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ABSTRACT

Inferring the 3D structures of nonrigidly moving objects from images is a difficult yet basic problem
in computational vision. Qur approach makes use of dynamic, elastically deformable object models
that offer the geometric flexibility to satisfy a diversity of real-world visual constraints. We specialize
these models to include intrinsic forces inducing a preference for axisymmetry. Image-based
constraints are applied as extrinsic forces that mold the symmetry-seeking model into shapes
consistent with image data. We describe an extrinsic force that applies constraints derived from
profiles of monocularly viewed objects. We generalize this constraint force to incorporate profile
information from multiple views and use it to exploit binocular image data. For time-varying images,
the force becomes dynamic and the model is able to infer not only depth, but nonrigid motion as
well. We demonstrate the recovery of 3D shape and nonrigid motion from natural imagery.

1. Introduction

A primary goal of early vision is to recover the shapes and motions of 3D
objects from their images. To achieve this goal, we must synthesize visual
models that satisfy a bewildering variety of constraints. Some constraints derive
from the sensory information content of images. Others reflect background
knowledge about image formation and about the shapes and behaviors of
real-world objects. Exploiting diverse constraints in combination has proven to
be a challenge. We need models which not only integrate constraints, but
which escape the confines of conventional representations that impose simplify-
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ing assumptions about shape and motion. Computational vision calls for
general-purpose models having the capability to accurately represent the
free-form shapes and nonrigid motions of natural objects—objects with which
the human visual system copes routinely. Clearly, we need new models that
can accommodate deformation, nonconvexity, nonplanarity, inexact symmetry,
and a gamut of localized irregularities.

We propose a physically based modeling framework for shape and motion
reconstruction of free-form flexible objects from their images. In this
framework, objects are modeled as elastically deformable bodies subject to
continuum mechanical laws. Constraints are expressed as forces applied to
these bodies. The applied forces deform the elastic models and propel them
through potentially complicated motions such that they satisfy the available
constraints over time. We develop algorithms for inferring from natural images
the structures and motions of flexible objects moving nonrigidly in three
dimensions. The algorithms compute detailed 3D object models directly from
image intensity data without making use of intermediate optic-flow fields or
2.5D surface representations.

To reconstruct models directly from natural images that possibly involve
significant occlusions, we must exploit several powerful constraints in unison.
Our physical models focus the constraints in a natural way—by summing
together the associated forces. There are two types of forces: Intrinsic forces
encode constraints internal to our deformable models. Extrinsic forces couple
the models to the external image data and provide an avenue for user
interaction.

1.1. Intrinsic constraints

The intrinsic constraints reflect generically valid assumptions about natural
objects. Our deformable models apply a basic constraint that is characteristic
of physical bodies: surface coherence. The constraint is inherent in the elastic
forces prescribed by the physics of deformable continua—these forces elicit
piecewise continuous deformations.

A second generic constraint built into our models is symmetric regularity, an
attribute of many natural and synthetic objects. Rather than imposing strict
symmetries through explicit parameterization, we design more liberal sym-
metry-seeking intrinsic forces. These forces constrain the deformations of the
model in order to give it a preference for certain desired symmetries. Repre-
senting symmetry as constrained deformation rather than through geometric
parameterization frees the model from the shackles of particular parametric
shape families such as, say, the quadrics—spheres, cylinders, ellipsoids, etc.

Our work to date considers the reconstruction of the 3D shape and nonrigid
motion of objects possessing approximate axial symmetry. Our axisymmetry-
seeking model of shape is essentially a deformable tube surrounding and
coupled to a deformable spine. The coupling results from intrinsic forces that
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imbue the combined model with a preference for axisymmetry. In this regard,
our model is close in spirit to the generalized cylinder representation first
recommended in 1971 by Binford as a convenient description of 3D surfaces
for the purposes of vision [1].

Generalized cylinders often are overly restrictive in that they can represent
with accuracy only perfectly axisymmetric shapes. Since some amount of
asymmetry is evident in many synthetic and most natural shapes, generalized
cylinders can result in a loss of crucial information about objects. By contrast,
the symmetry-seeking model accommodates deviations from symmetry by
deforming. Only as the intrinsic forces are strengthened does the symmetry-
seeking model tend to impose the strict symmetries of a generalized cylinder.
As the intrinsic forces are weakened, however, the model will be able to
faithfully represent increasingly asymmetric shapes, although axisymmetric
shapes have greater stability and hence are preferred.

1.2. Extrinsic constraints

The extrinsic constraints reflect, in part, observations about the environment
that can be extracted from sensory data. Although, in principle, we can exploit
within our framework a variety of image-based cues, including shading and
texture, the present paper makes exclusive use of information about profiles
(the profile of an object, also known as its occluding contour, refers to the
curve which outlines the image region covered by the projection of the object).
The human visual system has a remarkable ability to infer the 3D shapes of
objects from their 2D profiles in images. To demonstrate this ability, David
Marr was fond of showing Picasso’s “Rites of Spring,” which consists entirely
of silhouettes (Fig. 1).

Silhouette information in confluence with the a priori constraints intrinsic to
symmetry-seeking deformable models proves sufficient to recover 3D shapes.
For example, Fig. 2 illustrates the reconstruction of Picasso’s “Rites” directly
from the silhouettes in Fig. 1 using 43 instances of the symmetry-seeking
model. The symmetry-seeking models are embedded in a force field which
encodes the profile information. The ambient forces mold the deformable
models to make their 3D shapes consistent with the observed 2D profiles of
objects or their subparts. Perfect axisymmetries are generally absent from the
reconstructed shapes, as dictated by the artistic silhouettes.

Another possible source of extrinsic constraints is a human operator. We
augment the ambient force field with forces controlled by computer pointing
devices, thereby providing opportunity for a user to willfully guide the recon-
struction process. We can create symmetry-seeking models and pull or push
them through space while we monitor their shapes and motions as wire-frame
projections on the image plane(s). As we bring models near imaged objects of
interest, we observe them reconstructing the detailed shapes of these objects.
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Fig. 1. “‘Rites of Spring’ by Pablo Picasso. We immediately interpret such silhouettes in terms of
particular three-dimensional surfaces—this despite the paucity of information in the image itself. In
order to do this, we plainly must invoke certain a priori assumptions and constraints about the
nature of the shapes.” (D. Marr [2, p. 213)).
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Fig. 2. 3D rendition of Picasso’s “Rites.” This 3D reconstruction employs 43 instances of the
symmetry-seeking model. The instances were reconstructed semi-automatically from the silhouet-
tes in Fig. 1 (see text).
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On a sufficiently powerful computer, deformable models offer an interactive
modeling medium of practical interest in its own right. Nonetheless, our
long-range goal in the context of machine vision is to replace the user with fully
automatic top-down control processes, possibly linked to knowledge bases.

1.3. The reconstruction method

In this paper, we first review the special case of shape recovery from a static
monocular view [3], then we generalize our approach to shape and motion
recovery from input data consisting of a temporal sequence of binocular image
pairs.

Figure 3 illustrates the reconstruction of a crook-necked squash from its
monocular image using a symmetry-seeking model. The user initializes the

Fig. 3. Reconstruction of a 3D symmetry-seeking model. (a) Squash image. (b) User-initialized
spine shown in black. (c) Initial tube. (d) Reconstructed model displayed as a wire frame projected
into the image.
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model by specifying the projection of the spine in the image plane near the
medial axis of the object. In the monocular case the model is subject to
extrinsic forces expressed as the gradient of an image potential function. The
potential is a measure of the local contrast in the image after an appropriate
smoothing transformation. Hence, the high contrast contour in the image (by
assumption, the profile of the object) attracts the occluding boundary of the
model (the occluding boundary of a 3D solid refers to the locus of points along
which lines of sight graze its surface). The shape of model achieves a fixed
point in the ambient force field. At equilibrium, the model’s occluding
boundary, relative to the viewpoint associated with the image is consistent with
the shape of the object profile in the image. The model’s intrinsic continuity
and symmetry forces specify 3D shape over the remainder of its surface. Figure
4 sketches the monocular reconstruction scenario.

The image potential can be generalized to exploit more complete geometric
information provided by profiles in multiple images acquired from different
viewpoints around an object. For the particular case of stereo, the potential
incorporates two images from slightly different vantage points. Deprojection of
its gradient through a binocular camera model creates a stereo force field in
space. Points on the model’s occluding boundaries with respect to both the left
and right eye are sensitive to the stereo force field. The forces position
boundary points laterally and in depth such that their binocular projections
coincide as much as possible with object profiles in both images. By attending

Symmetry-Seeking Model

Image Plane

Viewpoint

__

Profile of Imaged Object

Consistent 3D Shape

Fig. 4. Monocular reconstruction scenario. The arrows depict extrinsic forces in space which act on
the symmetry-seeking model’s occluding boundary as seen from the viewpoint. The forces deform
the 3D model so as to make its image plane projection (dotted curve) more consistent with the 2D
profile of the imaged object. The model comes to equilibrium as soon as its 3D shape achieves
maximal consistency with the image data.
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to the occluding boundary associated with each image individually, our method
overcomes the difficulties that boundaries of smooth objects are known to
present to conventional stereo matching techniques.

When the objects under consideration move, the ambient force field be-
comes dynamic. It carries the model through nonrigid motions, continually
molding its shape to maintain maximal consistency with the evolving image
data. The evolution of the model is computed by numerically integrating the
partial differential equations of motion for the deformable body as it reacts to
the dynamic force field.

The remainder of this paper is organized as follows: Section 2 discusses our
approach relative to other work in vision and modeling. Section 3 describes the
geometry and dynamics of the deformable symmetry-seeking model. Section 4
describes the image forces; first the monocular force, then the more general
motion—stereo force. Section 5 briefly overviews the implementation of the
model reconstruction algorithm. Section 6 presents results. Section 7 concludes
the paper with a discussion.

2. Background
2.1. Constraint-based modeling

The work in this paper develops further a constraint-based modeling paradigm
which has been successful on a variety of problems in computer graphics and
animation as well as in computer vision: Terzopoulos et al. [4] apply physical
constraints to deformable curve, surface, and solid models to construct and
animate computer graphics objects made of simulated rubber, cloth, and other
flexible materials. Witkin et al. [5] apply geometric constraints to parameter-
ized shape primitives such as cylinders or spheres to automatically dimension,
assemble, and animate objects constructed from such parts. Barzel and Barr [6]
assemble articulated objects with dynamic constraints and simulate these
objects with accurate Newtonian dynamics.

Witkin et al. [7] subject a deformable sheet in image coordinates to
constraint forces derived from area correlation to perform stereo reconstruc-
tion in the style of the 2.5D sketch (Fig. 5(c)). Terzopoulos et al. [3] use
symmetry-seeking models in a limited way to perform object reconstruction
from static monocular profiles (Fig. 5(d)). Kass et al. [8] apply image-based
constraints to deformable planar curves, dubbed ‘‘snakes,” to interactively
locate and track edges and other image features (Fig. 6). Platt [9] extends a
deformable space curve model into a space-time surface, and uses it to recover
rigid motion.

2.2. Comparison to conventional models

The elastically deformable models developed in this paper have evolved from
variational models for visual surface reconstruction [10]. A number of features
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distinguish our modeling approach from the norm in computational vision. The
comparison is summarized by Table 1.

Conventional models of 3D shape are purely geometric, hence passive. By
contrast, our deformable models are active. They react to extrinsic forces as
one would expect real elastic objects to react to physical forces. This is because
deformable models are governed by physics; specifically, by the principles of
elasticity theory as expressed through Lagrangian dynamics. Not only are these
models suitable for reconstructing free-form natural objects undergoing non-
rigid motion, but they also suggest a powerful approach to creating realistic
graphical animation of simulated objects possessing such properties [4]. The
purely geometric models in common use, being kinematic, offer no such
possibilities.

The distributed nature of deformable models enhances their representational
power. Every material point potentially contributes three spatial degrees of
freedom which are mutually constrained with variable tightness by the elastic
forces intrinsic to the model. Consequently, the geometric coverage of deform-
able models can be significantly broader than the lumped-parameter families of
shapes such as the superquadric models employed in computer graphics by
Barr [11] and advocated for use in computer vision by Pentland and others
[12, 13]. These lumped-parameter models are capable of accurately represent-
ing only a restricted class of artificial objects because they “wire into the
parameterization’ a relatively small family of shapes, rather than place generic
constraints on shape as do our deformable models. Lumped-parameter models
cannot immediately accommodate most natural objects of interest, so precise
hierarchical subdivision and parameterized deformations become practical
necessities to contend with [14, 15]. By contrast, the free-form flexibility of our
deformable models renders them immediately adaptable to natural shapes.

Our symmetry-seeking model is inspired by the idea of generalized cylinders
first proposed by Binford [1], then implemented and further developed in
several subsequent papers [16-22]. The generalized cylinder model is an
intuitively appealing abstraction of elongated, axisymmetric shapes. Our model
captures axisymmetry much like the generalized cylinder; however, we take

Table 1

Deformable models versus conventional models
Deformable models Conventional models
Physics and geometry Only geometry
Active Passive

Dynamic Kinematic
Distributed Lumped parameter
Broad coverage Narrow coverage

Controlled constraints Strict constraints
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seriously the fact that many objects of interest are only approximately sym-
metric.

A major difference between our deformable model and generalized cylinders
is that, while generalized cylinders impose symmetry constraints on objects
they represent—inevitably with some loss of detailed shape information—the
forces intrinsic to our model express preference for certain symmetries, but the
model is not limited to strictly symmetric shapes. As the intrinsic forces are
strengthened, the symmetry-seeking model will tend to impose the strict
symmetries of a generalized cylinder. Conversely, by weakening the intrinsic
forces, the model acquires the capacity to represent irregular objects with
significant fine structure (assuming, of course, that sufficient constraint is
maintained so that the reconstruction problem remains well-conditioned for the
image data under consideration). Shape representations capable of applying
constraint in this controllable manner are desirable for reconstruction and
recognition; an early example is the spring—template shape model proposed by
Fischler and Elschlager [23].

2.3. Recovery of nonrigid motion

Among the contributions of the present paper is a technique for recovering
from image data the structure and motion of nonrigid objects in space. The
significantly simpler case of recovering rigid motion has a long history and
continues to attract much attention in computational vision. The literature is
replete with analyses of the minimal sets of pointwise motion data sufficient to
solve the structure-from-motion problem uniquely, subject to a rigidity as-
sumption (see the survey [24]). However, a rigid-body assumption can be
sensitive to noise, and it is clearly inappropriate when dealing with flexible
objects.

In recent years, a desire to relax rigidity assumptions has begun to motivate
new investigations into using motion information to invert the optical projec-
tion equations. Initial computational analyses treat restricted types of nonrigid
motion—such as articulated bodies [25, 26]—while subsequent work recognizes
the need for further generalization. Webb and Aggarwal [27] shed the global
rigid-body assumption in favor of assuming local rigidity of planar patches.
Under orthogonal projection, this implies a measurable affine distortion in the
image plane. They are able to recover surface orientations from intensity and
motion information. Chen [28] discusses the representation of nonrigid objects
from the perspective of linear elasticity theory and generalizes the method of
Webb and Aggarwal to handle perspective projection while presupposing a
weaker assumption: that object surfaces deform isometrically (only bending
occurs, so that distances along the surface are preserved). Koenderink and van
Doorn [29] pursue a similar surface isometry assumption and they present an
algorithm for recovering local aspects of shape from two views of a seven-point
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polygonal model. Ullman [30] considers the problem of recovering the struc-
ture of arbitrarily deforming ‘“objects” consisting of a set of points in space
from the projected positions of these points at several successive time instants.
His algorithm incrementally adjusts the 3D positions of points in a model to
best account for the projected positions, while maximizing the model’s rigidity
across successive frames, as measured by the weighted sum of squared devia-
tions of 3D distances between all pairs of points (global interaction).

Our approach goes beyond the above methods in significant ways, while
retaining some of their best features. Our methods apply successfully to raw
image sequences of extended natural objects undergoing nonrigid motion, not
just to pointwise synthetic data. Our models accommodate arbitrary deforma-
tions, including bending, stretching, and shearing components. In principle,
they also permit piecewise continuous deformations with explicit treatment of
discontinuities (although the present paper does not pursue discontinuities).
The underlying formulation is based on elasticity theory, and the elastic
deformation forces are computable by local interaction in the discretized elastic
body.

2.4. Multimodal integration and multiple views

The continuum mechanical equations of motion that govern our models
provide a conceptually simple mechanism for integrating multiple visual mo-
dalities and information from multiple views. Each information source makes a
contribution to the net force field acting on the model (cf. [31]).

Techniques have been developed for constructing volumetric descriptions of
objects by intersecting projective cones associated with profiles in images taken
from multiple viewpoints [32, 33]. Active sensors have been incorporated as
well [34]. Although it makes use of profiles in multiple images, the volume
intersection approach is fundamentally different from ours.

We demonstrate multimodal and multiview integration by combining stereo
with motion in order to recover the evolving shape in proper depth robustly.
Several researchers have investigated motion-stereo fusion as a means of
facilitating the recovery of 3D velocity information from images [35-39].
Typically, they treat the case of observers moving through static environ-
ments.

Our approach is intended to handle flexible objects moving independently. It
extracts 2D shape information directly from profiles and is able to estimate
depth over each object’s surface from profiles in stereo image pairs. Our
current algorithms to do not involve explicit stereo or motion correspondence
matching computations; each model simply tracks its associated object via the
evolving force field to produce a 3-space velocity field over the entire surface of
the object (including hidden surfaces) in proper depth.
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3. The Symmetry-Seeking Model

Before we review the formulation of the symmetry-seeking model proposed in
[3], here is an informal description. Consider a deformable sheet made of
elastic material (a membrane—thin-plate hybrid). Roll this sheet to form a
tube. Next, pass a deformable spine made of similar material down the length
of the tube. At regularly spaced points along the spine, couple it to the tube
with radially projecting forces so as to maintain the spine in approximate axial
position within the tube. Include additional forces that coerce the tube into a
quasi-symmetric shape around the spine. Finally, provide extra control over
the shape by introducing expansion/compression forces radiating from the
spine. The rigidities of the spine and the tube are independently controllable,
and their natural rest metrics and curvatures can either be prescribed or
modified dynamically. If the circumferential metric of the tube is set to zero,
for instance, the tube will tend to contract around the spine, unless the other
forces prevail. The model will shorten or lengthen as the longitudinal metrics
of the tube and spine are modified. In short, a variety of interesting behavior
(including viscoelasticity and fracture) can be obtained by adjusting the control
variables designed into the model.

We represent the spine and tube as geometric mappings from material
coordinate domains into Euclidean 3-space R’ We express the mappings as
vectors whose component functions denote time-varying components of posi-
tion in space. The spine is a deformable space curve defined by mapping a
univariate material coordinate domain s €[0, 1] into R’: wv(s, t) = (X(s, 1),
Y(s, t), Z(s, t)). The tube is made from a deformable space sheet defined by
mapping a bivariate material coordinate domain (x, y) € [0, 1]* into R’: v(x, y,
=X, y, 1), Y(x, y, 1), Z(x, y, 1)).

A functional €(v) characterizes the deformable material by associating a
nonnegative strain energy with any admissible mapping. In our deformable
models, € is an instance of the controlled-continuity spline functions defined in
[40].

The continuum mechanical equation

62_v dv  d8é(v)

Kozt ot oy @ (1)

governs the nonrigid motion of a body in response to a net extrinsic force f(v),
where u is the mass density function of the deformable body and v is the
viscosity function of the ambient medium [41]. The third term on the left-hand
side of the equation is the variational derivative of the strain energy functional
& [42]; it expresses the elastic force internal to the body.

The deformation energy associated with the spine mapping v(s, t) is given by
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where vertical bars denote Euclidean vector norms. Here, w (s, t) determines
the local tension along the spine, while w,(s, t) determines its local rigidity.

The deformation energy associated with the sheet mapping v(x, y, ) is given
by the functional
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The weighting functions w,,(x, y, t) and w,,(x, y, t) locally control the tension
of the sheet along each material coordinate curve, while w,(x, y, ),
wi,(x, ¥, 1), and wy,(x, y, t) locally control its rigidities.

Aside from boundary terms, the variational derivatives of €° and &'
expressing the elastic forces are given as follows:
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The weighting functions in the above expressions control the elastic proper-
ties. When necessary, we can regulate the natural shapes of the deformable
bodies—i.e., their equilibrium shapes exclusive of external forces—through
suitably defined control functions. For instance we can encourage the spine to
maintain a nonzero natural arc length L,(s), by defining

L),

where K| is a tension factor. Similarly we can define

v
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to encourage natural lengths L, (x, y) and L,,(x, y) for the sheet along the x

Wio = K10< - Lm) > Wor = Km(
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and y material coordinate directions respectively. Analogous expressions for w,
will encourage a natural nonzero curvature for the spine, while for w,,, Wiy,
and w,, they will encourage natural curvatures for the sheet.

To allow discontinuities to occur in the spine at any material point s,, we set
w,(sy, t) = W,(s,, £) =0 which permits a position discontinuity, or w,(s,, t) =0
which permits a tangent discontinuity. The obvious extensions hold with regard
to the five control functions associated with the sheet. See [40] for further
details regarding discontinuities.

The tube is formed by prescribing boundary conditions on two opposite
edges of the sheet that “seam” these edges together. We seam the edge x =0
to the edge x = 1, letting y span the length of the tube. The required periodic
boundary conditions are

v
ax

_dv
0.y.)  0X

v(0, y,t)=v(l, y, 1), (6)

(ayao’

To couple the two components, we first identify y =, bringing into corre-
spondence the spine coordinate with the coordinate along the length of the
tube (see Fig. 7). We then distinguish the mapping function of the spine v°(s, t)
from that of the tube v'(x, s, ) with superscripts S and T.

gtil

X

Fig. 7. Geometric representation of the symmetry-seeking model. For fixed time ¢, the spine and
tube components of the model map material coordinates y =s and (x,s), respectively, into
positions in R’.
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We define

v’

ax

1
v (s)= % JUT dx

0

to be the centroid of the coordinate curve (s = constant) circling the tube,
whose length is given by

I(s) :f

We also define the tube’s radial vector function with respect to the spine as
r(x,s)=wv' —v’, the unit radial vector function A(x, s) = r/|r|, and

v’
— | dx.
dx .

v’
— | dx
ax

=1 | I

as the mean radius of the coordinate curve s = constant.
The spine is coerced into an axial position within the tube by introducing the
following forces on the spine and tube respectively:

fos,=a@" - 0v*),

T T S (7)
fa('x’s’ t): _(a/l)(lj -0 )’
where a(s) controls the strength of the forces.
To encourage the tube to be radially symmetric around the spine, we
introduce the force

fo(x, s, 0)=b(F —|r|)? (8)

on the tube, where b(s) controls the strength of the force.
Finally, it is useful to provide control over expansion and contraction of the
tube around the spine. This is accomplished by introducing the force

f;r(x, s, t)y=cr, 9)

where c(s) controls the strength of the force. The tube will inflate wherever
¢ >0 and deflate wherever ¢ <0. In particular, the two open ends of the tube
can be cinched shut by assigning large negative values to ¢(0) and ¢(1), thereby
creating a sausage-like surface. This force is also useful for counteracting a
tendency of the tube to contract around the spine due to the quadratic
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curvature approximations appearing in . Use of the true curvature tensor in €
will alleviate the contraction problem directly, but at the expense of non-
linearities that are computationally expensive and badly behaved numerically.

Summing the above coupling forces into the equations of motion (1)
associated with the spine and tube, we obtain the following dynamic system
describing the motion of the symmetry-seeking model:

yv°  av®  38° ’P° |
i Y e e e
9ot av' | 38" dP'
TR TR L

1
(10)

T T T
tfotfotfe-

The elasticity terms on the left-hand side of these coupled equations are given
by (4) and (5) (with y =s in the latter).

P5(v°) and P"(v') are generalized potential functions associated with the
spine and tube respectively. Their variational derivatives express the extrinsic
forces that act on these bodies.

4. Extrinsic Force Fields

This section explains how we transform one or more input images into
generalized potential functions suitable for reconstruction. The resulting force
field brings instances of the symmetry-secking model into maximal consistency
with the images, and it maintains the consistency over time in the dynamic
case.

More specifically, profiles in the images exert an attraction over the model
such that the deformable tube, as projected into the image planes through a
suitable camera model, accounts as much as possible for the observed profiles.
In this paper, the spine of the model experiences no image-based forces
(P® =0), although we project it into the image plane along with the tube for
display purposes.

To simplify the potential functions, we consider objects with subdued texture
which are imaged in front of a contrasting background. Hence, we can expect
that the stronger image intensity gradients are associated with object profiles.
The force fields that we propose yield interesting results, their simplicity
notwithstanding.

4.1. Monocular potential

We first define a generalized potential function P" to couple the tube to a
static, monocular image. Given the image of an object, the ambient force field
resulting from this potential deforms the symmetry-seeking model to make its
shape consistent with the object’s profile in the image. The occluding boundary
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of the deformable tube with respect to the viewpoint is made sensitive to this
force field which attracts it towards significant intensity gradients in the image.
Let I(£,m) be the image intensity function. We define the potential

P'(0") = BIV(G, * 1[0 )], (11)

which imparts on the tube boundary an affinity for large image intensity
changes. The operations symbolized by the expression are as follows: The
operator II denotes an imaging projection. IT [vT] expresses the projection of
the tube v'(x, s) = (X"(x,s), Y'(x,s), Z"(x, s)) from 3-space into the image
plane (&,7m). The expression G, *[ denotes the image convolved with a
(Gaussian) smoothing filter whose characteristic width is o. The operator V
denotes the gradient of the smoothed image, and the vertical bars signify the
magnitude of this gradient.

The weighting function B(x, s) is nonzero only for material points (x, s) near
occluding boundaries of the tube which are not obscured behind other objects.
We activate points near occluding boundaries by defining

_J1, iflien|<T,
B(x’s)“{o, otherwise , (12)

where 7 is a small threshold (nominally 0.05),

_ (avT 8vT> /
n(e )=\ * %
is the unit normal over the surface of the tube, and i(x, ) is a unit vector from
the imaging focal point to any point (x, s) on the tube.

While a perspective projection is generally appropriate for II, we have
obtained satisfactory results in the examples considered below using ortho-
graphic projection I1:(£,n) = (X, Y). Everywhere over the tube in this case, i
is the unit normal to the image plane, and the resulting force field acts on the
tube in a direction parallel to the image plane.

Figure 8 illustrates the effect of the image operations for progressively larger
values of o (we used similar operations in [8]). The ambient force field adjusts
the 3D shape of the model’s occluding boundary in space so as to maximize the
magnitude of the image gradient (darkness) along the projected model profile
in the image. By using potential functions at several scales, we can trade off
localization accuracy against long-range attraction. As is evident from the
figure, broad wells surround the local minima of the image potential at the
coarser scales. Such wells attract the model from a considerable distance, but
the associated minima are blurred and localize the profiles in the image data
rather poorly. Continuous scale space [43] provides a good medium for
obtaining both long-range attraction and good localization. We can apply a

v’ av”
—_— X JRE—
ax as
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c d

Fig. 8. Creating an image potential function. Result of applying image operations (see text) to the
squash image of Fig. 3. (a)-(d) o increases progressively. Darkness indicates magnitude of local
gradient of the Gaussian blurred image. Each processed image has been rescaled to span the
available intensity range.

continuation method in the image potential scale space, parameterized by o,
which allows the model to equilibrate at a coarse scale, then continuously
reduces the smoothing o to track an equilibrium trajectory from coarse to fine
scale [7].

4.2. Binocular potential

The next refinement is to match the deformable model to an object’s profiles in
a binocular image pair. The symmetry-seeking model is free to undergo motion
in 3-space while deforming such that its stereoscopic projection through the
binocular camera model best accounts for the observed profiles in both images.

Let I, (£, m,) represent the left and I (&g, ny) the right image intensity
function. The binocular potential function P" is a straightforward extension of
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the monocular case. We define
PT(UT) = BLIV(GU * IL(HL[UT]))I + BRIV(GU * IR(HR[DT]))| > (13)

which imparts on the tube boundary an affinity for large intensity changes in
both images. The expressions IT; [v'] and IT;[v"] denote the two-component
stereoprojection of the tube v" = (X" (x, 5), Y"(x, s), Z"(x, 5)) into the image
planes (&, 7, ) and (&g, nr) respectively. The image-processing operations are
the same as for the monocular case.

We activate points near occluding boundaries with respect to the left image
by defining

it i en|< T,
BL(x’s)_{O, otherwise , (14)

where 7 is a small threshold, n(x, s) is the unit normal over the surface of the
tube, and i; (x, s) is a unit vector from the focal point of the left image to any
point (x, s) on the tube. We define the weighting function B (x, s) for the right
image similarly.

Although it is possible to use a general binocular camera model (see, e.g.,
[44, Section 10.6]), its parameters need not be known with great accuracy for
our approach to work. Consequently, we have found it convenient to employ
the following simplified perspective stereoprojection with eye vergence at
infinity:

I :(¢,m)=X"+aZ", Y"),

T T T (15)
HR:(‘ER’nR):(X —aZ,Y )a
where « is a constant. In this case, i; and iy become unit normals to the left
and right image planes respectively.

4.3. Dynamic potential

When the images are time-varying the ambient force field becomes dynamic. It
carries the model through motions, continually molding its shape to maintain
maximal consistency with the evolving image data. Our method for allowing
the symmetry-seeking model to track an object undergoing nonrigid motion is
as follows. The first frame of the image sequence is presented to the model as if
it were a static scene. The model achieves the best possible reconstruction
using this initial data. The projected boundary points equilibrate at a fixed
point in the ambient force field and the model locks on to the consistent state.

Whereas the equilibrium persists indefinitely in the static case, in the
dynamic case we immediately present the model with the next frame of the
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image sequence. Now the ambient force field is perturbed because of the
motions of objects in the scene. The model actively seeks a new consistent
state by moving towards the nearest fixed point. If the motion of the object is
sufficiently slow and continuous, the model will track the dynamic equilibrium
point, thus updating its state in accordance with the new image information
available to it. By repeating this procedure with each successive incoming
frame, the symmetry-seeking model integrates the incoming information over
time.

One possible variant to our standard nonrigid tracking procedure is a
two-step rigid-deformable technique. With each incoming frame, we first
restrict the model to rigid motion in order to obtain a suboptimal result
quickly. Only then do we allow it to deform in order to account for the residual
nonrigid motion. This method accelerates the numerical solution when objects
under analysis move nearly rigidly.

5. Numerical Solution

The continuous differential equations of motion (10) for the symmetry-seeking
model pose a nonlinear initial boundary value problem. To obtain a numerical
solution, we first perform a semi-discretization in the material coordinates of
the model. We then integrate the resulting coupled system of second-order
ordinary differential equations through time using standard techniques. In the
static field case, we integrate until the viscous damping (7y-term) dissipates all
kinetic energy, thus bringing the model to static equilibrium. In the dynamic
field case, we integrate through time, computing the motion of the model in
reaction to the evolving force field. Numerically, this amounts to solving a
sequence of dynamic equilibrium problems, each solution providing initial
conditions to the subsequent problem.

Semi-discretization in material coordinates is carried out using standard finite
difference approximations on regular grids of nodes [45]. We approximate the
three components of the elastic force 8&%/5v° by discretizing the partial
derivatives in (4) on a linear N, point grid. We use a rectangular N, X N, grid
to similarly discretize the partial derivatives in the components of 3¢ "/dv" in
(5). The extrinsic force components 8P (v")/dv" are computed numerically in
the image domains (£, n) using bilinear interpolation between centrally differ-
enced pixel values.

Finally, we approximate the time derivatives in (10) at discrete times using
finite differences over regular intervals. We have successfully employed both an
explicit Euler time integration scheme and an analogue to successive overrela-
xation (SOR) to “‘solve” the dynamic equilibrium problems in sequence, each a
large sparse system of algebraic equations. These iterative solution methods
require only local operations, and the former is a parallel scheme. Explicit
solvers are relatively inexpensive per time step (linear in the number of nodes),
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but they quickly become unstable as the intrinsic or extrinsic forces are
increased, thus necessitating tiny time steps. As expected, we observe stability
over larger time steps when using an implicit Euler time integration scheme in
conjunction with matrix factorization methods [45]. The drawback of these
robust, direct solution methods is that they become expensive for finely
discretized models (cubic in the number of nodes).

A good compromise is to use a hybrid technique that combines some of the
benefits of direct and iterative schemes. We have had success with an operator
splitting approach used in alternating direction implicit (ADI) methods
[45, 46]. This efficient procedure exploits the fact that we are dealing with a
rectangular grid of nodes. Each time step of the procedure involves a sweep in
the x direction solving N, independent systems of algebraic equations in N,
unknowns, followed by a sweep in the s direction solving N, independent
systems in N, unknowns. Our strategic linearizations of the elastic forces
permit us to apply the method independently to each of the three tube position
components (X Y", Z"). The spine gives rise to an additional system of
equations in N unknowns for each of its position components (X5, Y%, Z%).

As a consequence of the controlled-continuity deformation model, each of
the unidimensional systems of equations has a pentadiagonal matrix of coeffici-
ents, and it is efficiently solvable (linear time in the number of unknowns)
using direct solution methods. We employ a normalized Cholesky decomposi-
tion step followed by a forward-reverse resolution step. See [47] for a
derivation of the pentadiagonal matrix and for a discussion of the direct
method and [8] for its application to image contour models.

Resolution, a relatively inexpensive step, must be performed at every
iteration as the applied forces change. Matrix decomposition is somewhat more
expensive, but it is required only when the material properties of the model are
altered (e.g., to increase rigidity or to introduce discontinuities). Currently, we
perform only an initial decomposition because we have not yet experimented
with the variation of material properties during solution.

We find that for larger grid sizes and increasingly rigid material the alternat-
ing direction approach evolves solutions faster than the SOR type method that
we employed in [3]. This is attributable to the fact that the direct solution of
each unidimensional system obtained through operator splitting ‘“‘immediately”
distributes to all nodes along two perpendicular parametric grid lines the
effects of forces acting on their common node.

6. Results

Figure 9 shows selected frames from an animation sequence showing the
reconstruction of a single symmetry-seeking model from a monocular image.
Given an image of the squash (Fig. 3), the user initializes the spine’s projection
in the image plane somewhere near the medial axis of the squash. The tube
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begins as a generalized cylinder with uniformly circular cross-section. It inflates
due to the action of the internal expansion forces. As the tube approaches a
profile, the force field due to the significant intensity edge attracts it strongly. It
equilibrates over the profile to reconstruct the nonconvex, quasi-symmetric 3D
shape of the squash, as shown from different angles in the figure. Notice how
the model begins as a generalized cylinder yet recovers the inexact axisymmet-
ry of the squash in the course of reconstruction. By virtue of the symmetry-
seeking constraints intrinsic to the model, hidden surface portions are smoothly
extrapolated from portions in view. Essentially the same reconstruction pro-
cedure applies to each of 43 symmetry-seeking model instances in the recon-
struction of Picasso’s “Rites” in Fig. 2.

The next example involves the reconstruction of two quasi-symmetric ob-
jects, a pear and a potato, from a single image. Figure 10(a) shows the
grey-level image of the still life scene. Notice that the potato partially occludes
the pear in the image. Figure 10(b) shows the initial model configurations,
manually specified by the user. Figures 10(c) and (d), show the reconstructed
3D models from two points of view. To handle the partial occlusions (incom-
plete boundaries), we nullify the weighting function B(x, s) over portions of an
occluded model’s surface which are obscured from the viewpoint by another
model. Appropriately, the obscured parts of the model feel no image forces,
because they are invisible in the image. We use a standard 3D ray-casting
technique in conjunction with the projection operation IT in (11) in order to
test surface patches for visibility using a depth buffer. The ray-casting opera-
tion requires knowledge of the relative depth ordering of the objects. In the
monocular case, this information is not available directly, so the user presently
specifies the relative depth ordering (although it may be possible to obtain local
depth ordering information automatically, through analysis of occlusion cues in
the image [48]).

The most direct way of obtaining true depth information is through stereo.
The reconstruction method was applied to a stereo—motion sequence consisting
of 40 video fields portraying the 3D motion of a human finger. The imaging
apparatus was a beam-splitting stereo adaptor mounted on a CCD camera. The
user specifies an initial spine on the first stereo pair shown in Fig. 11(a). The
initial tube is a cylinder around the spine (Fig. 11(b)). The model’s differential
equations (using u =0) are solved on a N, X N, =25 X 25 grid for the initial
frame (requiring about 40 alternating direction iterations), thus reconstructing
the shape of the object in proper depth. Figures 11(c)—(e) show the reconstruc-
ted shape rendered from several viewpoints. Using this equilibrium shape as
initial condition, the equations of motion are then integrated through time over
the remaining frames of the stereo sequence (using 20 alternating direction
iterations per frame). This produces a dynamic 3D reconstruction of the
finger’s shape and motion. Figure 12 shows six representative frames of the
sequence along with the corresponding reconstructed shapes in motion.
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7. Discussion

Referring back to Fig. 5, we can compare the 3D model reconstruction with a
2.5D visible-surface reconstruction of the still life scene. The 2.5D reconstruc-
tion of the stereo images shown is generated by a stereo algorithm that we
developed in [7]. The algorithm generates depth discontinuities along the
occluding boundaries of the objects. Profiles of smooth objects and the
occluding boundaries which generate them are known to present difficulties to
conventional stereo matching techniques. This is mainly because profiles
observed in the left and right image map to different occluding boundaries on
smooth objects. Our method for reconstructing models directly from images
overcomes this problem. The use of a full 3D model in tandem with separate
left and right projection operators simplifies the association of each image
profile with the suitable occluding contour on the model.

In our experience, the user need not initialize the spine (or tube) of the
model with any great accuracy. Typically, the user draws rough medial axes
running more or less the length of the objects of interest in the image. Figure
13(a) shows a typical set of initial spines. With the tubes starting out as
cylinders extruded along these spines, the reconstruction process makes the
necessary adjustments to both the spine and tube (Fig. 13(c)). Figure 13(b)
shows the projections of the final spines. Compared to the initial axes, the final
axes are improved; they are smoother and have suitable lengths. It appears
possible, therefore, to instantiate reasonable spines automatically using medial
axis transform [49] or smoothed local symmetry [50] algorithms, and perhaps
our reconstruction method, where applicable, could improve the axes gener-
ated by such algorithms.

In the restricted case of computing 3D models of objects from a single
monocular image, we tacitly assume that a suitable viewpoint has been chosen
such that all significant object features are visible, and that the axis of the
object is not severely inclined away from the image plane. However, in the
more general case where we make use of stereo information, we experience
little difficulty in tracking the shape and motion of an object even if its axis tilts
away from the image plane significantly.

A shortcoming of our current algorithms stems from the fact that profile
information alone, even moving stereo profiles, provide incomplete informa-
tion about objects. When image data is not utilized over substantial portions of
the object’s surface, the symmetry-seeking model may yield a reconstructed
shape more symmetric than the actual one. Also, it is difficult to detect
rotations around the object’s axis exclusively from moving profile infor-
mation. Region-based measures over the surface would be helpful in this
regard.

Despite the limitations of our current implementation, a crucial advantage of
our approach is the ease of integrating additional constraints into the solution.
For instance, we can straightforwardly generalize the binocular potential
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Fig. 13(c). Full resolution wire-frame grids of the reconstructed models.

function (13) as a sum over any number of views taken from known viewpoints
around the object (cf. [33]). A focus of our current work is the formulation and
implementation of extrinsic constraints that exploit shading and texture infor-
mation over the entire visible surface, as well as stereo—motion constraints
based on local area correlation which promise to effectively supplement our
current edge-based information. By applying more sophisticated image-proces-
sing methods, we expect to obtain extrinsic forces that can deal with textured
objects and more general imaging conditions. We also look forward to incor-
porating more sophisticated analytic camera models into the generalized
potential functionals and to automatically solve for the camera parameters as
an integral part of the reconstruction procedure.

We are investigating the use of scale space continuation methods [7] to
partially automate the initialization of models. For the time being, however,
our algorithms remain interactive, and it is up to the user to supply reasonable
initial conditions. Nonetheless, our approach suggests force constraint mechan-
isms for automatically bringing higher-level knowledge to bear on the recon-
struction process. The development of such mechanisms is an interesting topic
for future research.
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