CS260: Machine Learning Algorithms

Lecture 9: Tree-based Methods

Cho-Jui Hsieh UCLA

Feb 11, 2019

Outline

- Decision Tree
- Random Forest
- Gradient Boosted Decision Tree (GBDT)

Decision Tree

- Each node checks one feature x_i:
 - Go left if x_i < threshold
 - Go right if $x_i \ge \text{threshold}$

A real example

Play tennis or not

Decision Tree

- Strength:
 - It's a nonlinear classifier
 - Better interpretability
 - Can naturally handle categorical features

Decision Tree

- Strength:
 - It's a nonlinear classifier
 - Better interpretability
 - Can naturally handle categorical features
- Computation:
 - Training: slowPrediction: fast
 - h operations (h: depth of the tree, usually ≤ 15)

- Classification tree: Split the node to maximize entropy
- Let S be set of data points in a node, $c = 1, \dots, C$ are labels:

$$\mathsf{Entroy}: \mathit{H}(\mathit{S}) = -\sum_{c=1}^{\mathit{C}} \mathit{p}(c) \log \mathit{p}(c),$$

where p(c) is the proportion of the data belong to class c.

- Entropy=0 if all samples are in the same class
- Entropy is large if $p(1) = \cdots = p(C)$

Information Gain

ullet The averaged entropy of a split $S o S_1, S_2$

$$\frac{|S_1|}{|S|}H(S_1) + \frac{|S_2|}{|S|}H(S_2)$$

Information gain: measure how good is the split

$$H(S) - \left((|S_1|/|S|)H(S_1) + (|S_2|/|S|)H(S_2) \right)$$

Information Gain

Averaged entropy: 2/3*1 + 1/3*0 = 0.67Information gain: 1.58 - 0.67 = 0.91

Information Gain

Averaged entropy: 1.51

Information gain: 1.58 – 1.51 = 0.07

• Given the current note, how to find the best split?

- Given the current note, how to find the best split?
- For all the features and all the threshold
 Compute the information gain after the split
 Choose the best one (maximal information gain)

- Given the current note, how to find the best split?
- For all the features and all the threshold
 Compute the information gain after the split
 Choose the best one (maximal information gain)
- For n samples and d features: need O(nd) time

Regression Tree

- Assign a real number for each leaf
- Usually averaged y values for each leaf (minimize square error)

Regression Tree

Objective function:

$$\min_{F} \frac{1}{n} \sum_{i=1}^{n} (y_i - F(x_i))^2 + (Regularization)$$

• The quality of partition $S = S_1 \cup S_2$ can be computed by the objective function:

$$\sum_{i \in S_1} (y_i - y^{(1)})^2 + \sum_{i \in S_2} (y_i - y^{(2)})^2,$$

where
$$y^{(1)} = \frac{1}{|S_1|} \sum_{i \in S_1} y_i$$
, $y^{(2)} = \frac{1}{|S_2|} \sum_{i \in S_2} y_i$

Regression Tree

Objective function:

$$\min_{F} \frac{1}{n} \sum_{i=1}^{n} (y_i - F(x_i))^2 + (Regularization)$$

• The quality of partition $S = S_1 \cup S_2$ can be computed by the objective function:

$$\sum_{i \in S_1} (y_i - y^{(1)})^2 + \sum_{i \in S_2} (y_i - y^{(2)})^2,$$

where
$$y^{(1)} = \frac{1}{|S_1|} \sum_{i \in S_1} y_i$$
, $y^{(2)} = \frac{1}{|S_2|} \sum_{i \in S_2} y_i$

Find the best split:

Try all the features & thresholds and find the one with minimal objective function

Parameters

- ullet Maximum depth: (usually ~ 10)
- Minimum number of nodes in each node: (10, 50, 100)

Parameters

- Maximum depth: (usually ~ 10)
- Minimum number of nodes in each node: (10, 50, 100)
- Single decision tree is not very powerful···
- Can we build multiple decision trees and ensemble them together?

Random Forest

Random Forest

- Random Forest (Bootstrap ensemble for decision trees):
 - Create T trees
 - Learn each tree using a subsampled dataset S_i and subsampled feature set D_i
 - Prediction: Average the results from all the T trees
- Benefit:
 - Avoid over-fitting
 - Improve stability and accuracy
- Good software available:
 - R: "randomForest" package
 - Python: sklearn

Random Forest

Gradient Boosted Decision Tree

Boosted Decision Tree

• Minimize loss $\ell(y, F(x))$ with $F(\cdot)$ being ensemble trees

$$F^* = \underset{F}{\operatorname{argmin}} \sum_{i=1}^n \ell(\mathbf{y}_i, F(\mathbf{x}_i))$$
 with $F(\mathbf{x}) = \sum_{m=1}^T f_m(\mathbf{x})$

(each f_m is a decision tree)

Boosted Decision Tree

• Minimize loss $\ell(y, F(x))$ with $F(\cdot)$ being ensemble trees

$$F^* = \underset{F}{\operatorname{argmin}} \sum_{i=1}^n \ell(\mathbf{y}_i, F(\mathbf{x}_i))$$
 with $F(\mathbf{x}) = \sum_{m=1}^T f_m(\mathbf{x})$

(each f_m is a decision tree)

- Direct loss minimization: at each stage m, find the best function to minimize loss
 - solve $f_m = \operatorname{argmin}_{f_m} \sum_{i=1}^N \ell(y_i, F_{m-1}(\mathbf{x}_i) + f_m(\mathbf{x}_i))$
 - update $F_m \leftarrow F_{m-1} + f_m$
- $F_m(x) = \sum_{j=1}^m f_j(x)$ is the prediction of x after m iterations.

Boosted Decision Tree

• Minimize loss $\ell(y, F(x))$ with $F(\cdot)$ being ensemble trees

$$F^* = \underset{F}{\operatorname{argmin}} \sum_{i=1}^n \ell(\mathbf{y}_i, F(\mathbf{x}_i)) \quad \text{with} \quad F(\mathbf{x}) = \sum_{m=1}^T f_m(\mathbf{x})$$

(each f_m is a decision tree)

- Direct loss minimization: at each stage m, find the best function to minimize loss
 - solve $f_m = \operatorname{argmin}_{f_m} \sum_{i=1}^N \ell(y_i, F_{m-1}(\mathbf{x}_i) + f_m(\mathbf{x}_i))$
 - update $F_m \leftarrow F_{m-1} + f_m$
- $F_m(x) = \sum_{j=1}^m f_j(x)$ is the prediction of x after m iterations.
- Two problems:
 - Hard to implement for general loss
 - Tend to overfit training data

• Approximate the current loss function by a quadratic approximation:

$$\sum_{i=1}^{n} \ell_i(\hat{y}_i + f_m(\mathbf{x}_i)) \approx \sum_{i=1}^{n} \left(\ell_i(\hat{y}_i) + g_i f_m(\mathbf{x}_i) + \frac{1}{2} h_i f_m(\mathbf{x}_i)^2\right)$$
$$= \sum_{i=1}^{n} \frac{h_i}{2} \|f_m(\mathbf{x}_i) - g_i/h_i\|^2 + \text{constant}$$

where $g_i = \partial_{\hat{y}_i} \ell_i(\hat{y}_i)$ is gradient, $h_i = \partial_{\hat{y}_i}^2 \ell_i(\hat{y}_i)$ is second order derivative

Gradient Boosted Decision Tree

• Finding $f_m(\mathbf{x}, \theta_m)$ by minimizing the loss function:

$$\underset{f_m}{\operatorname{argmin}} \sum_{i=1}^{N} [f_m(\mathbf{x}_i, \theta) - g_i/h_i]^2 + R(f_m)$$

- Reduce the training of any loss function to regression tree (just need to compute g_i for different functions)
- $h_i = \alpha$ (fixed step size) for original GBDT.
- XGboost shows computing second order derivative yields better performance

Gradient Boosted Decision Tree

• Finding $f_m(\mathbf{x}, \theta_m)$ by minimizing the loss function:

$$\underset{f_m}{\operatorname{argmin}} \sum_{i=1}^{N} [f_m(\mathbf{x}_i, \theta) - g_i/h_i]^2 + R(f_m)$$

- Reduce the training of any loss function to regression tree (just need to compute g_i for different functions)
- $h_i = \alpha$ (fixed step size) for original GBDT.
- XGboost shows computing second order derivative yields better performance
- Algorithm:
 - Computing the current gradient for each \hat{y}_i .
 - Building a base learner (decision tree) to fit the gradient.
 - Updating current prediction $\hat{y}_i = F_m(\mathbf{x}_i)$ for all i.

- Key idea:
 - Each base learner is a decision tree
 - Each regression tree approximates the functional gradient $\frac{\partial \ell}{\partial F}$

• Key idea:

- Each base learner is a decision tree
- Each regression tree approximates the functional gradient $\frac{\partial \ell}{\partial F}$

$$F_{m-1}(x_i) = \sum_{j=1}^{m-1} f_j(x_i) \qquad g_m(x_i) = \frac{\partial \ell(y_i, F(x_i))}{\partial F(x_i)} \bigg|_{F(x_i) = F_{m-1}(x_i)}$$

• Key idea:

- Each base learner is a decision tree
- Each regression tree approximates the functional gradient $\frac{\partial \ell}{\partial F}$

- Key idea:
 - Each base learner is a decision tree
 - ullet Each regression tree approximates the functional gradient $rac{\partial \ell}{\partial \mathcal{F}}$

- Key idea:
 - Each base learner is a decision tree
 - ullet Each regression tree approximates the functional gradient $rac{\partial \ell}{\partial f}$

Final prediction $F(x_i) = \sum_{j=1}^{T} f_j(x_i)$

Open Source Packages

- XGBoost: the first widely used tree-boosting software
- LightGBM: released by Microsoft
 - Histogram-based training approach—much faster than finding the best split
 - Good GPU support "GPU-acceleration for Large-scale Tree Boosting", H. Zhang, S. Si, C.-J. Hsieh, 2017.

Conclusions

- Building a single decision tree
- Tree boosting and random forest

Questions?