CS260: Machine Learning Algorithms

Lecture 8: Kernel Methods

Cho-Jui Hsieh UCLA

Feb 4, 2019

Outline

- Linear Support Vector Machines
- Nonlinear SVM, Kernel methods
- Multiclass classification

- Given training examples $(x_1, y_1), \dots, (x_n, y_n)$ Consider binary classification: $y_i \in \{+1, -1\}$
- Linear Support Vector Machine (SVM):

$$\arg\min_{\mathbf{w}} C \sum_{i=1}^{n} \max(1 - y_i \mathbf{w}^T \mathbf{x}_i, 0) + \frac{1}{2} \mathbf{w}^T \mathbf{w}$$

(hinge loss with L2 regularization)

• Goal: Find a hyperplane to separate these two classes of data: if $y_i = 1$, $\mathbf{w}^T \mathbf{x}_i \ge 1$; if $y_i = -1$, $\mathbf{w}^T \mathbf{x}_i \le -1$.

• Goal: Find a hyperplane to separate these two classes of data: if $y_i = 1$, $\mathbf{w}^T \mathbf{x}_i \ge 1$; if $y_i = -1$, $\mathbf{w}^T \mathbf{x}_i \le -1$.

Prefer a hyperplane with maximum margin

ullet minimum of $\| {m x} \|$ such that ${m w}^T {m x} = 1$

- minimum of $\|\mathbf{x}\|$ such that $\mathbf{w}^T\mathbf{x} = 1$
- \bullet clearly, $\mathbf{\textit{x}} = \alpha \frac{\mathbf{\textit{w}}}{\|\mathbf{\textit{w}}\|}$ for some α (half margin)

- minimum of $\|\mathbf{x}\|$ such that $\mathbf{w}^T\mathbf{x} = 1$
- ullet clearly, ${m x}=lpha {{m w}\over {\|{m w}\|}}$ for some lpha (half margin)
- $\quad \boldsymbol{\alpha} = \frac{1}{\|\boldsymbol{w}\|}$

- minimum of $\|\mathbf{x}\|$ such that $\mathbf{w}^T\mathbf{x} = 1$
- \bullet clearly, ${\it {\bf x}}=\alpha \frac{{\it {\bf w}}}{\|{\it {\bf w}}\|}$ for some α (half margin)
- Maximize margin \Rightarrow minimize $\| \boldsymbol{w} \|$

Support Vector Machines (hard constraints)

• SVM primal problem (with hard constraints):

$$\min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^{T} \mathbf{w}$$
s.t. $y_{i}(\mathbf{w}^{T} \mathbf{x}_{i}) \geq 1, i = 1, \dots, n,$

Support Vector Machines (hard constraints)

• SVM primal problem (with hard constraints):

$$\min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^{T} \mathbf{w}$$
s.t. $y_{i}(\mathbf{w}^{T} \mathbf{x}_{i}) \geq 1, i = 1, \dots, n,$

• What if there are outliers?

- Given training data $x_1, \dots, x_n \in \mathbb{R}^d$ with labels $y_i \in \{+1, -1\}$.
- SVM primal problem:

$$\min_{\mathbf{w}, \xi} \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{i=1}^n \xi_i$$

s.t. $y_i(\mathbf{w}^T \mathbf{x}_i) \ge 1 - \xi_i, i = 1, \dots, n,$
 $\xi_i \ge 0$

SVM primal problem:

$$\begin{aligned} & \min_{\boldsymbol{w}, \xi} \ \frac{1}{2} \boldsymbol{w}^T \boldsymbol{w} + C \sum_{i=1}^n \xi_i \\ & \text{s.t.} \ y_i(\boldsymbol{w}^T \boldsymbol{x}_i) \geq 1 - \xi_i, i = 1, \dots, n, \\ & \xi_i \geq 0 \end{aligned}$$

Equivalent to

$$\min_{\mathbf{w}} \quad \underbrace{\frac{1}{2} \mathbf{w}^T \mathbf{w}}_{\text{L2 regularization}} + C \sum_{i=1}^{n} \underbrace{\max(0, 1 - y_i \mathbf{w}^T \mathbf{x}_i)}_{\text{hinge loss}}$$

• Non-differentiable when $y_i \mathbf{w}^T \mathbf{x}_i = 1$ for some i

Stochastic Subgradient Method for SVM

• A subgradient of $\ell_i(\mathbf{w}) = \max(0, 1 - y_i \mathbf{w}^T \mathbf{x}_i)$:

$$\begin{cases} -y_i \mathbf{x}_i & \text{if } 1 - y_i \mathbf{w}^T \mathbf{x}_i > 0 \\ \mathbf{0} & \text{if } 1 - y_i \mathbf{w}^T \mathbf{x}_i < 0 \\ \mathbf{0} & \text{if } 1 - y_i \mathbf{w}^T \mathbf{x}_i = 0 \end{cases}$$

Stochastic Subgradient descent for SVM:

For
$$t = 1, 2, ...$$

Randomly pick an index i
If $y_i \boldsymbol{w}^T \boldsymbol{x}_i < 1$, then $\boldsymbol{w} \leftarrow (1 - \eta_t) \boldsymbol{w} + \eta_t n C y_i \boldsymbol{x}_i$
Else (if $y_i \boldsymbol{w}^T \boldsymbol{x}_i \geq 1$): $\boldsymbol{w} \leftarrow (1 - \eta_t) \boldsymbol{w}$

Kernel SVM

Non-linearly separable problems

• What if the data is not linearly separable?

Solution: map data x_i to higher dimensional(maybe infinite) feature space $\varphi(x_i)$, where they are linearly separable.

SVM with nonlinear mapping

• SVM with nonlinear mapping $\varphi(\cdot)$:

$$\min_{\boldsymbol{w}, \xi} \frac{1}{2} \boldsymbol{w}^T \boldsymbol{w} + C \sum_{i=1}^n \xi_i$$
s.t. $y_i(\boldsymbol{w}^T \varphi(\boldsymbol{x}_i)) \ge 1 - \xi_i, \quad \xi_i \ge 0, \quad i = 1, \dots, n,$

SVM with nonlinear mapping

• SVM with nonlinear mapping $\varphi(\cdot)$:

$$\min_{\boldsymbol{w}, \xi} \frac{1}{2} \boldsymbol{w}^T \boldsymbol{w} + C \sum_{i=1}^n \xi_i$$
s.t. $y_i(\boldsymbol{w}^T \varphi(\boldsymbol{x}_i)) \ge 1 - \xi_i, \quad \xi_i \ge 0, \quad i = 1, \dots, n,$

ullet Hard to solve if $arphi(\cdot)$ maps to very high or infinite dimensional space

• Primal problem:

$$\min_{\boldsymbol{w}, \boldsymbol{\xi}} \frac{1}{2} \|\boldsymbol{w}\|^2 + C \sum_{i} \xi_{i}$$
s.t. $y_{i} \boldsymbol{w}^{T} \boldsymbol{\varphi}(\boldsymbol{x}_{i}) - 1 + \xi_{i} \geq 0$, and $\xi_{i} \geq 0 \quad \forall i = 1, \dots, n$

Equivalent to:

$$\min_{\boldsymbol{w},\boldsymbol{\xi}} \max_{\alpha \geq 0, \beta \geq 0} \frac{1}{2} \|\boldsymbol{w}\|^2 + C \sum_{i} \xi_{i} - \sum_{i} \alpha_{i} (y_{i} \boldsymbol{w}^{T} \varphi(\boldsymbol{x}_{i}) - 1 + \xi_{i}) - \sum_{i} \beta_{i} \xi_{i}$$

• Under certain condition (e.g., slater's condition), exchanging min, max will not change the optimal solution:

$$\max_{\boldsymbol{\alpha} \geq 0, \boldsymbol{\beta} \geq 0} \min_{\boldsymbol{w}, \boldsymbol{\xi}} \frac{1}{2} \|\boldsymbol{w}\|^2 + C \sum_{i} \xi_i - \sum_{i} \alpha_i (y_i \boldsymbol{w}^T \boldsymbol{\varphi}(\boldsymbol{x}_i) - 1 + \xi_i) - \sum_{i} \beta_i \xi_i$$

Reorganize the equation:

$$\max_{\alpha \geq 0, \beta \geq 0} \min_{\boldsymbol{w}, \boldsymbol{\xi}} \frac{1}{2} \|\boldsymbol{w}\|^2 - \sum_{i} \alpha_{i} y_{i} \boldsymbol{w}^{T} \boldsymbol{\varphi}(\boldsymbol{x}_{i}) + \sum_{i} \xi_{i} (C - \alpha_{i} - \beta_{i}) + \sum_{i} \alpha_{i}$$

• Now, for any given α, β , the minimizer of w will satisfy

$$\frac{\partial L}{\partial \mathbf{w}} = \mathbf{w} - \sum_{i} \alpha_{i} y_{i} \varphi(\mathbf{x}_{i}) = 0 \quad \Rightarrow \mathbf{w}^{*} = \sum_{i} y_{i} \alpha_{i} \varphi(\mathbf{x}_{i})$$

Also, we have $C = \alpha_i + \beta_i$, otherwise ξ_i can make the objective function $-\infty$

Substitue these two equations back we get

$$\max_{\alpha \geq 0, \beta \geq 0, C = \alpha + \beta} -\frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j \varphi(\mathbf{x}_i)^T \varphi(\mathbf{x}_j) + \sum_i \alpha_i$$

• Therefore, we get the following dual problem

$$\max_{C \ge \alpha \ge 0} \{ -\frac{1}{2} \alpha^T Q \alpha + \mathbf{e}^T \alpha \} := D(\alpha),$$

where Q is an n by n matrix with $Q_{ij} = y_i y_i \varphi(\mathbf{x}_i)^T \varphi(\mathbf{x}_i)$

- Based on the derivations, we know
 - Primal minimum = dual maximum (under slater's condition)
 - **2** Let α^* be the dual solution and \mathbf{w}^* be the primal solution, we have

$$\mathbf{w}^* = \sum_i y_i \alpha_i^* \varphi(\mathbf{x}_i)$$

• We can solve the dual problem instead of the primal problem.

Kernel Trick

• Do not directly define $\varphi(\cdot)$

Kernel Trick

- Do not directly define $\varphi(\cdot)$
- Instead, define "kernel"

$$K(\mathbf{x}_i, \mathbf{x}_j) = \varphi(\mathbf{x}_i)^T \varphi(\mathbf{x}_j)$$

This is all we need to know for Kernel SVM!

Kernel Trick

- Do not directly define $\varphi(\cdot)$
- Instead, define "kernel"

$$K(\mathbf{x}_i, \mathbf{x}_j) = \varphi(\mathbf{x}_i)^T \varphi(\mathbf{x}_j)$$

This is all we need to know for Kernel SVM!

- Examples:
 - Gaussian kernel: $K(\mathbf{x}_i, \mathbf{x}_i) = e^{-\gamma \|\mathbf{x}_i \mathbf{x}_j\|^2}$
 - Polynomial kernel: $K(\mathbf{x}_i, \mathbf{x}_j) = (\gamma \mathbf{x}_i^T \mathbf{x}_j + c)^d$
 - Other kernels for specific problems:
 - Graph kernels (Vishwanathan et al., "Graph Kernels", JMLR, 2010)
 - Pyramid kernel for image matching (Grauman and Darrell, "The Pyramid Match Kernel: Discriminative Classification with Sets of Image Features". In ICCV, 2005)
 - String kernel (Lodhi et al., "Text classification using string kernels". JMLR, 2002).

• Training: compute $\alpha = [\alpha_1, \dots, \alpha_n]$ by solving the quadratic optimization problem:

$$\min_{0 \leq \alpha \leq C} \frac{1}{2} \alpha^T Q \alpha - \boldsymbol{e}^T \alpha$$

where
$$Q_{ij} = K(\mathbf{x}_i, \mathbf{x}_j)$$

• Training: compute $\alpha = [\alpha_1, \dots, \alpha_n]$ by solving the quadratic optimization problem:

$$\min_{0 \leq \alpha \leq C} \frac{1}{2} \alpha^T Q \alpha - \boldsymbol{e}^T \alpha$$

where
$$Q_{ij} = K(\mathbf{x}_i, \mathbf{x}_j)$$

• Prediction: for a test data x,

$$\mathbf{w}^{T} \varphi(\mathbf{x}) = \sum_{i=1}^{n} y_{i} \alpha_{i} \varphi(\mathbf{x}_{i})^{T} \varphi(\mathbf{x})$$
$$= \sum_{i=1}^{n} y_{i} \alpha_{i} K(\mathbf{x}_{i}, \mathbf{x})$$

Kernel Ridge Regression

• Actually, this "kernel method" works for many different losses

Kernel Ridge Regression

- Actually, this "kernel method" works for many different losses
- Example: ridge regression

$$\min_{\boldsymbol{w}} \frac{1}{2} \|\boldsymbol{w}\|^2 + \frac{1}{2} \sum_{i=1}^{n} (\boldsymbol{w}^T \varphi(\boldsymbol{x}_i) - y_i)^2$$

• Dual problem:

$$\min_{\boldsymbol{\alpha}} \boldsymbol{\alpha}^T Q \boldsymbol{\alpha} + \|\boldsymbol{\alpha}\|^2 - 2\boldsymbol{\alpha}^T \mathbf{y}$$

Scalability

- Challenge for solving kernel SVMs (for dataset with *n* samples):
 - Space: $O(n^2)$ for storing the *n*-by-*n* kernel matrix (can be reduced in some cases);
 - Time: $O(n^3)$ for computing the exact solution.

Scalability

- Challenge for solving kernel SVMs (for dataset with n samples):
 - Space: $O(n^2)$ for storing the *n*-by-*n* kernel matrix (can be reduced in some cases);
 - Time: $O(n^3)$ for computing the exact solution.
- Good packages available:
 - LIBSVM (can be called in scikit-learn)
 - LIBLINEAR (for linear SVM, can be called in scikit-learn)

Multiclass classification

Multiclass Learning

- n data points, L labels, d features
- Input: training data $\{x_i, y_i\}_{i=1}^n$:
 - Each x_i is a d dimensional feature vector
 - Each $y_i \in \{1, \dots, L\}$ is the corresponding label
 - Each training data belongs to one category
- Goal: find a function to predict the correct label

$$f(\mathbf{x}) \approx y$$

Multi-label Problems

- n data points, L labels, d features
- Input: training data $\{x_i, y_i\}_{i=1}^n$:
 - Each x_i is a d dimensional feature vector
 - Each $\mathbf{y}_i \in \{0,1\}^L$ is a label vector (or $Y_i \in \{1,2,\ldots,L\}$) Example: $\mathbf{y}_i = [0,0,1,0,0,1,1]$ (or $Y_i = \{3,6,7\}$)
 - Each training data can belong to multiple categories
- ullet Goal: Given a testing sample $oldsymbol{x}$, predict the correct labels

Illustration

- Multiclass: each row of L has exact one "1"
- Multilabel: each row of L can have multiple ones

Reduction to binary classification

- Many algorithms for binary classification
- Idea: transform multi-class or multi-label problems to multiple binary classification problems
- Two approaches:
 - One versus All (OVA)
 - One versus One (OVO)

One Versus All (OVA)

- Multi-class/multi-label problems with L categories
- Build *L* different binary classifiers
- For the t-th classifier:
 - Positive samples: all the points in class t ($\{x_i : t \in y_i\}$)
 - Negative samples: all the points not in class t $(\{x_i : t \notin y_i\})$
 - $f_t(\mathbf{x})$: the decision value for the t-th classifier (larger $f_t \Rightarrow$ higher probability that \mathbf{x} in class t)
- Prediction:

$$f(\mathbf{x}) = \arg \max_t f_t(\mathbf{x})$$

• Example: using SVM to train each binary classifier.

One Versus One (OVO)

- Multi-class/multi-label problems with L categories
- Build L(L-1) different binary classifiers
- For the (s, t)-th classifier:
 - Positive samples: all the points in class s $(\{x_i : s \in y_i\})$
 - Negative samples: all the points in class t $(\{x_i : t \in y_i\})$
 - $f_{s,t}(\mathbf{x})$: the decision value for this classifier

 (larger $f_{s,t}(\mathbf{x}) \Rightarrow \text{label } s$ has higher probability than label t)
 - $f_{t,s}(x) = -f_{s,t}(x)$
- Prediction:

$$f(\mathbf{x}) = \arg\max_{s} \left(\sum_{t} f_{s,t}(\mathbf{x}) \right)$$

• Example: using SVM to train each binary classifier.

OVA vs OVO

- Prediction accuracy: depends on datasets
- Computational time:
 - OVA needs to train L classifiers
 - OVO needs to train L(L-1)/2 classifiers
- Is OVA always faster than OVO?

OVA vs OVO

- Prediction accuracy: depends on datasets
- Computational time:

OVA needs to train L classifiers

OVO needs to train L(L-1)/2 classifiers

Is OVA always faster than OVO?

NO, depends on the time complexity of the binary classifier

- If the binary classifier requires O(n) time for n samples: OVA and OVO have similar time complexity
- If the binary classifier requires $O(n^{1.xx})$ time: OVO is faster than OVA

OVA vs OVO

- Prediction accuracy: depends on datasets
- Computational time:

OVA needs to train L classifiers

OVO needs to train L(L-1)/2 classifiers

- Is OVA always faster than OVO?
 - NO, depends on the time complexity of the binary classifier
 - If the binary classifier requires O(n) time for n samples: OVA and OVO have similar time complexity
 - If the binary classifier requires $O(n^{1.xx})$ time: OVO is faster than OVA
- LIBSVM (kernel SVM solver): OVO
- LIBLINEAR (linear SVM solver): OVA

Another approach for multi-class classification

OVA and OVO: decompose the problem by labels
 But good binary classifiers may not imply good multi-class prediction.

Another approach for multi-class classification

- OVA and OVO: decompose the problem by labels
 But good binary classifiers may not imply good multi-class prediction.
- Design a multi-class loss function and solve a single optimization problem

Another approach for multi-class classification

- OVA and OVO: decompose the problem by labels
 But good binary classifiers may not imply good multi-class prediction.
- Design a multi-class loss function and solve a single optimization problem
- Minimize the regularized training error:

$$\min_{\boldsymbol{w}_1, \cdots, \boldsymbol{w}_L} \sum_{i=1}^n \mathsf{loss}(\boldsymbol{x}_i, \boldsymbol{y}_i) + \lambda \sum_{j=1, \cdots, L} \boldsymbol{w}_j^T \boldsymbol{w}_j$$

Loss functions for multi-class classification

- Ranking based approaches: directly minimizes the ranking loss:
 - ullet For multiclass classification, the score of y_i should be larger than other labels

Loss functions for multi-class classification

- Ranking based approaches: directly minimizes the ranking loss:
 - For multiclass classification, the score of y_i should be larger than other labels
- Soft-max loss:

measure the probability of predicting correct class

Main idea

- For simplicity, we assume a linear model
- Model parameters: $\mathbf{w}_1, \dots, \mathbf{w}_L$
- For each data point **x**, compute the decision value for each label:

$$\mathbf{w}_1^T \mathbf{x}, \quad \mathbf{w}_2^T \mathbf{x}, \dots, \quad \mathbf{w}_L^T \mathbf{x}$$

• Prediction:

$$y = \arg\max_t \boldsymbol{w}_t^T \boldsymbol{x}$$

• For training data x_i , y_i is the true label, so we want

$$y_i \approx \arg\max_t \boldsymbol{w}_t^T \boldsymbol{x}_i \ \ \forall i$$

Softmax

The predicted score for each class:

$$\mathbf{w}_1^T \mathbf{x}_i, \ \mathbf{w}_2^T \mathbf{x}_i, \ \cdots$$

• Loss for the i-th data is defined by

$$-\log\left(\frac{e^{\boldsymbol{w}_{y_i}^T\boldsymbol{x}_i}}{\sum_j e^{\boldsymbol{w}_j^T\boldsymbol{x}_i}}\right)$$

(Probability of choosing the correct label)

• Solve a single optimization problem

$$\min_{\boldsymbol{w}_1, \cdots, \boldsymbol{w}_L} \sum_{i=1}^n -\log \left(\frac{e^{\boldsymbol{w}_{\boldsymbol{y}_i^T}^T \boldsymbol{x}_i}}{\sum_j e^{\boldsymbol{w}_j^T \boldsymbol{x}_i}} \right) + \lambda \sum_j \boldsymbol{w}_j^T \boldsymbol{w}_j$$

Weston-Watkins Formulation

 Proposed in Weston and Watkins, "Multi-class support vector machines". In ESANN, 1999.

$$\begin{aligned} \min_{\{\boldsymbol{w}_t\}, \{\xi_i^t\}} & \frac{1}{2} \sum_{t=1}^{L} \|\boldsymbol{w}_t\|^2 + C \sum_{i=1}^{n} \sum_{t=1}^{L} \xi_i^t \\ \text{s.t.} & \boldsymbol{w}_{y_i}^T \boldsymbol{x}_i - \boldsymbol{w}_t^T \boldsymbol{x}_i \geq 1 - \xi_i^t, & \xi_i^t \geq 0 \ \forall t \neq y_i, \ \forall i = 1, \dots, n \end{aligned}$$

• If point i is in class y_i , for any other labels $(t \neq y_i)$, we want

$$\mathbf{w}_{y_i}^T \mathbf{x}_i - \mathbf{w}_t^T \mathbf{x}_i \geq 1$$

or we pay a penalty ξ_i^t

• Prediction:

$$f(\mathbf{x}) = \arg\max_{t} \mathbf{w}_{t}^{T} \mathbf{x}_{i}$$

Crammer-Singer Formulation

 Proposed in Carmmer and Singer, "On the algorithmic implementation of multiclass kernel-based vector machines". JMLR, 2001.

$$\begin{aligned} \min_{\{\boldsymbol{w}_t\}, \{\xi_i^t\}} & \ \frac{1}{2} \sum_{t=1}^{L} \|\boldsymbol{w}_t\|^2 + C \sum_{i=1}^{n} \xi_i \\ \text{s.t.} & \ \boldsymbol{w}_{y_i}^T \boldsymbol{x}_i - \boldsymbol{w}_t^T \boldsymbol{x}_i \geq 1 - \xi_i, \ \ \forall t \neq y_i, \ \forall i = 1, \dots, n \\ & \xi_i \geq 0 \ \ \forall i = 1, \dots, n \end{aligned}$$

• If point i is in class y_i , for any other labels $(t \neq y_i)$, we want

$$\mathbf{w}_{y_i}^T \mathbf{x}_i - \mathbf{w}_t^T \mathbf{x}_i \geq 1$$

- For each point i, we only pay the largest penalty
- Prediction:

$$f(\mathbf{x}) = \arg\max_{t} \mathbf{w}_{t}^{T} \mathbf{x}_{i}$$

Conclusions

• SVM, Kernel SVM, Kernel methods

Questions?