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Decision Tree

Each node checks one feature xi :

Go left if xi < threshold
Go right if xi ≥ threshold



A real example



Decision Tree

Strength:

It’s a nonlinear classifier
Better interpretability
Can naturally handle categorical features

Computation:

Training: slow
Prediction: fast

h operations (h: depth of the tree, usually ≤ 15)
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Splitting the node

Classification tree: Split the node to maximize entropy

Let S be set of data points in a node, c = 1, · · · ,C are labels:

Entroy : H(S) = −
C∑

c=1

p(c) log p(c),

where p(c) is the proportion of the data belong to class c .
Entropy=0 if all samples are in the same class
Entropy is large if p(1) = · · · = p(C )



Information Gain

The averaged entropy of a split S → S1,S2

|S1|
|S |

H(S1) +
|S2|
|S |

H(S2)

Information gain: measure how good is the split

H(S)−
(

(|S1|/|S |)H(S1) + (|S2|/|S |)H(S2)

)
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Splitting the node

Given the current note, how to find the best split?

For all the features and all the threshold

Compute the information gain after the split

Choose the best one (maximal information gain)

For n samples and d features: need O(nd) time
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Regression Tree

Assign a real number for each leaf

Usually averaged y values for each leaf

(minimize square error)



Regression Tree

Objective function:

min
F

1

n

n∑
i=1

(yi − F (xi ))2 + (Regularization)

The quality of partition S = S1 ∪ S2 can be computed by the objective
function: ∑

i∈S1

(yi − y (1))2 +
∑
i∈S2

(yi − y (2))2,

where y (1) = 1
|S1|
∑

i∈S1 yi , y
(2) = 1

|S2|
∑

i∈S2 yi

Find the best split:

Try all the features & thresholds and find the one with minimal
objective function
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Parameters

Maximum depth: (usually ∼ 10)

Minimum number of nodes in each node: (10, 50, 100)

Single decision tree is not very powerful· · ·
Can we build multiple decision trees and ensemble them together?
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Random Forest



Random Forest

Random Forest (Bootstrap ensemble for decision trees):

Create T trees
Learn each tree using a subsampled dataset Si and subsampled feature
set Di

Prediction: Average the results from all the T trees

Benefit:

Avoid over-fitting
Improve stability and accuracy

Good software available:

R: “randomForest” package
Python: sklearn



Random Forest



Gradient Boosted Decision Tree



Boosted Decision Tree

Minimize loss `(y ,F (x)) with F (·) being ensemble trees

F ∗ = argmin
F

n∑
i=1

`(yi ,F (xi )) with F (x) =
T∑

m=1

fm(x)

(each fm is a decision tree)

Direct loss minimization: at each stage m, find the best function to
minimize loss

solve fm = argminfm

∑N
i=1 `(yi ,Fm−1(xi ) + fm(xi ))

update Fm ← Fm−1 + fm

Fm(x) =
∑m

j=1 fj(x) is the prediction of x after m iterations.

Two problems:

Hard to implement for general loss
Tend to overfit training data
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Gradient Boosted Decision Tree (GBDT)

Approximate the current loss function by a quadratic approximation:

n∑
i=1

`i (ŷi + fm(xi )) ≈
n∑

i=1

(
`i (ŷi ) + gi fm(xi ) +

1

2
hi fm(xi )2

)
=

n∑
i=1

hi
2
‖fm(xi )− gi/hi‖2 + constant

where gi = ∂ŷi `i (ŷi ) is gradient,
hi = ∂2ŷi `i (ŷi ) is second order derivative



Gradient Boosted Decision Tree

Finding fm(x , θm) by minimizing the loss function:

argmin
fm

N∑
i=1

[fm(xi , θ)− gi/hi ]
2 + R(fm)

Reduce the training of any loss function to regression tree (just need to
compute gi for different functions)
hi = α (fixed step size) for original GBDT.
XGboost shows computing second order derivative yields better
performance

Algorithm:

Computing the current gradient for each ŷi .
Building a base learner (decision tree) to fit the gradient.
Updating current prediction ŷi = Fm(xi ) for all i .
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Gradient Boosted Decision Trees (GBDT)

Key idea:

Each base learner is a decision tree
Each regression tree approximates the functional gradient ∂`

∂F
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Open Source Packages

XGBoost: the first widely used tree-boosting software

LightGBM: released by Microsoft

Histogram-based training approach—much faster than finding the best
split
Good GPU support
“GPU-acceleration for Large-scale Tree Boosting”, H. Zhang, S. Si, C.-J.
Hsieh, 2017.



Conclusions

Building a single decision tree

Tree boosting and random forest

Questions?


