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Reducing M to finite number



Where did the M come from?

The Bad events Bm:
“|Etr(hm)− E (hm)| > ε” with probability ≤ 2e−2ε

2N

The union bound:
P[B1 or B2 or · · · or BM ]

≤ P[B1] + P[B2] + · · ·+ P[BM ]︸ ︷︷ ︸
consider worst case: no overlaps

≤ 2Me−2ε
2N
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Can we improve on M?

The event that |Etr(h1)− E (h1)| > ε and |Etr(h2)− E (h2)| > ε are
largely overlapped.



What can we replace M with?

Instead of the whole input space
Let’s consider a finite set of input points
How many patterns of orange and black can you get?
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Dichotomies: mini-hypotheses

A hypothesis: h : X → {−1,+1}
A dichotomy: h : {x1, x2, · · · , xN} → {−1,+1}

Number of hypotheses |H| can be infinite

Number of dichotomies |H(x1, x2, · · · , xN)|:
at most 2N

⇒Candidate for replacing M
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The growth function

The growth function counts the most dichotomies on any N points:

mH(N) = max
x1,··· ,xN∈X

|H(x1, · · · , xN)|

The growth function satisfies:

mH(N) ≤ 2N



The growth function

The growth function counts the most dichotomies on any N points:

mH(N) = max
x1,··· ,xN∈X

|H(x1, · · · , xN)|

The growth function satisfies:

mH(N) ≤ 2N



Growth function for linear classifiers

Compute mH(3) in 2-D space

What’s |H(x1, x2, x3)|?



Growth function for linear classifiers

Compute mH(3) in 2-D space when H is perceptron (linear hyperplanes)

mH(3) = 8
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Growth function for linear classifiers

What’s mH(4)?

(At least) missing two dichotomies:

mH(4) = 14 < 24
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Example I: positive rays



Example II: positive intervals



Example III: convex sets

H is set of h : R2 → {−1,+1}
h(x) = +1 is convex

How many dichotomies can we generate?
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Example III: convex sets

H is set of h : R2 → {−1,+1}
h(x) = +1 is convex

mH(N) = 2N for any N

⇒ We say the N points are “shattered” by h



The 3 growth functions

H is positive rays:
mH(N) = N + 1

H is positive intervals:

mH(N) =
1

2
N2 +

1

2
N + 1

H is convex sets:
mH(N) = 2N



What’s next?

Remember the inequality

P[|Ein − Eout| > ε] ≤ 2Me−2ε
2N

What happens if we replace M by mH(N)?

mH(N) polynomial ⇒ Good!

How to show mH(N) is polynomial?
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When will mH(N) be polynomial



Break point of H

If no data set of size k can be shattered by H, then k is a break point
for H

mH(k) < 2k

VC dimension of H: k − 1 (the most points H can shatter)

For 2-D perceptron: k = 4, VC dimension = 3
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Break point - examples

Positive rays: mH(N) = N + 1

Break point k = 2, dVC = 1

Positive intervals: mH(N) = 1
2N

2 + 1
2N + 1

Break point k = 3, dVC = 2

Convex set: mH(N) = 2N

Break point k =∞, dVC =∞
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We will show

No break point ⇒ mH(N) = 2N

Any break point ⇒ mH(N) is polynomial in N
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Bounding mH(N)

Key quantity:

B(N, k): Maximum number of dichotomies on N points, with break
point k

If the hypothesis space has break point k , then

mH(N) ≤ B(N, k)
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Recursive bound on B(N , k)

For any “valid” set of dichotomies, reorganize rows by
S1: pattern of x1, · · · , xN−1 only appears once
S+
2 ,S

−
2 : pattern of x1, · · · , xN−1 appears twice

B(N, k) = α + 2β



Recursive bound on B(N , k)

Focus on x1, x2, · · · , xN−1 columns:

α + β ≤ B(N − 1, k)



Recursive bound on B(N , k)

Now focus on the S2 = S+
2 ∪ S− + 2 rows

β ≤ B(N − 1, k − 1)



Recursive bound on B(N , k)

B(N, k) = α + β + β

≤ B(N − 1, k) + B(N − 1, k − 1)

What’s the upper bound for B(N, k)?
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Analytic solution for B(N , k) bound

B(N, k) is upper bounded by C (N, k):

C (N, 1) = 1, N = 1, 2, · · ·
C (1, k) = 2, k = 2, 3, · · ·
C (N, k)=C (N − 1, k) + C (N − 1, k − 1)

Theorem: C (N, k) =
∑k−1

i=0

(N
i

)

Boundary conditions: (easy to check)

Induction:

k−1∑
i=0

(
N

i

)
︸ ︷︷ ︸

select < k from N items

=
k−1∑
i=0

(
N − 1

i

)
︸ ︷︷ ︸

N-th item not chosen

+
k−2∑
i=0

(
N − 1

i

)
︸ ︷︷ ︸
N-th item chosen
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It is polynomial!

For a given H, the break point k is fixed:

mH(N) ≤
k−1∑
i=0

(
N

i

)
︸ ︷︷ ︸

Polynomial with degree k − 1



It is polynomial!

For a given H, the break point k is fixed:

mH(N) ≤
k−1∑
i=0

(
N

i

)
︸ ︷︷ ︸

Polynomial with degree k

H is positive rays: (break point k = 2)

mH(N) = N + 1



It is polynomial!

For a given H, the break point k is fixed:

mH(N) ≤
k−1∑
i=0

(
N

i

)
︸ ︷︷ ︸

Polynomial with degree k

H is 2D perceptrons: (break point k = 4)

mH(N) =?



It is polynomial!

For a given H, the break point k is fixed:

mH(N) ≤
k−1∑
i=0

(
N

i

)
︸ ︷︷ ︸

Polynomial with degree k

H is 2D perceptrons: (break point k = 4)

mH(N)≤ 1

6
N3 +

5

6
N + 1



Replace M by mH(N)

Original bound:

P[∃h ∈ H s.t. |Etr(h)− E (h)| > ε] ≤ 2Me−2ε
2N

Replace M by mH(N)

P[∃h ∈ H s.t. |Etr(h)− E (h)| > ε]︸ ︷︷ ︸
BAD

≤ 2 · 2mH(2N) · e−
1
8
ε2N

Vapnik-Chervonenkis (VC) bound



VC Dimension



Definition

The VC dimension of a hypothesis set H, denoted by dVC(H), is

the largest value of N for which mH(N) = 2N

“the most points H can shatter”

N ≤ dVC(H)⇒ H can shatter N points

k > dVC(H)⇒ H cannot be shattered

The smallest break point is 1 above VC-dimension
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Definition

The VC dimension of a hypothesis set H, denoted by dVC(H), is

the largest value of N for which mH(N) = 2N

“the most points H can shatter”

N ≤ dVC(H)⇒ H can shatter N points

k > dVC(H)⇒ H cannot be shattered

The smallest break point is 1 above VC-dimension



The growth function

In terms of a break point k :

mH(N) ≤
k−1∑
i=0

(
N

i

)
In terms of the VC dimension dVC:

mH(N) ≤
dVC∑
i=0

(
N

i

)



VC dimension of linear classifiers

For d = 2, dVC = 3

What if d > 2?

In general,
dVC = d + 1

We will prove dVC ≥ d + 1 and dVC ≤ d + 1
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VC dimension of linear classifiers

To prove dVC ≥ d + 1

A set of N = d + 1 points in Rd shattered by the linear hyperplane

X is invertible!
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VC dimension of linear classifiers

To prove dVC ≥ d + 1

A set of N = d + 1 points in Rd shattered by the linear hyperplane

X is invertible!



Can we shatter the dataset?

For any y =


y1
y2
...

yd+1

 =


±1
±1

...
±1

, can we find w satisfying

sign(Xw) = y

Easy! Just set w = X−1y

So, dVC ≥ d + 1
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VC dimension of linear classifiers

To show dVC ≤ d + 1, we need to show

We cannot shatter any set of d + 2 points

For any d + 2 points

x1, x2, · · · , xd+1, xd+2

More points than dimensions ⇒ linear dependent

xj =
∑
i 6=j

aixi

where not all ai ’s are zeros
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VC dimension of linear classifiers

xj =
∑
i 6=j

aixi

Now we construct a dichotomy that cannot be generated:

yi =

{
sign(ai ) if i 6= j

−1 if i = j

For all i 6= j , assume the labels are correct: sign(ai ) = sign(wTxi )
⇒ aiwTxi > 0

For j-th data,

wTxj =
∑
i 6=j

aiwTxi > 0

Therefore, yj = sign(wTxj) = +1 (cannot be −1)
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Putting it together

We proved for d-dimensional linear hyperplane

dVC ≤ d + 1 and dVC ≥ d + 1⇒ dVC = d + 1

Number of parameters w0, · · · ,wd

d + 1 parameters!

Parameters create degrees of freedom
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Examples

Positive rays: 1 parameters, dVC = 1

Positive intervals: 2 parameters, dVC = 2

Not always true · · ·
dVC measures the effective number of parameters
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Number of data points needed

P[|Ein(g)− Eout(g)| > ε] ≤ 4mH(2N)e−
1
8
ε2N︸ ︷︷ ︸

δ

If we want certain ε and δ, how does N depend on dVC?

Need Nde−N = small value

N is almost linear with dVC
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Regularization



The polynomial model

HQ : polynomials of order Q

HQ = {
Q∑

q=0

wqLq(x)}

Linear regression in the Z space with

z = [1, L1(x), · · · , LQ(x)]



Unconstrained solution

Input (x1, y1), · · · , (xN , yN)→ (z1, y1), · · · , (zN , yN)

Linear regression:

Minimize :Etr(w) =
1

N

N∑
n=1

(wTzn − yn)2

Minimize :
1

N
(Zw − y)T (Zw − y)

Solution wtr = (ZTZ )−1ZTy



Constraining the weights

Hard constraint: H2 is constrained version of H10

(with wq = 0 for q > 2)

Soft-order constraint:
∑Q

q=0 wq
2 ≤ C

The problem given soft-order constraint:

Minimize
1

N
(Zw − y)T (Zw − y) s.t. wTw ≤ C︸ ︷︷ ︸

smaller hypothesis space

Solution wreg instead of wtr
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Equivalent to the unconstrained version

Constrained version:

min
w

Etr(w) =
1

N
(Zw − y)T (Zw − y) s.t. wTw ≤ C

Optimal when
∇Etr(wreg) ∝ −wreg

Why? If −∇Etr(w) and w are not parallel, can decrease Etr(w)
without violating the constraint
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Assume ∇Etr(wreg) = −2 λNwreg

⇒ ∇Etr(wreg) + 2 λNwreg = 0

wreg is also the solution of unconstrained problem

min
w

Etr(w) +
λ

N
wTw

(Ridge regression!)

C ↑ λ ↓
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Ridge regression solution

min
w

Ereg(w) =
1

N

(
(Zw − y)T (Zw − y) + λwTw

)

∇Ereg(w) = 0 ⇒ ZTZ (w − y) + λw = 0

So, wreg = (ZTZ + λI )−1ZTy (with regularization)

as opposed to wtr = (ZTZ )−1ZTy (without regularization)
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The result

min
w

Etr(w) +
λ

N
wTw



Equivalent to “weight decay”

Consider the general case

min
w

Etr(w) +
λ

N
wTw

Gradient descent:

wt+1 = wt − η
(
∇Etr(wt) + 2

λ

N
wt

)
= wt (1− 2η

λ

N
)︸ ︷︷ ︸

weight decay

−η∇Etr(wt)
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Variations of weight decay

Emphasis of certain weights:

Q∑
q=0

γqw
2
q

Example 1: γq = 2q ⇒ low-order fit
Example 2: γq = 2−q ⇒ high-order fit

General Tikhonov regularizer:

wTHw

with a positive semi-definite H
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General form of regularizer

Calling the regularizer Ω = Ω(h), we minimize

Ereg(h) = Etr(h) +
λ

N
Ω(h)

In general, Ω(h) can be any measurement for the “size” of h



L2 vs L1 regularizer

L1-regularizer: Ω(w) = ‖w‖1 =
∑

q |wq|
Usually leads to a sparse solution

(only few wq will be nonzero)



Conclusions

VC dimension

Regularization

Questions?


