Cho-Jui Hsieh

Feb 11, 2019

Q>

@ Decision Tree

@ Random Forest

o Gradient Boosted Decision Tree (GBDT)

DA

@ Each node checks one feature x;:

e Go left if x; < threshold
e Go right if x; > threshold

DA

Play tennis or not

Outlook

Overcast
Humidity

o

Yes

Q>

@ Strength:

e It's a nonlinear classifier
o Better interpretability

e Can naturally handle categorical features

DA

@ Strength:

e It's a nonlinear classifier
o Better interpretability

e Can naturally handle categorical features
e Computation:

e Training: slow
o Prediction: fast

h operations (h: depth of the tree, usually < 15)

DA

o Classification tree: Split the node to maximize entropy
@ Let S be set of data points in a node, c =1

-, C are labels:
Entroy : H(S) =

ZP(C) log p(c),
where p(c) is the proportion of the data belong to class ¢

o Entropy=0 if all samples are in the same class
o Entropy is large if p(1)

- =p(C)

Entropy

(1/3)*108(1/3) - (1/3)*Iog(1/3) - (1/3) * log(1/3)
=158

Entropy:
-1*log*(1)=0
Bad split Good split

=

@ The averaged entropy of a split S — 51,5

151l sy 4 152
o M)+ 5 H(S)

@ Information gain: measure how good is the split

H(S) ((|sl|/|5|)H(sl)+(\sz|/|5\)H(sz))

DA

Entropy = 1.58

Entropy =1

Averaged entropy: 2/3*1 + 1/3*0 = 0.67
Information gain: 1.58 — 0.67

=0.91

DA

Entropy = 1.58

Entropy =1.52

Averaged entropy: 1.51
Information gain: 1.58 - 1.51

=0.07

DA

@ Given the current note, how to find the best split?

DA

@ Given the current note, how to find the best split?
@ For all the features and all the threshold

Compute the information gain after the split

Choose the best one (maximal information gain)

DA

@ Given the current note, how to find the best split?
@ For all the features and all the threshold

Compute the information gain after the split

Choose the best one (maximal information gain)
@ For n samples and d features: need O(nd) time

DA

@ Assign a real number for each leaf

@ Usually averaged y values for each leaf
(minimize square error)

y1i=1 ys=2 yg=3 Y= vs=1

y;=100 y,=200

DA

@ Objective function:

1 n
min — ,-E_l(y (xi))” + (Regularization)
function:

@ The quality of partition S = S; U S; can be computed by the objective

S ri=yOP+ > (i —y?),
i€S;

€Sy
1) _ 1 2) _ 1
where y(1) = 51 Ziesl vi, y® = 5] ZIGSQ Yi

DA

@ Objective function:
min E i(y — F(x))? + (Regularization)
Fons ’

@ The quality of partition S = S; U S; can be computed by the objective

function:
S ri=yOP+ > (i —y?),

i€Sy i€Sy
1) _ 1 2) _ 1
where y() = s >ies, Yir y? = Sl 2ies, Vi
@ Find the best split:

Try all the features & thresholds and find the one with minimal
objective function

u]

o)
1

n
it
)
»
i)

e Maximum depth: (usually ~ 10)

@ Minimum number of nodes in each node: (10, 50, 100)

DA

e Maximum depth: (usually ~ 10)

@ Minimum number of nodes in each node: (10, 50, 100)
@ Single decision tree is not very powerful- - -

@ Can we build multiple decision trees and ensemble them together?

it
N)
yel
Q

Random Forest

e Random Forest (Bootstrap ensemble for decision trees):

o Create T trees

o Learn each tree using a subsampled dataset S; and subsampled feature
set D;

o Benefit:

o Prediction: Average the results from all the T trees

e Avoid over-fitting

e Improve stability and accuracy
@ Good software available:

o R: “randomForest” package
e Python: sklearn

DA

E'}/ f}f\\ﬁ\
\\ /\ o /\
\é{/

v

Gradient Boosted Decision Tree

@ Minimize loss /(y, F(x)) with F(-) being ensemble trees

i=1

F* = argmin E (yi, F(x;)) with F(x
(each f,, is a decision tree)

Zf

DA

F

@ Minimize loss /(y, F(x)) with F(-) being ensemble trees

F* = argmin Uy;, F(x;)) with F(x
A :E 1)) =
(each f,, is a decision tree)

Zf

@ Direct loss minimization: at each stage m, find the best function to

minimize loss
o solve f, = argming SN U(yi, Frno1(Xi) + fin(x:))
e update F, + Fp1 + 1,

o Fm(x)=31"

1=

1 fi(x) is the prediction of x after m iterations

DA

F

@ Minimize loss /(y, F(x)) with F(-) being ensemble trees

i=1

F* = argmin é (yi, F(x;)) with F(x
(each f,, is a decision tree)

Zf

@ Direct loss minimization: at each stage m, find the best function to
-

e solve f,, = argmin;_ vazl 2y, Fon—1(x;) + fm(xi))
e update F, + Fp1 + 1,

minimize loss

o Fp(x)

>_i~1 fj(x) is the prediction of x after m iterations
@ Two problems:

e Hard to implement for general loss
e Tend to overfit training data

@ Approximate the current loss function by a quadratic approximation

Z Ci(9i + Fn(Xi
i—1

)~ Y (L) + gifm(x:) + %hifm(xi)z)
i—1

n

h.

= Z E’Hfm(x,-) — gi/hi||> + constant
i=1

where g; = 0y,¢i(y;) is gradient,

hi = 8)3,’,4,-()“/,-) is second order derivative

DA

e Finding fm(x,0,) by minimizing the loss function:
argmln Z[f xi,0) — gi/hi]*> + R(fm)

o Reduce the training of any loss function to regression tree (just need to
compute g; for different functions)

o h; = « (fixed step size) for original GBDT.

e XGboost shows computing second order derivative yields better
performance

u]

o)
1

n
it
)
»
i)

Gradient Boosted Decision Tree

e Finding fm(x,0,) by minimizing the loss function:

o Reduce the training of any loss function to regression tree (just need to
compute g; for different functions)

o h; = a (fixed step size) for original GBDT.

o XGboost shows computing second order derivative yields better
performance

o Algorithm:

e Computing the current gradient for each ;.
o Building a base learner (decision tree) to fit the gradient.
e Updating current prediction y; = F,,(x;) for all i.

o Key idea:

o Each base learner is a decision tree

(x,8,)

e Each regression tree approximates the functional gradient %
—_—

DA

o Key idea:

o Each base learner is a decision tree

e Each regression tree approximates the functional gradien

(x,8))

—_—

update

=)

F(x)
()

e

&

Ji(x)

" Ay, F(x,
Fm_l(xi)=2j=11fi(xt) 8n(x)= (E;}Il""(x(;c ’

FO)=F (%)

DA

o Key idea:

o Each base learner is a decision tree

[eJ4
t 5F
(x,8)

(x,8,)

e Each regression tree approximates the functional gradien

N
fi(x)

()
" Ay, F(x,
Fat) =37 10 a)="5e00

F(x)=Fa (%)

DA

o Key idea:

o Each base learner is a decision tree

(x,8)

e Each regression tree approximates the functional gradient g—f_.

(x,8,)
update

[

(x.87)
S
v e
ﬁ(x) ﬁ(x)
Fm—l(xi):z;i_ll‘fj(xi) gm(xi)=

Jr(x)
90y, F(x,))

JF(x,)

F(x)=F,1(x;)

DA

o Key idea:

o Each base learner is a decision tree

(x,8))

_—

e Each regression tree approximates the functional gradient %

(x.8,)
update
=)

(x9gT)
. .update
\./ P F(x) !/ \,/ ¢ F(x,)
7 ¢
L)
Si(x) S (x) Jr (%)
T
Final prediction F(x,)= zjzlfj(x,.)

DA

@ XGBoost: the first widely used tree-boosting software
o LightGBM: released by Microsoft
e Histogram-based training approach—much faster than finding the best
split
e Good GPU support

“GPU-acceleration for Large-scale Tree Boosting”, H. Zhang, S. Si, C.-J.
Hsieh, 2017.

it
N)
yel
Q

@ Building a single decision tree

@ Tree boosting and random forest

Questions?

DA

