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@ Linear Support Vector Machines

@ Nonlinear SVM, Kernel methods
@ Multiclass classification

DA



@ Given training examples (x1,y1), " , (Xn, ¥n)

Consider binary classification: y; € {+1, -1}
@ Linear Support Vector Machine (SVM):

n

1
arg mMi/n C; max(1 — y;w ' x;,0) + inw
(hinge loss with L2 regu

larization)
B -

Loss

— Classification error
= = Hinge loss

Logistic loss
— Squared loss
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ifyi=1wlix>1;

@ Goal: Find a hyperplane to separate these two classes of data
>1 ify=

-1, wa,- < —1.
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ifyi=1wlix>1;

@ Goal: Find a hyperplane to separate these two classes of data
>1 ify=

-1, wa,- < —1.

Class

w7
Prefer a hyperplane with maximum margin
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@ minimum of ||x|| such that w’x =1
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@ minimum of ||x|| such that w’x =1

o clearly, x = a” 0 for some «a (half margin)
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@ minimum of ||x|| such that w’x =1

o clearly, x = a” 0 for some «a (half margin)
o a= %

lw]|
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@ minimum of ||x|| such that w’x =1

o clearly, x = a” 0 for some «a (half margin)
— 1

® = wl

e Maximize margin = minimize |w||
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@ SVM primal problem (with hard constraints):

min “w'w

2

stoyi(wlx)>1,i=1,.
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@ SVM primal problem (with hard constraints):

min —w’ w
w

2

stoyi(wlx)>1,i=1,.

@ What if there are outliers?
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@ Given training data xq, - - -
@ SVM primal problem:

, X, € RY with labels y; € {41, —1}.

n
. T
e C )
mE S
s.t. y,-(wa,-) >1-¢&,i=1,...,n,
§i >0

wix=-1 0 1
.

/
.
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@ SVM primal problem:

n
- T
min —w' w -+ C ;
s.t. y,-(WTx,-) >1-¢&,i=1,...,n,

§ >0
e Equivalent to

min
w

i=1
L2 regularization

n
“wlw +CZmax(0,1—y,-wa,-)
N—— hE

hinge loss
o Non-differentiable when y;w " x; = 1 for some i
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o A subgradient of £;(w) = max(0,1 — y;w’ x;):

—yixi ifl—ywl'x;>0
0 ifl—y,'WTX,'<0
0 ifl—y,-wa,-=0
@ Stochastic Subgradient descent for SVM
Fort=1,2,...
Randomly pick an index i
If yiw'x; < 1, then
w <+ (1 —n)w + n:nCy;x;
Else (if y;w'x; > 1):

w+— (1—n)w
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Kernel SVM



@ What if the data is not linearly separable?

A oo 2
aa ", ¥ 5 X
A AA

°9% xopx)= \/Exlx2
oo =
0Co 487,
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>
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Solution: map data x; to higher dimensional(maybe infinite) feature
space ¢(x;), where they are linearly separable.
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e SVM with nonlinear mapping ¢(-):

n
: T
- C .
TI!? 5w w+ ;f,
st.yi(wlo(x)>1-¢, &>0,i=1,
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e SVM with nonlinear mapping ¢(-):

n
: T
i C .
le2 5w w+ ;f,
s.t. }’i(WTSO(Xi)) >1- gia fi > 07 = 17

..,n,

e Hard to solve if ©(-) maps to very high or infinite dimensional space
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@ Primal problem:
minl||w||2 + CZ&;
w2 ;
s.t. y,-wT<p(x,-)—1-|—§,- >0,and & >0 Vi=1,...,n

o Equivalent to:

min  max ||WH2+CZ§, ZOAI(MW o(xi) —1+&) Zﬁlfl

w,¢ a>0,8>0 2

@ Under certain condition (e.g., slater's condition), exchanging min, max
will not change the optimal solution:

max m|n—||W||2+CZ§, Zal(ylw o(xi) —1+&) Zﬂlf:

a>0,8>0 w

[m] = = =
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Support Vector Machines (dual)

@ Reorganize the equation:

max mlanwH Za,y,w o(xi +Z§/ —ai—ﬁi)"‘zai
i

>0,8>0 w

@ Now, for any given «, 3, the minimizer of w will satisfy
oL w Z (x)=0 = w" Z (x;)
_—= —_ QL Vi ) = = Ho'H H
ow : iYiP\Xi : Yitip\X;
1 1

Also, we have C = «; + [3;, otherwise &; can make the objective
function —oo

@ Substitue these two equations back we get

Za QjYiyj¥ XI) ¥ XJ) +Za/

a>o,3>oc o+ 2



Support Vector Machines (dual)

@ Therefore, we get the following dual problem

-
_z —D
CrgoaéO{ a Qa +e'a} = D(a),
where Q is an n by n matrix with Q;; = yiyjo(x:) T o(x;)
@ Based on the derivations, we know

@ Primal minimum = dual maximum (under slater's condition)
@ Let o™ be the dual solution and w™* be the primal solution, we have

wh = yiafo(x)
i

@ We can solve the dual problem instead of the primal problem.



e Do not directly define ¢(+)
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e Do not directly define ¢(+)

@ Instead, define “kernel”

K(xi, %) = o(x;) T o(x))
This is all we need to know for Kernel SVM!
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e Do not directly define ¢(+)
@ Instead, define “kernel”

K(xi,xj) = o(xi) " o(x;)

This is all we need to know for Kernel SVM!
o Examples:
. X 12
o Gaussian kernel: K(x;,x;) = e lx—xl
e Polynomial kernel: K(.x_,-,xj) = (yx"x; +¢)?
e Other kernels for specific problems:
o Graph kernels
(Vishwanathan et al., “Graph Kernels”, JMLR, 2010)
o Pyramid kernel for image matching
(Grauman and Darrell, “The Pyramid Match Kernel: Discriminative
Classification with Sets of Image Features”. In ICCV, 2005)
@ String kernel
(Lodhi et al., “Text classification using string kernels”. JMLR, 2002).
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e Training: compute o = [ag, - -

optimization problem:

, aip| by solving the quadratic

min —a’'Qa—e’
0<a<C 2

a
where Q;j = K(x;, xj)
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e Training: compute a = [y, -

optimization problem:

, aip| by solving the quadratic

T

min —a’'Qa—e'a
0<a<C 2

where Q;j = K(x;, xj)

@ Prediction: for a test data x,

w'p(x) = ZYiaiSO(Xi)TSO(X)
i=1

= zn:y,-a,-K(x,-, x)
i=1
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o Actually, this “kernel method” works for many different losses
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o Actually, this “kernel method” works for many different losses
@ Example: ridge regression

1 1 o

min Sl + 5 > (wTelx) 1)’
i=1

@ Dual problem:

mina’ Qa + ||al? —2ay
«
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@ Challenge for solving kernel SVMs (for dataset with n samples):
some cases);

o Space: O(n?) for storing the n-by-n kernel matrix (can be reduced in

o Time: O(n®) for computing the exact solution.
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@ Challenge for solving kernel SVMs (for dataset with n samples):
o Space: O(n?) for storing the n-by-n kernel matrix (can be reduced in
some cases);
o Time: O(n®) for computing the exact solution.
@ Good packages available:
o LIBSVM (can be called in scikit-learn)

o LIBLINEAR (for linear SVM, can be called in scikit-learn)
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Multiclass classification



@ n data points, L labels, d features

e Input: training data {x;, y;}7_;:
e Each x; is a d dimensional feature vector
o Each y; € {1,..., L} is the corresponding label
e Each training data belongs to one category

@ Goal: find a function to predict the correct label

f(x) =y
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@ n data points, L labels, d features

@ Input: training data {x;,y;}" ;:
e Each x; is a d dimensional feature vector
o Each y; € {0,1}! is a label vector (or Y; € {1,2,...,L})
Example: y; =[0,0,1,0,0,1,1] (or Y; = {3,6,7})
e Each training data can belong to multiple categories

@ Goal: Given a testing sample x, predict the correct labels

Document 1 {Sports, Politics}
Document 2 {Science, Politics}
Document n ‘ {Environment} ‘
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@ Multiclass: each row of L has exact one “1"”

@ Multilabel: each row of L can have multiple ones
[m] = =



@ Many algorithms for binary classification

@ ldea: transform multi-class or multi-label problems to multiple binary
classification problems

@ Two approaches:

o One versus All (OVA)
o One versus One (OVO)
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e Multi-class/multi-label problems with L categories
@ Build L different binary classifiers

@ For the t-th classifier:

o Positive samples: all the points in class t ({x; : t € y;})

@ Prediction:

o Negative samples: all the points not in class ¢t ({x;: t ¢ y;})
(larger f; = higher probability that x in class t)

o fi(x): the decision value for the t-th classifier

f(x)=arg max fi(x)
@ Example: using SVM to train each binary classifier.



One Versus One (OVO)

Multi-class/multi-label problems with L categories

Build L(L — 1) different binary classifiers
For the (s, t)-th classifier:

Positive samples: all the points in class s ({x; : s € y;})
Negative samples: all the points in class t ({x; : t € y;})
fs.+(x): the decision value for this classifier

(larger fs ¢(x) = label s has higher probability than label t)
ft,s(x) = - s,t(X)

@ Prediction:

F(x) = argmax (Z )

@ Example: using SVM to train each binary classifier.



o Computational time:

@ Prediction accuracy: depends on datasets

OVA needs to train L classifiers

OVO needs to train L(L — 1)/2 classifiers
@ Is OVA always faster than OVO?
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@ Prediction accuracy: depends on datasets

o Computational time:

OVA needs to train L classifiers

OVO needs to train L(L — 1)/2 classifiers
@ Is OVA always faster than OVO?

NO, depends on the time complexity of the binary classifier
o If the binary classifier requires O(n) time for n samples:
OVA and OVO have similar time complexity
o If the binary classifier requires O(n*~*) time:

OVO is faster than OVA
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o Computational time:

@ Prediction accuracy: depends on datasets

OVA needs to train L classifiers

OVO needs to train L(L — 1)/2 classifiers
@ Is OVA always faster than OVO?

NO, depends on the time complexity of the binary classifier
o If the binary classifier requires O(n) time for n samples:
OVA and OVO have similar time complexity
o If the binary classifier requires O(n*~*) time:
OVO is faster than OVA
e LIBSVM (kernel SVM solver): OVO

o LIBLINEAR (linear SVM solver): OVA



@ OVA and OVO: decompose the problem by labels
prediction.

But good binary classifiers may not imply good multi-class
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@ OVA and OVO: decompose the problem by labels
prediction.

problem

But good binary classifiers may not imply good multi-class
@ Design a multi-class loss function and solve a single optimization
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@ OVA and OVO: decompose the problem by labels

But good binary classifiers may not imply good multi-class
prediction.

@ Design a multi-class loss function and solve a single optimization
problem

@ Minimize the regularized training error:

er"mn Zloss(x,,y, )+ A Z w w;

’ j=1,-,L
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@ Ranking based approaches: directly minimizes the ranking loss:
labels

o For multiclass classification, the score of y; should be larger than other
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@ Ranking based approaches: directly minimizes the ranking loss:
labels

o For multiclass classification, the score of y; should be larger than other
@ Soft-max loss:

measure the probability of predicting correct class
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@ For simplicity, we assume a linear model

@ Model parameters: wy, ..., w;

@ For each data point x, compute the decision value for each label

T T T
WX, Wy X, ..., WX
@ Prediction:

y = argmax thx
e For training data x;, y; is the true label, so we want

Yi A arg max thx,- Vi
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@ The predicted score for each class:

T
Wl X,', W2 X,',

@ Loss for the i-th data is defined by

I ( " %i )
et
(Probability of choosing the correct label)

@ Solve a single optimization problem

er:nnj Z Iog( )—i—)\Zw w;
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machines” .

@ Proposed in Weston and Watkins, “Multi-class support vector
In ESANN, 1999.
1 L n L
min  — |wel|? + C I
ity 32 228

T T £ et g —

st w, xi—w, x; >1-&, § >0 Ve#£y, Vi=1,
e If point 7 is in class y;, for any other labels (t # y;), we want
wT

Yi

Xj — thx,- >1
or we pay a penalty &f

@ Prediction:

f(x)=arg max wy X;



Crammer-Singer Formulation

@ Proposed in Carmmer and Singer, “On the algorithmic implementation
of multiclass kernel-based vector machines”. JMLR, 2001.

L n
: 1 >
min  — E we||=+ C E &
{weh (g5} 2 & [l p

s.t. wyTx,-—thx,-Zl—g,-, Vt#£y, Vi=1...,n

&&>0Vi=1,....n

e If point i is in class y;, for any other labels (t # y;), we want

T T
Wy, Xj — W, x> 1

@ For each point i, we only pay the largest penalty

@ Prediction:
f(x) = arg max w,” x;
t



o SVM, Kernel SVM, Kernel methods

Questions?
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