i # j, assume the labels are correct: sign(a;) = sign(w '’ x;)
o For j-th data

w xJ Za,w x;i >0
i#j
o Therefore, y; = sign(w x;) = +1 (cannot be —1)

[m]

=
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@ We proved for d-dimensional linear hyperplane

dyc<d+1landdyc>d+1=

dyc=d+1



@ We proved for d-dimensional linear hyperplane

dyc<d+1landdyc>d+1=

dyc=d+1
@ Number of parameters wy, - - - , wy
d 4+ 1 parameters!
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@ We proved for d-dimensional linear hyperplane

dyc<d+1landdyc>d+1=

dyc=d+1
@ Number of parameters wy, - - - , wy
d 4+ 1 parameters!

@ Parameters create degrees of freedom

DA



@ Positive rays: 1 parameters, dyc =1

L
h(z) = -1
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@ Positive rays: 1 parameters, dyc =1

d
h(z) = -1

" iol(@) = 41l "
o Positive intervals: 2 parameters, dyc = 2

h(z) = -1

h(z)=+1 " h(z)=-1

DA



@ Positive rays: 1 parameters, dyc =1

d
h(z) = -1

" iol(@) = 41l "
o Positive intervals: 2 parameters, dyc = 2

h(z) = -1

h(z)=+1 " h(z)=-1
o Not always true - - -

dyc measures the effective number of parameters

DA



P[|Ein(g) — Eout(g)| > €] < 4my(2N)e 5N

1)
@ If we want certain ¢ and §, how does N depend on dyc?



P[|En(g) — Eou(g)] > ] < 4mp(2N)e™ 5N

1)
@ If we want certain ¢ and §, how does N depend on dyc?
o Need N9e~N = small value



P[|Ein(g) — Eout(g)| > ¢] < 4my(2N)e” s

Le2py
_

1)
@ If we want certain ¢ and §, how does N depend on dyc?
o Need N9e~N = small value

/
7N

10°

i \
| \
/( \ N3N
e N

N° \

N is almost linear with dyc

10°




Regularization



e H@: polynomials of order Q

Q

Ho ={D_ walq(x)}
q=0

@ Linear regression in the Z space with

zZ= [17 Ll(X)7 ) LQ(X)]
Legendre polynomials:
I, I, Is L. I
z 1322 —1) (52 — 3z) (3524 — 302% + 3) H632°- )
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° InPUt (Xla)’l),"' ;(XN,YN) — (217}’1)a"‘ ’(ZN7yN)
@ Linear regression:

N
1
Minimize :Ey,(w) = — Z

- }’n)2
n=1
o1 T
Minimize :N(Zw —y)' (Zw —Yy)
e Solution wy, = (Z72)"12Ty

DA



@ Hard constraint: #, is constrained version of H1g
(with wg =0 for g > 2)
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@ Hard constraint: #, is constrained version of H1g
(with wg =0 for g > 2)

o Soft-order constraint: ZS_O wg? < C
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@ Hard constraint: #, is constrained version of H1g
(with wg =0 for g > 2)
e Soft-order constraint: ZQ_O w2 < C

@ The problem given soft-order constraint:

MinimizeN(Zw —y)T(Zw —y) st

wiw<C
~—_————
@ Solution wyeg instead of wy,

smaller hypothesis space

DA



@ Constrained version:

1
min Ey(w) = N(ZW -y (Zw—y) st. wiw<C
w

E = const.

@ Optimal when

vEtr(Wreg) X — Wyeg
Why? If —VEi(w) and w are not parallel, can decrease Ey(w)
without violating the constraint

[m]

=
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@ Constrained version:

1
min Ey(w) = N(ZW -y (Zw—-y) st. ww<C
w
@ Optimal when

vEtr(Wreg;) X — Wyeg
o Assume VEq(Wreg) = —Q%W,eg

= VEi(Wreg) + 27 Wreg = 0

DA



@ Constrained version:

1
mMi,n Ei(w) = N(ZW -y (Zw—-y) st. ww<C
@ Optimal when

vEtr(Wreg;) X — Wyeg
o Assume VEq(Wreg) = —Q%W,eg

= VEi(Wreg) + 27 Wreg = 0

® W is also the solution of unconstrained problem

mMi/n Eir(w)

-
—w'w
+N

(Ridge regression!)
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@ Constrained version:

1
mMi,n Ei(w) = N(ZW -y (Zw—-y) st. ww<C
@ Optimal when

vEtr(Wreg;) X — Wyeg
o Assume VEq(Wreg) = —Q%W,eg

= VEi(Wreg) + 27 Wreg = 0

® W is also the solution of unconstrained problem

: AT
min Ei(w) + Tl
(Ridge regression!)

Ct Al

DA



i Ees(w) = 17 (2w~ 9)T(2w — )+ wTw)

0 VEe(w)=0 = ZTZ(w—y)+Aw=0

DA



1

min Ereg(w) = m ((Zw —y)(Zw —y) + )\WTW>
w

0 VEe(w)=0 = ZTZ(w—y)+Aw=0

© S0, Wyeg = (Z7Z + N)71ZTy (with regularization)

as opposed to wy, = (Z7Z)"1ZTy (without regularization)

DA



m“i,n Etr(W) + NWTW

A = 0.0001 A =0.01

overfitting

T
—

underfitting

Q>



@ Consider the general case

min Eq (w) + —w'w
w

DA



@ Consider the general case

min Eq (w) + —w'w
w
@ Gradient descent:

A
Wil = W — U(VEtr(Wt) + 2N Wt>

A
= W (1 — 2')7N) _T’VEtr(Wt)
————

weight decay

DA



@ Emphasis of certain weights:

Q
PR
q=0

o Example 1: 7, =29 = low-order fit
o Example 2: 74 =279 = high-order fit

DA



@ Emphasis of certain weights:

Q
PR
q=0

o Example 1: 7, =29 = low-order fit

o Example 2: 74 =279 = high-order fit
@ General Tikhonov regularizer:

w'Hw
with a positive semi-definite H

DA



e Calling the regularizer Q = Q(h), we minimize

Exe(h) = Eulh) + O(0)

@ In general, Q(h) can be any measurement for the “size” of h

DA



o Ll-regularizer: Q(w) = [[wl[1 = }_ [wq]
@ Usually leads to a sparse solution

(only few wy will be nonzero)
E

= const.

E

= const.




@ VC dimension

@ Regularization

Questions?

=] 5 = = £ DA



