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Outline

Linear Support Vector Machines

Nonlinear SVM, Kernel methods

Multiclass classification



Support Vector Machines

Given training examples (x1, y1), · · · , (xn, yn)

Consider binary classification: yi ∈ {+1,−1}
Linear Support Vector Machine (SVM):

arg min
w

C
n∑

i=1

max(1− yiwTxi , 0) +
1

2
wTw

(hinge loss with L2 regularization)



Support Vector Machines

Goal: Find a hyperplane to separate these two classes of data:
if yi = 1, wTxi ≥ 1; if yi = −1, wTxi ≤ −1.

Prefer a hyperplane with maximum margin



Support Vector Machines

Goal: Find a hyperplane to separate these two classes of data:
if yi = 1, wTxi ≥ 1; if yi = −1, wTxi ≤ −1.

Prefer a hyperplane with maximum margin



Size of margin

minimum of ‖x‖ such that wTx = 1

clearly, x = α w
‖w‖ for some α (half margin)

α = 1
‖w‖

Maximize margin ⇒ minimize ‖w‖
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Support Vector Machines (hard constraints)

SVM primal problem (with hard constraints):

min
w

1

2
wTw

s.t. yi (wTxi ) ≥ 1, i = 1, . . . , n,

What if there are outliers?
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Support Vector Machines

Given training data x1, · · · , xn ∈ Rd with labels yi ∈ {+1,−1}.
SVM primal problem:

min
w ,ξ

1

2
wTw + C

n∑
i=1

ξi

s.t. yi (wTxi ) ≥ 1− ξi , i = 1, . . . , n,

ξi ≥ 0



Support Vector Machines

SVM primal problem:

min
w ,ξ

1

2
wTw + C

n∑
i=1

ξi

s.t. yi (wTxi ) ≥ 1− ξi , i = 1, . . . , n,

ξi ≥ 0

Equivalent to

min
w

1

2
wTw︸ ︷︷ ︸

L2 regularization

+C
n∑

i=1

max(0, 1− yiwTxi )︸ ︷︷ ︸
hinge loss

Non-differentiable when yiwTxi = 1 for some i



Stochastic Subgradient Method for SVM

A subgradient of `i (w) = max(0, 1− yiwTxi ):
−yixi if 1− yiwTxi > 0

0 if 1− yiwTxi < 0

0 if 1− yiwTxi = 0

Stochastic Subgradient descent for SVM:

For t = 1, 2, . . .
Randomly pick an index i
If yiwTxi < 1, then

w ← (1− ηt)w + ηtnCyixi
Else (if yiwTxi ≥ 1):

w ← (1− ηt)w



Kernel SVM



Non-linearly separable problems

What if the data is not linearly separable?

Solution: map data xi to higher dimensional(maybe infinite) feature
space ϕ(xi ), where they are linearly separable.



SVM with nonlinear mapping

SVM with nonlinear mapping ϕ(·):

min
w ,ξ

1

2
wTw + C

n∑
i=1

ξi

s.t. yi (wTϕ(xi )) ≥ 1− ξi , ξi ≥ 0, i = 1, . . . , n,

Hard to solve if ϕ(·) maps to very high or infinite dimensional space
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Support Vector Machines (dual)

Primal problem:

min
w ,ξ

1

2
‖w‖2 + C

∑
i

ξi

s.t. yiwTϕ(xi )− 1 + ξi ≥ 0, and ξi ≥ 0 ∀i = 1, . . . , n

Equivalent to:

min
w ,ξ

max
α≥0,β≥0

1

2
‖w‖2 + C

∑
i

ξi −
∑
i

αi (yiwTϕ(xi )− 1 + ξi )−
∑
i

βiξi

Under certain condition (e.g., slater’s condition), exchanging min,max
will not change the optimal solution:

max
α≥0,β≥0

min
w ,ξ

1

2
‖w‖2 + C

∑
i

ξi −
∑
i

αi (yiwTϕ(xi )− 1 + ξi )−
∑
i

βiξi



Support Vector Machines (dual)

Reorganize the equation:

max
α≥0,β≥0

min
w ,ξ

1

2
‖w‖2 −

∑
i

αiyiwTϕ(xi ) +
∑
i

ξi (C − αi − βi ) +
∑
i

αi

Now, for any given α,β, the minimizer of w will satisfy

∂L

∂w
= w −

∑
i

αiyiϕ(xi ) = 0 ⇒ w∗ =
∑
i

yiαiϕ(xi )

Also, we have C = αi + βi , otherwise ξi can make the objective
function −∞
Substitue these two equations back we get

max
α≥0,β≥0,C=α+β

−1

2

∑
i ,j

αiαjyiyjϕ(xi )Tϕ(xj) +
∑
i

αi



Support Vector Machines (dual)

Therefore, we get the following dual problem

max
C≥α≥0

{−1

2
αTQα + eTα} := D(α),

where Q is an n by n matrix with Qij = yiyjϕ(xi )Tϕ(xj)
Based on the derivations, we know

1 Primal minimum = dual maximum (under slater’s condition)
2 Let α∗ be the dual solution and w∗ be the primal solution, we have

w∗ =
∑
i

yiα
∗
i ϕ(xi )

We can solve the dual problem instead of the primal problem.



Kernel Trick

Do not directly define ϕ(·)

Instead, define “kernel”

K (xi , xj) = ϕ(xi )Tϕ(xj)

This is all we need to know for Kernel SVM!

Examples:

Gaussian kernel: K (xi , xj) = e−γ‖xi−xj‖2

Polynomial kernel: K (xi , xj) = (γxT
i xj + c)d

Other kernels for specific problems:

Graph kernels
(Vishwanathan et al., “Graph Kernels”, JMLR, 2010)

Pyramid kernel for image matching
(Grauman and Darrell, “The Pyramid Match Kernel: Discriminative

Classification with Sets of Image Features”. In ICCV, 2005)

String kernel
(Lodhi et al., “Text classification using string kernels”. JMLR, 2002).
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Support Vector Machines (dual)

Training: compute α = [α1, · · · , αn] by solving the quadratic
optimization problem:

min
0≤α≤C

1

2
αTQα− eTα

where Qij = K (xi , xj)

Prediction: for a test data x ,

wTϕ(x) =
n∑

i=1

yiαiϕ(xi )Tϕ(x)

=
n∑

i=1

yiαiK (xi , x)
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Kernel Ridge Regression

Actually, this “kernel method” works for many different losses

Example: ridge regression

min
w

1

2
‖w‖2 +

1

2

n∑
i=1

(wTϕ(xi )− yi )
2

Dual problem:
min
α

αTQα + ‖α‖2 − 2αTy
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Scalability

Challenge for solving kernel SVMs (for dataset with n samples):

Space: O(n2) for storing the n-by-n kernel matrix (can be reduced in
some cases);
Time: O(n3) for computing the exact solution.

Good packages available:

LIBSVM (can be called in scikit-learn)
LIBLINEAR (for linear SVM, can be called in scikit-learn)
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Multiclass classification



Multiclass Learning

n data points, L labels, d features
Input: training data {xi , yi}ni=1:

Each xi is a d dimensional feature vector
Each yi ∈ {1, . . . , L} is the corresponding label
Each training data belongs to one category

Goal: find a function to predict the correct label

f (x) ≈ y



Multi-label Problems

n data points, L labels, d features

Input: training data {xi , yi}ni=1:

Each xi is a d dimensional feature vector
Each yi ∈ {0, 1}L is a label vector (or Yi ∈ {1, 2, . . . , L})

Example: yi = [0, 0, 1, 0, 0, 1, 1] (or Yi = {3, 6, 7})
Each training data can belong to multiple categories

Goal: Given a testing sample x , predict the correct labels



Illustration

Multiclass: each row of L has exact one “1”

Multilabel: each row of L can have multiple ones



Reduction to binary classification

Many algorithms for binary classification

Idea: transform multi-class or multi-label problems to multiple binary
classification problems

Two approaches:

One versus All (OVA)
One versus One (OVO)



One Versus All (OVA)

Multi-class/multi-label problems with L categories

Build L different binary classifiers

For the t-th classifier:

Positive samples: all the points in class t ({xi : t ∈ yi})
Negative samples: all the points not in class t ({xi : t /∈ yi})
ft(x): the decision value for the t-th classifier

(larger ft ⇒ higher probability that x in class t)

Prediction:
f (x) = arg max

t
ft(x)

Example: using SVM to train each binary classifier.



One Versus One (OVO)

Multi-class/multi-label problems with L categories

Build L(L− 1) different binary classifiers

For the (s, t)-th classifier:

Positive samples: all the points in class s ({xi : s ∈ yi})
Negative samples: all the points in class t ({xi : t ∈ yi})
fs,t(x): the decision value for this classifier

(larger fs,t(x) ⇒ label s has higher probability than label t)
ft,s(x) = −fs,t(x)

Prediction:

f (x) = arg max
s

(∑
t

fs,t(x)

)
Example: using SVM to train each binary classifier.



OVA vs OVO

Prediction accuracy: depends on datasets

Computational time:

OVA needs to train L classifiers

OVO needs to train L(L− 1)/2 classifiers

Is OVA always faster than OVO?
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Another approach for multi-class classification

OVA and OVO: decompose the problem by labels

But good binary classifiers may not imply good multi-class
prediction.

Design a multi-class loss function and solve a single optimization
problem

Minimize the regularized training error:

min
w1,··· ,wL

n∑
i=1

loss(xi , yi ) + λ
∑

j=1,··· ,L
wT

j wj
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Loss functions for multi-class classification

Ranking based approaches: directly minimizes the ranking loss:

For multiclass classification, the score of yi should be larger than other
labels

Soft-max loss:

measure the probability of predicting correct class
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Main idea

For simplicity, we assume a linear model

Model parameters: w1, . . . ,wL

For each data point x , compute the decision value for each label:

wT
1 x , wT

2 x , . . . , wT
L x

Prediction:
y = arg max

t
wT

t x

For training data xi , yi is the true label, so we want

yi ≈ arg max
t

wT
t xi ∀i



Softmax

The predicted score for each class:

wT
1 xi , wT

2 xi , · · ·

Loss for the i-th data is defined by

− log

(
ewT

yi
xi∑

j e
wT

j xi

)

(Probability of choosing the correct label)

Solve a single optimization problem

min
w1,··· ,wL

n∑
i=1

− log

(
ewT

yi
xi∑

j e
wT

j xi

)
+ λ

∑
j

wT
j wj



Weston-Watkins Formulation

Proposed in Weston and Watkins, “Multi-class support vector
machines”. In ESANN, 1999.

min
{wt},{ξti }

1

2

L∑
t=1

‖wt‖2 + C
n∑

i=1

L∑
t=1

ξti

s.t. wT
yi

xi −wT
t xi ≥ 1− ξti , ξti ≥ 0 ∀t 6= yi , ∀i = 1, . . . , n

If point i is in class yi , for any other labels (t 6= yi ), we want

wT
yi

xi −wT
t xi ≥ 1

or we pay a penalty ξti
Prediction:

f (x) = arg max
t

wT
t xi



Crammer-Singer Formulation

Proposed in Carmmer and Singer, “On the algorithmic implementation
of multiclass kernel-based vector machines”. JMLR, 2001.

min
{wt},{ξti }

1

2

L∑
t=1

‖wt‖2 + C
n∑

i=1

ξi

s.t. wT
yi

xi −wT
t xi ≥ 1− ξi , ∀t 6= yi , ∀i = 1, . . . , n

ξi ≥ 0 ∀i = 1, . . . , n

If point i is in class yi , for any other labels (t 6= yi ), we want

wT
yi

xi −wT
t xi ≥ 1

For each point i , we only pay the largest penalty

Prediction:
f (x) = arg max

t
wT

t xi



Conclusions

SVM, Kernel SVM, Kernel methods

Questions?


