CS260: Machine Learning Algorithms

Lecture 7: VC Dimension

Cho-Jui Hsieh UCLA

Jan 30, 2019

Reducing M to finite number

Where did the *M* come from?

• The \mathcal{B} ad events \mathcal{B}_m :

$$|E_{\mathsf{tr}}(h_m) - E(h_m)| > \epsilon|$$
 with probability $\leq 2e^{-2\epsilon^2 N}$

Where did the *M* come from?

• The \mathcal{B} ad events \mathcal{B}_m : " $|\mathcal{E}_{\mathrm{tr}}(h_m) - \mathcal{E}(h_m)| > \epsilon$ " with probability $\leq 2e^{-2\epsilon^2 N}$

• The union bound:

$$\begin{split} \mathbb{P}[\mathcal{B}_1 \text{ or } \mathcal{B}_2 \text{ or } \cdots \text{ or } \mathcal{B}_M] \\ &\leq \underbrace{\mathbb{P}[\mathcal{B}_1] + \mathbb{P}[\mathcal{B}_2] + \cdots + \mathbb{P}[\mathcal{B}_M]}_{\text{consider worst case: no overlaps}} \leq 2 \textcolor{red}{\textit{M}} e^{-2\epsilon^2 N} \end{split}$$

No overlap: bound is tight

Large overlap

• The event that $|E_{\rm tr}(h_1) - E(h_1)| > \epsilon$ and $|E_{\rm tr}(h_2) - E(h_2)| > \epsilon$ are largely overlapped.

What can we replace M with?

Instead of the whole input space

What can we replace M with?

Instead of the whole input space Let's consider a finite set of input points

What can we replace M with?

Instead of the whole input space Let's consider a finite set of input points How many patterns of colors can you get?

Dichotomies: mini-hypotheses

- A hypothesis: $h: \mathcal{X} \to \{-1, +1\}$
- ullet A dichotomy: $h: \{x_1, x_2, \cdots, x_N\}
 ightarrow \{-1, +1\}$

Dichotomies: mini-hypotheses

- A hypothesis: $h: \mathcal{X} \to \{-1, +1\}$
- A dichotomy: $h: \{ \mathbf{\textit{x}}_1, \mathbf{\textit{x}}_2, \cdots, \mathbf{\textit{x}}_N \} \rightarrow \{-1, +1\}$
- \bullet Number of hypotheses $|\mathcal{H}|$ can be infinite
- Number of dichotomies $|\mathcal{H}(\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_N)|$: at most 2^N

Dichotomies: mini-hypotheses

- A hypothesis: $h: \mathcal{X} \to \{-1, +1\}$
- A dichotomy: $h: \{ \mathbf{\textit{x}}_1, \mathbf{\textit{x}}_2, \cdots, \mathbf{\textit{x}}_N \} \rightarrow \{-1, +1\}$
- ullet Number of hypotheses $|\mathcal{H}|$ can be infinite
- Number of dichotomies $|\mathcal{H}(\textbf{\textit{x}}_1,\textbf{\textit{x}}_2,\cdots,\textbf{\textit{x}}_N)|$: at most 2^N
 - \Rightarrow Candidate for replacing M

The growth function

• The growth function counts the most dichotomies on any N points:

$$m_{\mathcal{H}}(N) = \max_{\boldsymbol{x}_1, \cdots, \boldsymbol{x}_N \in \mathcal{X}} |\mathcal{H}(\boldsymbol{x}_1, \cdots, \boldsymbol{x}_N)|$$

The growth function

The growth function counts the most dichotomies on any N points:

$$m_{\mathcal{H}}(N) = \max_{\mathbf{x}_1, \dots, \mathbf{x}_N \in \mathcal{X}} |\mathcal{H}(\mathbf{x}_1, \dots, \mathbf{x}_N)|$$

• The growth function satisfies:

$$m_{\mathcal{H}}(N) \leq 2^N$$

Compute $m_{\mathcal{H}}(3)$ in 2-D space

What's $|\mathcal{H}(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3)|$?

Compute $m_{\mathcal{H}}(3)$ in 2-D space when \mathcal{H} is perceptron (linear hyperplanes)

Compute $m_{\mathcal{H}}(3)$ in 2-D space when \mathcal{H} is perceptron (linear hyperplanes)

Compute $m_{\mathcal{H}}(3)$ in 2-D space when \mathcal{H} is perceptron (linear hyperplanes)

Doesn't matter because we only counts the most dichotomies

• What's $m_{\mathcal{H}}(4)$?

- What's $m_{\mathcal{H}}(4)$?
- (At least) missing two dichotomies:

- What's $m_{\mathcal{H}}(4)$?
- (At least) missing two dichotomies:

•
$$m_{\mathcal{H}}(4) = 14 < 2^4$$

Example I: positive rays

Example II: positive intervals

$$h(x) = -1$$

$$x_1 \quad x_2 \quad x_3 \quad \dots$$

$$h(x) = +1$$

$$x_1 \quad x_2 \quad x_3 \quad \dots$$

$$h(x) = -1$$

$$x_1 \quad x_2 \quad x_3 \quad \dots$$

$$x_N$$

$$h(x) = -1$$

$$x_1 \quad x_2 \quad x_3 \quad \dots$$

$$x_N$$

$$\mathcal{H} \text{ is set of } h \colon \mathbb{R} \to \{-1, +1\}$$

$$\text{Place interval ends in two of } N+1 \text{ spots}$$

$$m_{\mathcal{H}}(N) = \binom{N+1}{2} + 1 = \frac{1}{2}N^2 + \frac{1}{2}N + 1$$

- \mathcal{H} is set of $h: \mathbb{R}^2 \to \{-1, +1\}$ $h(\mathbf{x}) = +1$ is convex
- How many dichotomies can we generate?

- \mathcal{H} is set of $h: \mathbb{R}^2 \to \{-1, +1\}$ $h(\mathbf{x}) = +1$ is convex
- How many dichotomies can we generate?

- \mathcal{H} is set of $h: \mathbb{R}^2 \to \{-1, +1\}$ $h(\mathbf{x}) = +1$ is convex
- How many dichotomies can we generate?

- \mathcal{H} is set of $h: \mathbb{R}^2 \to \{-1, +1\}$ $h(\mathbf{x}) = +1$ is convex
- $m_{\mathcal{H}}(N) = 2^N$ for any N \Rightarrow We say the N points are "shattered" by h

The 3 growth functions

ullet \mathcal{H} is positive rays:

$$m_{\mathcal{H}}(N) = N+1$$

ullet \mathcal{H} is positive intervals:

$$m_{\mathcal{H}}(N) = \frac{1}{2}N^2 + \frac{1}{2}N + 1$$

 \bullet \mathcal{H} is convex sets:

$$m_{\mathcal{H}}(N)=2^N$$

What's next?

• Remember the inequality

$$\mathbb{P}[|E_{\mathsf{in}} - E_{\mathsf{out}}| > \epsilon] \le 2Me^{-2\epsilon^2N}$$

What's next?

Remember the inequality

$$\mathbb{P}[|E_{\mathsf{in}} - E_{\mathsf{out}}| > \epsilon] \le 2Me^{-2\epsilon^2N}$$

• What happens if we replace M by $m_{\mathcal{H}}(N)$? $m_{\mathcal{H}}(N)$ polynomial \Rightarrow Good!

What's next?

Remember the inequality

$$\mathbb{P}[|E_{\mathsf{in}} - E_{\mathsf{out}}| > \epsilon] \le 2Me^{-2\epsilon^2N}$$

- What happens if we replace M by $m_{\mathcal{H}}(N)$? $m_{\mathcal{H}}(N)$ polynomial \Rightarrow Good!
- How to show $m_{\mathcal{H}}(N)$ is polynomial?

When will $m_{\mathcal{H}}(N)$ be polynomial

Break point of ${\cal H}$

• If no data set of size k can be shattered by \mathcal{H} , then k is a break point for \mathcal{H}

$$m_{\mathcal{H}}(k) < 2^k$$

• VC dimension of \mathcal{H} : k-1 (the most points \mathcal{H} can shatter)

Break point of ${\cal H}$

• If no data set of size k can be shattered by \mathcal{H} , then k is a break point for \mathcal{H}

$$m_{\mathcal{H}}(k) < 2^k$$

- VC dimension of \mathcal{H} : k-1 (the most points \mathcal{H} can shatter)
- For 2-D perceptron: k = 4, VC dimension = 3

Break point - examples

• Positive rays: $m_{\mathcal{H}}(N) = N + 1$ Break point k = 2, $d_{VC} = 1$

Break point - examples

Positive rays: m_H(N) = N + 1
Break point k = 2, d_{VC} = 1
Positive intervals: m_H(N) = ½N² + ½N + 1
Break point k = 3, d_{VC} = 2

Break point - examples

• Positive rays: $m_{\mathcal{H}}(N) = N + 1$ Break point k = 2, $d_{VC} = 1$

• Positive intervals: $m_{\mathcal{H}}(N) = \frac{1}{2}N^2 + \frac{1}{2}N + 1$ Break point k = 3, $d_{VC} = 2$

• Convex set: $m_{\mathcal{H}}(N) = 2^N$ Break point $k = \infty$, $d_{VC} = \infty$

We will show

No break point
$$\Rightarrow m_{\mathcal{H}}(N) = 2^N$$

Any break point $\Rightarrow m_{\mathcal{H}}(N)$ is polynomial in N

$\mathbf{x_1}$	$\mathbf{x_2}$	X ₃
0	0	0

X ₁	X ₂	X ₃
0	0	0
0	0	

X ₁	X ₂	X ₃
0	0	0
0	0	lacktriangle
0		0

X ₁	X ₂	X ₃
0	0	0
0	0	lacktriangle
0	lacktriangle	0
0		•

$\mathbf{x_1}$	X ₂	X ₃
0	0	0
0	0	
0		0
0		

X ₁	X ₂	X ₃
0	0	0
0	0	lacktriangle
0	lacktriangle	0
	0	0

$\mathbf{x_1}$	X ₂	X ₃
0	0	0
0	0	lacktriangle
0	lacktriangle	0
•	0	0
	0	

X ₁	X ₂	X ₃
0	0	0
0	0	
0	lacktriangle	0
	0	0
	0	

$\mathbf{x_1}$	X ₂	X ₃
0	0	0
0	0	lacktriangle
0		0
•	0	0
		0

$\mathbf{x_1}$	X ₂	X ₃
0	0	0
0	0	lacktriangle
0		0
	0	0

$\mathbf{x_1}$	X ₂	X ₃
0	0	0
0	0	
0		0
	0	0

X ₁	X ₂	X ₃
0	0	0
0	0	•
0	lacktriangle	0
•	0	0

Bounding $m_{\mathcal{H}}(N)$

• Key quantity:

B(N, k): Maximum number of dichotomies on N points, with break point k

Bounding $m_{\mathcal{H}}(N)$

- Key quantity:
 - B(N, k): Maximum number of dichotomies on N points, with break point k
- If the hypothesis space has break point k, then

$$m_{\mathcal{H}}(N) \leq B(N,k)$$

- For any "valid" set of dichotomies, reorganize rows by
 - S_1 : pattern of x_1, \dots, x_{N-1} only appears once
 - S_2^+, S_2^- : pattern of x_1, \dots, x_{N-1} appears twice

		# of rows	$ \mathbf{x}_1 $	\mathbf{x}_2		\mathbf{x}_{N-1}	\mathbf{x}_N
		# 01 10W3	+1	$\frac{x_2}{+1}$	•••	$\frac{\mathbf{A}_{N-1}}{+1}$	+1
			-1	+1		+1	-1
	S_1	α	:	1.2		-	:
	~1		+1	-1		-1	-1
			-1	+1		-1	+1
			+1	-1		+1	+1
			-1	-1		+1	+1
	S_2^+	β	:	÷	:	ŧ	1
			+1	-1		+1	+1
S_2			-1	-1		-1	+1
2			+1	-1		+1	-1
			-1	-1		+1	-1
	S_2^-	β	:	:	:	1	1
			+1	-1		+1	-1
			-1	-1		-1	-1

• Focus on x_1, x_2, \dots, x_{N-1} columns: $\alpha + \beta \leq B(N-1, k)$

		\mathbf{x}_1	\mathbf{x}_2		\mathbf{x}_{N-1}	\mathbf{x}_N
		+1	+1		+1	
		-1	+1		+1	
	α	:	:	:	:	
		+1	-1		-1	
		-1	+1		-1	
		+1	-1		+1	
		-1	-1		+1	
	β	:		:	:	
	•	+1	-1		+1	
		-1	-1		-1	

• Now focus on the $S_2=S_2^+\cup S^-+2$ rows $eta\leq B({\sf N}-1,k-1)$

			\mathbf{x}_1	\mathbf{x}_2		\mathbf{x}_{N-1}	
			+1	-1		+1	+1
	S_2^+	β	-1	-1		+1	+1
			:	÷	÷	:	
			+1	-1		+1	+1
			-1	-1		-1	+1
							-1
							-1
	S_2^-						
							-1
							-1

$$B(N, k) = \alpha + \beta + \beta$$

$$\leq B(N-1, k) + B(N-1, k-1)$$

What's the upper bound for B(N, k)?

$$B(N, k) = \alpha + \beta + \beta$$

$$\leq B(N - 1, k) + B(N - 1, k - 1)$$

			k							
		1	2	3	4	5				
	1									
	2									
N	3									
	4									
	5									

$$B(N, k) = \alpha + \beta + \beta$$

$$\leq B(N - 1, k) + B(N - 1, k - 1)$$

			k							
		1	2	3	4	5				
	1	1								
	2	1								
N	3	1								
	4	1								
	5	1								
	•	•								

$$B(N, k) = \alpha + \beta + \beta$$

$$\leq B(N - 1, k) + B(N - 1, k - 1)$$

		l	k							
		1	2	3	4	5				
	1	1	2	2	2	2				
	2	1								
N	3	1								
	4	1								
	5	1								
	•	•								
	•	•								

$$B(N,k) = \alpha + \beta + \beta$$

$$\leq B(N-1,k) + B(N-1,k-1)$$

		k								
		1	2	3	4	5				
	1	1	2	2	2	2				
	2	1	3							
N	3	1								
	4	1								
	5	1								
	•	•								

$$B(N, k) = \alpha + \beta + \beta$$

$$\leq B(N - 1, k) + B(N - 1, k - 1)$$

		l	k						
		1	2	3	4	5			
	1	1	2	2	2	2			
	2	1	3	4	4	4			
N	3	1							
	4	1							
	5	1							
	•	•							

$$B(N, k) = \alpha + \beta + \beta$$

$$\leq B(N - 1, k) + B(N - 1, k - 1)$$

		l	k							
		1	2	3	4	5				
	1	1	2	2	2	2				
	2	1	3	4	4	4				
N	3	1	4	7	8	8				
	4	1	5	11		•••				
	5	1	6							
			•			•				
	•	•	•							

Analytic solution for B(N, k) bound

B(N, k) is upper bounded by C(N, k):

$$C(N, 1) = 1, N = 1, 2, \cdots$$

 $C(1, k) = 2, k = 2, 3, \cdots$
 $C(N, k) = C(N - 1, k) + C(N - 1, k - 1)$

• Theorem: $C(N, k) = \sum_{i=0}^{k-1} {N \choose i}$

Analytic solution for B(N, k) bound

B(N, k) is upper bounded by C(N, k):

$$C(N, 1) = 1, N = 1, 2, \cdots$$

 $C(1, k) = 2, k = 2, 3, \cdots$
 $C(N, k) = C(N - 1, k) + C(N - 1, k - 1)$

- Theorem: $C(N, k) = \sum_{i=0}^{k-1} {N \choose i}$
- Boundary conditions: (easy to check)

Analytic solution for B(N, k) bound

B(N, k) is upper bounded by C(N, k):

$$C(N,1) = 1, N = 1, 2, \cdots$$

 $C(1,k) = 2, k = 2, 3, \cdots$
 $C(N,k) = C(N-1,k) + C(N-1,k-1)$

- Theorem: $C(N, k) = \sum_{i=0}^{k-1} {N \choose i}$
- Boundary conditions: (easy to check)
- Induction:

$$\sum_{i=0}^{k-1} \binom{N}{i} = \sum_{i=0}^{k-1} \binom{N-1}{i} + \sum_{i=0}^{k-2} \binom{N-1}{i}$$
select $< k$ from N items N -th item not chosen N -th item chosen

• For a given \mathcal{H} , the break point k is fixed:

$$m_{\mathcal{H}}(N) \leq \sum_{i=0}^{k-1} \binom{N}{i}$$
Polynomial with degree $k-1$

• For a given \mathcal{H} , the break point k is fixed:

$$m_{\mathcal{H}}(N) \leq \sum_{i=0}^{k-1} \binom{N}{i}$$
Polynomial with degree k

• \mathcal{H} is positive rays: (break point k=2)

$$m_{\mathcal{H}}(N) = N + 1$$

• For a given \mathcal{H} , the break point k is fixed:

$$m_{\mathcal{H}}(N) \leq \sum_{i=0}^{k-1} \binom{N}{i}$$
Polynomial with degree k

• \mathcal{H} is 2D perceptrons: (break point k=4)

$$m_{\mathcal{H}}(N) = ?$$

• For a given \mathcal{H} , the break point k is fixed:

$$m_{\mathcal{H}}(N) \leq \sum_{i=0}^{k-1} \binom{N}{i}$$
Polynomial with degree k

• \mathcal{H} is 2D perceptrons: (break point k=4)

$$m_{\mathcal{H}}(N) \leq \frac{1}{6}N^3 + \frac{5}{6}N + 1$$

Replace M by $m_{\mathcal{H}}(N)$

Original bound:

$$P[\exists h \in \mathcal{H} \text{ s.t. } |E_{tr}(h) - E(h)| > \epsilon] \leq 2Me^{-2\epsilon^2 N}$$

• Replace M by $m_{\mathcal{H}}(N)$

$$\underbrace{\mathbf{P}[\exists h \in \mathcal{H} \text{ s.t. } |E_{\mathsf{tr}}(h) - E(h)| > \epsilon]}_{\mathsf{BAD}} \leq 2 \cdot 2m_{\mathcal{H}}(2N) \cdot e^{-\frac{1}{8}\epsilon^2 N}$$

Vapnik-Chervonenkis (VC) bound

VC Dimension

Definition

• The VC dimension of a hypothesis set \mathcal{H} , denoted by $d_{\text{VC}}(\mathcal{H})$, is the largest value of N for which $m_{\mathcal{H}}(N)=2^N$ "the most points \mathcal{H} can shatter"

Definition

• The VC dimension of a hypothesis set \mathcal{H} , denoted by $d_{\text{VC}}(\mathcal{H})$, is the largest value of N for which $m_{\mathcal{H}}(N)=2^N$ "the most points \mathcal{H} can shatter"

• $N \leq d_{VC}(\mathcal{H}) \Rightarrow \mathcal{H}$ can shatter N points

Definition

• The VC dimension of a hypothesis set \mathcal{H} , denoted by $d_{\text{VC}}(\mathcal{H})$, is the largest value of N for which $m_{\mathcal{H}}(N)=2^N$ "the most points \mathcal{H} can shatter"

- $N \leq d_{VC}(\mathcal{H}) \Rightarrow \mathcal{H}$ can shatter N points
- $k > d_{VC}(\mathcal{H}) \Rightarrow \mathcal{H}$ cannot be shattered
- The smallest break point is 1 above VC-dimension

The growth function

• In terms of a break point k:

$$m_{\mathcal{H}}(N) \leq \sum_{i=0}^{k-1} \binom{N}{i}$$

• In terms of the VC dimension d_{VC}:

$$m_{\mathcal{H}}(N) \leq \sum_{i=0}^{\mathbf{d}_{\backslash C}} \binom{N}{i}$$

• For d = 2, $d_{VC} = 3$

- For d = 2, $d_{VC} = 3$
- What if d > 2?

- For d = 2, $d_{VC} = 3$
- What if d > 2?

• In general,

$$d_{VC} = d + 1$$

- For d = 2, $d_{VC} = 3$
- What if d > 2?

• In general,

$$d_{VC} = d + 1$$

• We will prove $d_{VC} \ge d+1$ and $d_{VC} \le d+1$

ullet To prove $d_{
m VC} \geq d+1$

- To prove $d_{VC} \ge d+1$
- ullet A set of N=d+1 points in \mathbb{R}^d shattered by the linear hyperplane

$$X = \begin{bmatrix} & -\mathbf{x}_1^\intercal - \\ & -\mathbf{x}_2^\intercal - \\ & -\mathbf{x}_3^\intercal - \\ & \vdots \\ & -\mathbf{x}_{d+1}^\intercal - \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ 1 & 1 & 0 & \dots & 0 \\ 1 & 0 & 1 & & 0 \\ \vdots & & \ddots & \ddots & 0 \\ 1 & 0 & \dots & 0 & 1 \end{bmatrix}$$

- To prove $d_{VC} \ge d+1$
- ullet A set of N=d+1 points in \mathbb{R}^d shattered by the linear hyperplane

$$X = \begin{bmatrix} & -\mathbf{x}_1^\intercal - \\ & -\mathbf{x}_2^\intercal - \\ & -\mathbf{x}_3^\intercal - \\ & \vdots \\ & -\mathbf{x}_{d+1}^\intercal - \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ 1 & 1 & 0 & \dots & 0 \\ 1 & 0 & 1 & & 0 \\ \vdots & & \ddots & \ddots & 0 \\ 1 & 0 & \dots & 0 & 1 \end{bmatrix}$$

X is invertible!

Can we shatter the dataset?

• For any
$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_{d+1} \end{bmatrix} = \begin{bmatrix} \pm 1 \\ \pm 1 \\ \vdots \\ \pm 1 \end{bmatrix}$$
, can we find \mathbf{w} satisfying
$$\operatorname{sign}(X\mathbf{w}) = y$$

Can we shatter the dataset?

• For any
$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_{d+1} \end{bmatrix} = \begin{bmatrix} \pm 1 \\ \pm 1 \\ \vdots \\ \pm 1 \end{bmatrix}$$
, can we find \mathbf{w} satisfying
$$\operatorname{sign}(X\mathbf{w}) = y$$

• Easy! Just set $\mathbf{w} = X^{-1}\mathbf{y}$

Can we shatter the dataset?

• For any
$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_{d+1} \end{bmatrix} = \begin{bmatrix} \pm 1 \\ \pm 1 \\ \vdots \\ \pm 1 \end{bmatrix}$$
, can we find \mathbf{w} satisfying
$$\operatorname{sign}(X\mathbf{w}) = y$$

- Easy! Just set $\mathbf{w} = X^{-1}\mathbf{y}$
- So, $d_{VC} \ge d+1$

• To show $d_{VC} \leq d+1$, we need to show

We cannot shatter any set of d + 2 points

• To show $d_{VC} \leq d+1$, we need to show

We cannot shatter any set of d + 2 points

• For any d+2 points

$$\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_{d+1}, \mathbf{x}_{d+2}$$

More points than dimensions ⇒ linear dependent

$$\mathbf{x}_j = \sum_{i \neq j} a_i \mathbf{x}_i$$

where not all a_i 's are zeros

$$\mathbf{x}_j = \sum_{i \neq j} a_i \mathbf{x}_i$$

• Now we construct a dichotomy that cannot be generated:

$$y_i = \begin{cases} sign(a_i) & \text{if } i \neq j \\ -1 & \text{if } i = j \end{cases}$$

$$\mathbf{x}_j = \sum_{i \neq j} a_i \mathbf{x}_i$$

• Now we construct a dichotomy that cannot be generated:

$$y_i = \begin{cases} sign(a_i) & \text{if } i \neq j \\ -1 & \text{if } i = j \end{cases}$$

• For all $i \neq j$, assume the labels are correct: $sign(a_i) = sign(\mathbf{w}^T \mathbf{x}_i)$ $\Rightarrow a_i \mathbf{w}^T \mathbf{x}_i > 0$

$$\mathbf{x}_j = \sum_{i \neq j} a_i \mathbf{x}_i$$

• Now we construct a dichotomy that cannot be generated:

$$y_i = \begin{cases} sign(a_i) & \text{if } i \neq j \\ -1 & \text{if } i = j \end{cases}$$

- For all $i \neq j$, assume the labels are correct: $sign(a_i) = sign(\mathbf{w}^T \mathbf{x}_i)$ $\Rightarrow a_i \mathbf{w}^T \mathbf{x}_i > 0$
- For *j*-th data,

$$\mathbf{w}^{\mathsf{T}}\mathbf{x}_{j} = \sum_{i \neq j} a_{i}\mathbf{w}^{\mathsf{T}}\mathbf{x}_{i} > 0$$

• Therefore, $y_i = \operatorname{sign}(\mathbf{w}^T \mathbf{x}_i) = +1$ (cannot be -1)

Putting it together

• We proved for *d*-dimensional linear hyperplane

$$d_{VC} \le d+1 \text{ and } d_{VC} \ge d+1 \Rightarrow \qquad \qquad d_{VC} = d+1$$

Putting it together

• We proved for *d*-dimensional linear hyperplane

$$d_{VC} \le d+1 \text{ and } d_{VC} \ge d+1 \Rightarrow \qquad d_{VC} = d+1$$

• Number of parameters w_0, \dots, w_d d+1 parameters!

Putting it together

• We proved for *d*-dimensional linear hyperplane

$$d_{VC} \le d+1 \text{ and } d_{VC} \ge d+1 \Rightarrow \qquad d_{VC} = d+1$$

- Number of parameters w₀, · · · , w_d
 d + 1 parameters!
- Parameters create degrees of freedom

Examples

• Positive rays: 1 parameters, $d_{VC} = 1$

Examples

• Positive rays: 1 parameters, $d_{VC} = 1$

• Positive intervals: 2 parameters, $d_{VC} = 2$

$$h(x) = -1$$

$$h(x) = +1$$

$$h(x) = -1$$

Examples

ullet Positive rays: 1 parameters, $d_{
m VC}=1$

• Positive intervals: 2 parameters, $d_{VC} = 2$

$$h(x) = -1 \qquad \qquad h(x) = +1 \qquad h(x) = -1$$

Not always true · · ·

 d_{VC} measures the effective number of parameters

Number of data points needed

$$\mathbf{P}[|E_{\mathsf{in}}(g) - E_{\mathsf{out}}(g)| > \epsilon] \le \underbrace{4m_{\mathcal{H}}(2N)e^{-\frac{1}{8}\epsilon^2N}}_{\delta}$$

• If we want certain ϵ and δ , how does N depend on d_{VC} ?

Number of data points needed

$$\mathbf{P}[|E_{\mathsf{in}}(g) - E_{\mathsf{out}}(g)| > \epsilon] \le \underbrace{4m_{\mathcal{H}}(2N)e^{-\frac{1}{8}\epsilon^2N}}_{\delta}$$

- If we want certain ϵ and δ , how does N depend on d_{VC} ?
- Need $N^d e^{-N} = \text{small value}$

Number of data points needed

$$\mathbf{P}[|E_{\mathsf{in}}(g) - E_{\mathsf{out}}(g)| > \epsilon] \le \underbrace{4m_{\mathcal{H}}(2N)e^{-\frac{1}{8}\epsilon^2N}}_{\delta}$$

- If we want certain ϵ and δ , how does N depend on d_{VC} ?
- Need $N^d e^{-N} = \text{small value}$

N is almost linear with d_{VC}

Regularization

The polynomial model

• \mathcal{H}_Q : polynomials of order Q

$$\mathcal{H}_Q = \{ \sum_{q=0}^Q w_q L_q(x) \}$$

ullet Linear regression in the ${\mathcal Z}$ space with

$$z = [1, L_1(x), \cdots, L_Q(x)]$$

Unconstrained solution

- Input $(x_1, y_1), \cdots, (x_N, y_N) \to (z_1, y_1), \cdots, (z_N, y_N)$
- Linear regression:

Minimize :
$$E_{tr}(\boldsymbol{w}) = \frac{1}{N} \sum_{n=1}^{N} (\boldsymbol{w}^T \boldsymbol{z}_n - y_n)^2$$

Minimize : $\frac{1}{N} (Z \boldsymbol{w} - \boldsymbol{y})^T (Z \boldsymbol{w} - \boldsymbol{y})$

• Solution $\mathbf{w}_{tr} = (Z^T Z)^{-1} Z^T \mathbf{y}$

Constraining the weights

• Hard constraint: \mathcal{H}_2 is constrained version of \mathcal{H}_{10} (with $w_q=0$ for q>2)

Constraining the weights

- Hard constraint: \mathcal{H}_2 is constrained version of \mathcal{H}_{10} (with $w_q=0$ for q>2)
- Soft-order constraint: $\sum_{q=0}^{Q} w_q^2 \le C$

Constraining the weights

- Hard constraint: \mathcal{H}_2 is constrained version of \mathcal{H}_{10} (with $w_q=0$ for q>2)
- Soft-order constraint: $\sum_{q=0}^{Q} w_q^2 \le C$
- The problem given soft-order constraint:

Minimize
$$\frac{1}{N}(Z\mathbf{w} - \mathbf{y})^T(Z\mathbf{w} - \mathbf{y})$$
 s.t. $\mathbf{w}^T\mathbf{w} \leq C$ smaller hypothesis space

• Solution \mathbf{w}_{reg} instead of \mathbf{w}_{tr}

Constrained version:

$$\min_{\mathbf{w}} E_{tr}(\mathbf{w}) = \frac{1}{N} (Z\mathbf{w} - \mathbf{y})^{T} (Z\mathbf{w} - \mathbf{y}) \text{ s.t. } \mathbf{w}^{T} \mathbf{w} \leq C$$

Optimal when

$$abla E_{
m tr}(oldsymbol{w}_{
m reg}) \propto -oldsymbol{w}_{
m reg}$$

Why? If $-\nabla E_{tr}(\mathbf{w})$ and \mathbf{w} are not parallel, can decrease $E_{tr}(\mathbf{w})$ without violating the constraint

Constrained version:

$$\min_{\mathbf{w}} E_{tr}(\mathbf{w}) = \frac{1}{N} (Z\mathbf{w} - \mathbf{y})^{T} (Z\mathbf{w} - \mathbf{y}) \text{ s.t. } \mathbf{w}^{T} \mathbf{w} \leq C$$

Optimal when

$$abla E_{tr}(extbf{\textit{w}}_{reg}) \propto - extbf{\textit{w}}_{reg}$$

 $\begin{array}{l} \bullet \;\; \mathsf{Assume} \;\; \nabla E_{\mathsf{tr}}(\textbf{\textit{w}}_{\mathsf{reg}}) = -2\frac{\lambda}{N} \textbf{\textit{w}}_{\mathsf{reg}} \\ \\ \Rightarrow \nabla E_{\mathsf{tr}}(\textbf{\textit{w}}_{\mathsf{reg}}) + 2\frac{\lambda}{N} \textbf{\textit{w}}_{\mathsf{reg}} = 0 \end{array}$

Constrained version:

$$\min_{\mathbf{w}} E_{tr}(\mathbf{w}) = \frac{1}{N} (Z\mathbf{w} - \mathbf{y})^{T} (Z\mathbf{w} - \mathbf{y}) \text{ s.t. } \mathbf{w}^{T} \mathbf{w} \leq C$$

Optimal when

$$abla E_{\mathsf{tr}}(oldsymbol{w}_{\mathsf{reg}}) \propto -oldsymbol{w}_{\mathsf{reg}}$$

- Assume $\nabla E_{\mathrm{tr}}(\mathbf{w}_{\mathrm{reg}}) = -2\frac{\lambda}{N}\mathbf{w}_{\mathrm{reg}}$ $\Rightarrow \nabla E_{\mathrm{tr}}(\mathbf{w}_{\mathrm{reg}}) + 2\frac{\lambda}{N}\mathbf{w}_{\mathrm{reg}} = 0$
- **w**_{reg} is also the solution of unconstrained problem

$$\min_{\boldsymbol{w}} E_{tr}(\boldsymbol{w}) + \frac{\lambda}{N} \boldsymbol{w}^T \boldsymbol{w}$$

(Ridge regression!)

Constrained version:

$$\min_{\mathbf{w}} E_{tr}(\mathbf{w}) = \frac{1}{N} (Z\mathbf{w} - \mathbf{y})^{T} (Z\mathbf{w} - \mathbf{y}) \text{ s.t. } \mathbf{w}^{T} \mathbf{w} \leq C$$

Optimal when

$$abla E_{
m tr}(oldsymbol{w}_{
m reg}) \propto -oldsymbol{w}_{
m reg}$$

• Assume $\nabla E_{\mathrm{tr}}(\mathbf{\textit{w}}_{\mathrm{reg}}) = -2\frac{\lambda}{N}\mathbf{\textit{w}}_{\mathrm{reg}}$ $\Rightarrow \nabla E_{\mathrm{tr}}(\mathbf{\textit{w}}_{\mathrm{reg}}) + 2\frac{\lambda}{N}\mathbf{\textit{w}}_{\mathrm{reg}} = 0$

 \bullet \mathbf{w}_{reg} is also the solution of unconstrained problem

$$\min_{\boldsymbol{w}} E_{tr}(\boldsymbol{w}) + \frac{\lambda}{N} \boldsymbol{w}^T \boldsymbol{w}$$

(Ridge regression!)

$$C \uparrow \lambda \downarrow$$

Ridge regression solution

$$\min_{\mathbf{w}} E_{\text{reg}}(\mathbf{w}) = \frac{1}{N} \left((Z\mathbf{w} - \mathbf{y})^{T} (Z\mathbf{w} - \mathbf{y}) + \lambda \mathbf{w}^{T} \mathbf{w} \right)$$

•
$$\nabla E_{\text{reg}}(\mathbf{w}) = 0 \Rightarrow Z^T Z(\mathbf{w} - \mathbf{y}) + \lambda \mathbf{w} = 0$$

Ridge regression solution

$$\min_{\mathbf{w}} E_{\text{reg}}(\mathbf{w}) = \frac{1}{N} \left((Z\mathbf{w} - \mathbf{y})^{T} (Z\mathbf{w} - \mathbf{y}) + \lambda \mathbf{w}^{T} \mathbf{w} \right)$$

- $\nabla E_{\text{reg}}(\mathbf{w}) = 0 \Rightarrow Z^T Z(\mathbf{w} \mathbf{y}) + \lambda \mathbf{w} = 0$
- So, $\mathbf{w}_{reg} = (Z^T Z + \lambda I)^{-1} Z^T \mathbf{y}$ (with regularization) as opposed to $\mathbf{w}_{tr} = (Z^T Z)^{-1} Z^T \mathbf{y}$ (without regularization)

The result

$$\min_{\boldsymbol{w}} E_{tr}(\boldsymbol{w}) + \frac{\lambda}{N} \boldsymbol{w}^T \boldsymbol{w}$$

Equivalent to "weight decay"

• Consider the general case

$$\min_{\boldsymbol{w}} E_{tr}(\boldsymbol{w}) + \frac{\lambda}{N} \boldsymbol{w}^T \boldsymbol{w}$$

Equivalent to "weight decay"

Consider the general case

$$\min_{\boldsymbol{w}} E_{tr}(\boldsymbol{w}) + \frac{\lambda}{N} \boldsymbol{w}^T \boldsymbol{w}$$

• Gradient descent:

$$\mathbf{w}_{t+1} = \mathbf{w}_{t} - \eta \left(\nabla E_{tr}(\mathbf{w}_{t}) + 2 \frac{\lambda}{N} \mathbf{w}_{t} \right)$$

$$= \mathbf{w}_{t} \underbrace{\left(1 - 2 \eta \frac{\lambda}{N} \right)}_{\text{weight decay}} - \eta \nabla E_{tr}(\mathbf{w}_{t})$$

Variations of weight decay

Emphasis of certain weights:

$$\sum_{q=0}^{Q} \gamma_q w_q^2$$

- Example 1: $\gamma_q = 2^q \implies$ low-order fit
- Example 2: $\gamma_q = 2^{-q} \implies \text{high-order fit}$

Variations of weight decay

Emphasis of certain weights:

$$\sum_{q=0}^{Q} \gamma_q w_q^2$$

- Example 1: $\gamma_q = 2^q \implies$ low-order fit
- Example 2: $\gamma_q = 2^{-q} \implies \text{high-order fit}$
- General Tikhonov regularizer:

$$\mathbf{w}^T H \mathbf{w}$$

with a positive semi-definite H

General form of regularizer

• Calling the regularizer $\Omega = \Omega(h)$, we minimize

$$E_{\mathsf{reg}}(h) = E_{\mathsf{tr}}(h) + \frac{\lambda}{N}\Omega(h)$$

• In general, $\Omega(h)$ can be any measurement for the "size" of h

L2 vs L1 regularizer

- L1-regularizer: $\Omega({m w}) = \|{m w}\|_1 = \sum_q |w_q|$
- Usually leads to a sparse solution (only few w_q will be nonzero)

Conclusions

- VC dimension
- Regularization

Questions?