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Abstract

This paper proposes a non-self-intersecting multiscale deformable surface model with an adaptive remeshing
capability. The model is specifically designed to extract the three-dimensional boundaries of topologically simple but
geometrically complex anatomical structures, especially those with deep concavities such as the brain, from volumetric

medical images. The model successfully addresses three significant problems of conventional deformable models when
dealing with such structures-sensitivity to model initialization, difficulties in dealing with severe object concavities, and
model self-intersection. The first problem is addressed using a multiscale scheme, which extracts the boundaries of

objects in a coarse-to-fine fashion by applying a multiscale deformable surface model to a multiresolution volume image
pyramid. The second problem is addressed with adaptive remeshing, which progressively resamples the triangulated
deformable surface model both globally and locally, matching its resolution to the levels of the volume image pyramid.

Finally, the third problem is solved by including a non-self-intersection force among the customary internal and
external forces in a physics-based model formulation. Our deformable surface model is more efficient, much less
sensitive to initialization and spurious image features, more proficient in extracting boundary concavities, and not

susceptible to self-intersections compared to most other models of its type. This paper presents results of applying our
new deformable surface model to the extraction of a spherical surface with concavities from a computer-generated
volume image and a brain cortical surface from a real MR volume image. # 2001 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

Extracting the boundaries of anatomical structures
from medical images is an important preprocessing step
for a variety of medical applications, including visuali-

zation, quantitative analysis, motion tracking, and the
registration of images obtained from two modalities.
Traditional boundary extraction methods, such as edge
detection, contour following, surface tracking, and

isosurface generation via thresholding (e.g. Marching
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Cubes), are sensitive to noise and sampling artifacts
and it is often difficult to generate closed, connected

boundary surfaces.
In contrast, deformable models, which include the

popular deformable contours or snakes [1] and deform-

able surfaces [2], have proved a powerful technique for
the extraction of boundaries from medical images by
combining the bottom-up approach of edge detection
with the top-down approach of model-based geometric

constraints. In general, the behavior of deformable
model is governed by internal and external forces.
Internal force describes the model as a physical object

with stretchy and flexible characteristics. External force
describes how the model is attracted to the image data.
The model-based approach provides several desirable

features such as inherent connectivity and smoothness
that counteract noise and boundary irregularities,
compact and analytic object representations, and the

ability to incorporate prior knowledge of expected
anatomic shape [3,4].
There are two possible approaches for extracting the

boundaries of anatomical structures from volumetric

medical images using deformable models. One is a slice-
by-slice approach using 2D deformable contours. Start-
ing with an initial image slice, a snake model is applied

to extract the boundary contour of the structure. The
resulting snake is then propagated to neighboring slices
and used as an initial contour in these slices. This

process is repeated until the entire 3D boundary surface
is represented as a sequence of 2D contours generated
from all slices which contain the object [5–7]. However,
this approach often causes discontinuities or inconsis-

tencies between neighboring slices and has difficulties
extracting the contours near the first and last image
slices bounding the anatomic structure. A fair amount of

user interaction is required on many slices as the snake
deforms in order to ‘‘pull’’ it out of an incorrect
solution. The other approach is to extract the entire

boundary surface of the structure all at once using a true
3D deformable surface model or ‘‘balloon’’. This
approach is more efficient, more robust against bound-

ary irregularities and ensures a globally smooth and
coherent surface between image slices [3]. Balloon
models also maintain the ability of their 2D counter-
parts for intuitive user interaction via forces applied by

the user on cross-sections of the model that are
superposed on an image slice. In this paper, we focus
exclusively on the 3D deformable surface model

approach.
Deformable surface models in 3D were first

introduced in computer vision [2] and computer graphics

[8]. Numerous researchers [9–12] have since explored
the application of these models to boundary extrac-
tion from volumetric medical images. Despite their

many favorable properties for boundary extraction,
most existing deformable surface models (and deform-

able contour models) suffer from three well-known
problems:

* Sensitivity to initialization: Deformable models were
originally designed as interactive models and relied

upon the user to guide them toward the most
appropriate local minima. Therefore, in more auto-
matic boundary extraction scenarios, the initial

model must usually be placed close to the boundaries
of the target object to guarantee good performance
[4]. If the initial model is placed far from the target
object boundary, the model can settle into a local

minimum solution that does not represent the true
boundary. This is essentially due to the local nature
of the external forces which determine the behavior

of the models.
* Inadaptability to boundary concavities: The smooth-

ness of deformable models and the connectivity of

model elements are maintained by internal forces,
which regularize edge lengths and minimize curva-
ture. Smoothness and connectivity constraints allow
a deformable model to bridge gaps in object

boundaries and counteract noise and other boundary
irregularities. At the same time however, strong
internal forces can limit the geometric flexibility of

a deformable model and prevent it from deforming
into boundary concavities. Conversely, weak internal
forces may allow the model to extract concavities but

counteract the desired regularization effect. To
improve the adaptability of a deformable model to
boundary concavities without resorting to the use of

weak internal forces, the model elements should be
locally resampled based on the local geometry of the
object.

* Vulnerability to self-intersections: When deformable

models are deformed according to their internal and
external forces, some model elements may collide
with and intersect other elements. These model self-

intersections generate non-simple surface geometries
and result in the extraction of incorrect object
boundaries. Most conventional deformable models

have no mechanism to prevent self-intersections.

These difficulties have been major obstacles to the

successful and automatic extraction of very complex-
shaped objects. In this paper, we propose a new
deformable surface model capable of extracting the
boundary surfaces of geometrically complex internal

organs, such as the cortex of the brain (which, although
topologically simple, exhibits a convoluted boundary
shape with severe concavities), from volumetric medical

images. Our deformable surface model is represented as
a topologically closed structure consisting of a mesh of
triangular elements, similar to the geometric deformable

model described in [12]. It is deformed by a combination
of external and internal forces applied to the model
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nodes (i.e. the vertices of the triangular mesh). Our
model incorporates three mechanisms in order to

overcome the limitations listed above:

* Multiscale approach: To overcome sensitivity to the

model initialization, we follow [13] and use a pyramid
structure of multiresolution image volumes, built
bottom-up from the input image volume using

successive smoothing processes to remove high
frequencies. We then extract the boundaries of the
object by applying a multiscale deformable surface
model to the image pyramid in a coarse-to-fine

fashion. This approach helps to ensure that a good
solution, relatively independent of the model initi-
alization, can be quickly and efficiently computed by

hiding spurious image features until the model gets
near a rough boundary approximation.

* Adaptive remeshing: To enable the model to deform

into boundary concavities, we use global and local
adaptive remeshing. The remeshing matches the
resolution of the model to the resolution of the
volume image at each level of the pyramid and

regularizes the size of the triangular elements. Also,
when a region of the model is pulled by external
forces towards a desirable image feature, strong

internal forces may limit its movement. Local
adaptive remeshing refines the triangular mesh in
this region, adapting the region shape to the

geometry of the object. This ability allows the
deformable surface model to extract narrow and
deep boundary concavities. In addition, the local

geometric operations used in the adaptive remeshing
do not require a recursive or iterative process.

* Self-intersection prevention: To prevent model self-
intersections, the physics-based formulation of our

model integrates conventional internal and external
forces, as well as a non-self-intersection force. If non-
neighboring triangular elements of the model are

close enough to intersect, the non-self-intersection
force is applied to push the elements apart. This new
force not only effectively prevents model self-inter-

sections without a heavy computational load, but
also helps the model to adapt boundary concavities
(where model self-intersections often occur).

In the remainder of this paper we will first briefly
review related deformable model research in Section 2.
In Section 3, we will then present the overall procedure

to extract object boundaries using our proposed model.
Section 4 will describe our multiscale approach based on
the volume image pyramid. Sections 5 and 6 will

describe adaptive remeshing and our physics-based
model formulation, respectively. In Section 7, we will
present some preliminary results of applying our model

to extract a phantom sphere surface with concavities and
an MR brain cortical surface. Finally, Section 8 will

conclude the paper with a brief discussion and sugges-
tions for future research.

2. Related work

There are three general forms of deformable models in
the literature today: parametric, implicit, and discrete

(i.e. triangular meshes or connected particle systems).
The original deformable models of Kass [1] and

Terzopoulos [2,8] were parametric models, and many
researchers [6,9–11] have also used this form of

deformable model. Parametric deformable models can
provide a compact and analytic description of object
shape and high tolerance to image noise and large gaps

in the object boundary. However, they are not well
suited for extracting geometrically complex objects and
can also exhibit sensitivity to their initial placement due

to their fixed parameterization (i.e. different initial
positions can result in different solutions).
Implicit deformable models [14–16] provide topologi-

cal and geometrical flexibility in an effort to overcome

the limitations of parametric models. They are best
suited to the recovery of objects with complex shapes
and unknown topologies. However, implicit models are

more difficult to control than parametric models and
discrete models [4] and are not amenable to local
reparameterization.

Discrete deformable models [12,17,13,18–22] repre-
sent a contour and a surface as a set of vertices
connected by edges, and control their deformation

through local geometric operations (which may approx-
imate physical forces such as bending or stretching)
associated with each vertex rather than the more
complex physical modeling of a continuous elastic or

plastic structure. Their simple formulation is easily
implementable and supports topological and geometric
flexibility through the local geometric operations. In

addition, the computational cost of a discrete deform-
able model is proportional to the size and complexity of
the object, not the size of the image volume. For these

reasons we represent our deformable surface model in
discrete form.
Our work is related to the discrete deformable model

of Miller et al. [12]. They proposed a closed deformable
polyhedral surface model, or balloon, which grows
(or shrinks) based on a set of constraints until the
balloon reaches the boundary of the object in the

volume image. A rough estimate of the object is quickly
generated using a low resolution model and then the
level of detail desired is achieved by global and local

remeshing. However, they did not address the self-
intersection problem. Chen and Medioni [18] proposed a
dynamic mesh model which can handle complex, non-

star-shaped objects without relying on a carefully
selected initial state by using adaptive local triangle
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mesh subdivision. They applied their model to range
images only and again, do not address the self-

intersection problem. In addition, neither of the models
employed multiscale volume images combined with
adaptive size meshing.

MacDonald et al. [17,21] generalized the cost functions
defined in [12] and presented an iterative algorithm for
simultaneous deformation of multiple curve and surface
models with inter-surface constraints and self-intersection

avoidance. The multiple models cannot only extract deep,
narrow concavities successfully, but are also guaranteed
to not self-intersect nor intersect each other. However, the

computation of the inter- and intra-surface intersection
avoidance constraints is prohibitively expensive and
global adaptive remeshing only is employed.

Lachaud and Montanvert [13] proposed a discrete
deformable model with automated topology changes
and a coarse-to-fine approach to extract complex

objects. The model can evolve to quickly extract objects
relatively independently of the initial model position,
and progressively extract finer and finer details consis-
tent with the image resolution in a pyramid of multi-

resolution volume images. However, their remeshing
approach is more flexible and useful in automatically
extracting objects with complex topologies rather than

objects with complex boundary shape including severe
concavities. Lachaud and Montanvert also use the
distance between non-neighboring vertices as a con-

straint to detect self-intersections. However, to detect all
self-intersections using only this constraint, a very small
time-interval must be used, which is inefficient.
The multiscale approach of our model is based on the

coarse-to-fine approach of Lachaud and Montanvert
[13]. However, unlike their objective, we aim to extract
objects with a simple sphere-like topology but highly

complicated boundary shape. We have therefore de-
signed adaptive remeshing operations and a physics-
based force formulation specifically for this purpose.

3. Boundary extraction by proposed deformable surface

Fig. 1 illustrates the boundary extraction procedure
using our proposed deformable surface model.

We first construct a volume image pyramid from the
original volume image acquired by medical imaging
modalities such as MR, CT, and so on. The volume
image pyramid is a hierarchical structure of multi-

resolution volume images where a lower resolution
volume image is located in a higher level of the pyramid.
We then set the level of the pyramid to the highest value

and have the user interactively initialize the model by
translating, rotating, and scaling an ellipsoid in this
volume image. We convert the ellipsoid to a coarse

triangulated mesh (an icosahedron) and begin the
boundary surface extraction by iterating the following

three steps: global adaptive remeshing, non-self-inter-
secting deformation, and local adaptive remeshing.
Global adaptive remeshing refines the simple initial

model to match its resolution to the image resolution of
the pyramid level. The model is then deformed to extract
the boundary surface of the target object using the non-
self-intersection force formulation. After every deforma-

tion step, the triangular element sizes are regularized using
local adaptive remeshing. If the model has converged to
the boundary in the current level of the pyramid, we move

to the next lower level of the pyramid and repeat these
three steps to obtain a more accurate boundary extrac-
tion. Otherwise, the last two steps are repeated. These

processes are repeated until the finest resolution model
has converged to the target object boundary in the lowest
level volume image of the pyramid.

4. Multiscale approach

Generally, the external image forces, which attract
deformable models towards the boundaries of a target

Fig. 1. 3D boundary extraction procedure by our deformable

surface model.
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object, are computed within a local image region around
each model node. Therefore, deformable models often

become stuck on spurious image edge features not
associated with the global energy minimum or even a
good local energy minimum (i.e. the true boundaries of

the object). To avoid bad local minima, a deformable
model must be initialized close to the desired boundary.
Several global energy minimization methods have been
proposed to address this problem for deformable

contours, including simulated annealing, genetic algo-
rithms, and Markov random fields. However, applying
these global energy minimization methods to deform-

able surfaces is, in general, computationally very
expensive.
We use a multiscale approach based on a volume

image pyramid to provide a solution to this problem
that is computationally efficient. As illustrated in Fig. 2,
we process the input volume image into a multiresolu-

tion pyramid structure and adapt our deformable
surface model to the multiresolution images in a
coarse-to-fine fashion.
The multiscale approach allows the deformable model

to pass over spurious image features and to quickly
find a rough boundary approximation in the early
stages of the deformation. This approach makes

the model relatively independent of its initial condition.
Moreover, the multiscale approach reduces the
total computational time, as has been repeatedly

demonstrated since the earliest application of multiscale
techniques to visual reconstruction using (2.5D)
deformable surfaces [23]. We describe the method to
construct a volume image pyramid in the following

subsection, and the method to refine the triangulated
meshes in Section 5.

4.1. Volume image pyramid construction

A classical Gaussian pyramid was introduced by
Burt et al. [24]. In the 3D Gaussian pyramid,
the successive levels are blurred by the convolution

with a Gaussian kernel of size 5 voxels. This guarantees
low computational cost without phase translation linked
to a reduction factor of 2 for each image dimension.
However, the method does not consider that voxels

may not be cubical and that the reduction factor of
the image pyramid must be consistent with the
surface remeshing [13]. Consequently, we use the

algorithm developed by Lachaud [13], which creates
volumetric pyramids of any reduction factor in order
to support 3D isotropic convolution, hence con-

sistency of the image filtering and model remeshing.
We now describe the method briefly in the following
paragraphs.

A 3D pyramid is represented as an ordered list of
volumetric discrete images I0; I1; . . . ; Im. The original
image I0 is of discrete size X ;Y ;Zð Þ and of real size
ðXR;YR;ZRÞ. The coarsest image Im includes only the

lowest frequencies. Ih is the image at level h of the
pyramid, and its discrete size is ðXh;Yh;ZhÞ: V is a real
continuous image space and Uh is a unit of real space at

level h. When the reduction factor of the image pyramid
r is given, the sizes of the discrete image and the
measurement unit at each level h are defined recursively

as follows:

Xhþ1 ¼
Xh

r

� �
; Yhþ1 ¼

Yh

r

� �
; Zhþ1 ¼

Zh

r

� �
; ð1Þ

Uhþ1 ¼ rUh; ð2Þ

Fig. 2. Multiscale approach based on a volume image pyramid.
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where X0 ¼ X ; Y0 ¼ Y ; Z0 ¼ Z and U0 ¼ minðXR=X ,
YR=Y ;ZR=ZÞ.
The convolution operation for a voxel ðx; y; zÞ of the

discrete image Ihþ1 is defined over points of real image
space V as follows:

Ihþ1ðx; y; zÞ ¼
X2

i;j;k¼�2

wði; j; kÞ � VðThðx; y; zÞ

þ ðiUh; jUh; kUhÞÞ; ð3Þ

Thðx; y; zÞ

¼ xþ
1

2

� �
XR

Xh
; yþ

1

2

� �
YR

Yh
; zþ

1

2

� �
ZR

Zh

� �
;

where wði; j; kÞ is a Gaussian convolution kernel of size 5
voxels: ð 116½1 4 6 4 1�Þ3. Th is the transformation func-

tion to embed a voxel ðx; y; zÞ of a discrete image Ih into
the real image space V.
Fig. 3 shows an example of MR volume image

pyramid constructed by reduction factor 2. Fig. 3(a)–
(d) are the transaxial slice images selected from the MR
brain volume at each level of the pyramid. The image at

level hþ 1 is generated from the image of level h by the
convolution operation of Eq. (3). The original volume
size at pyramid level 0 is 256� 256� 136 and the
volume sizes at level 1; 2; 3 are 128� 128�
68; 64� 64� 34, and 32� 32� 17. The volume sizes
at successive higher levels are reduced by half in each
dimension while the unit voxel sizes are increased

twofold in each dimension. The images at higher levels
are progressively blurred. At the highest level, most of
the image noise causing deformable model initialization

problems has disappeared (see Fig. 3(d)).
The Gaussian filter used in Eq. (3) removes noise well.

However, since it smoothes in all directions, edges and
other sharp details are also blurred. Other nonlinear

blurring strategies [25–27] can be considered to preserve
features (such as edges, corners, etc.) adaptively.

5. Adaptive remeshing

In our multiscale approach, the resolution of the
triangulated deformable surface model must match
the resolution of the volume image at each level of the

pyramid. That is, the triangular model elements should
be neither bigger nor smaller than the voxels of the
volume image. If the elements are too big, high-
frequency boundaries including deep concavities could

be missed. If the elements are too small, the model
would include redundant information by representing a
boundary surface within a voxel as several small

elements. Therefore, we adapt the resolution of the
model to the volume image pyramid in a coarse-to-fine
fashion through global and local adaptive remeshing.

We use the edge lengths of the triangular elements to
determine the resolution of the model. That is, the range
of the edge lengths is adjusted in proportion to the unit

voxel size Uh of real image space V at each level h of the
image pyramid. The length of the unit voxel in the x
direction, y direction, and z direction is Uh and its
diagonal length is

ffiffiffi
3

p
Uh as shown in Fig. 4(a). We

specify the minimum and maximum distance dh
min; dh

max

which is allowed between adjacent nodes at each level h
of the image pyramid as follows:

dh
min ¼ Uh; ð4Þ

dh
max ¼ 2

ffiffiffi
3

p
Uh: ð5Þ

Thus, an edge is at least no shorter than the length of a

unit voxel in the x; y; z direction (Fig. 4(a)) and at most
no longer than twice the diagonal length of a unit voxel
(Fig. 4(b)). This range allows neither the redundancies

that more than one edge are included in a voxel, nor the
details smoothed over by one edge spanning more than
two voxels.
Global adaptive remeshing controls global resolution

of the model by adjusting the average edge length of the
model in this range. Local adaptive remeshing forces the

Fig. 3. An example of volume image pyramid. (a)–(d) Transaxial slice images selected from the MR brain volume data at each level

0; 1; 2; 3 of the pyramid.
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model to remain regularly sampled during the deforma-
tion by keeping the edge lengths of each triangular

element in this range.

5.1. Global adaptive remeshing

Our initial model is an icosahedron with 12 nodes, 20
triangles, and 30 edges. Before we begin deforming the

model, this initial model is globally remeshed to match
the resolution of the coarsest volume image. Subse-

quently, we perform global adaptive remeshing upon
each move to the next level of the pyramid. That is, the
triangle edge lengths are adapted to the voxel size of the

current volume image.
Global adaptive remeshing subdivides all triangles of

the model uniformly until the average edge length of the
model is smaller than the upper bound of the range

allowed at a pyramid level h. That is, all model elements
are subdivided uniformly until

Lh5dh
max; ð6Þ

where Lh is the average edge length of the model at a
pyramid level h.
Fig. 5 illustrates how a triangle is subdivided during

global remeshing. Each edge is bisected to form three
new nodes. The new nodes are then connected in order
to create four triangles from the original triangle. After

every global adaptive remeshing, the number of the
triangles increases fourfold, and the average edge length
is halved. Thus, we set the reduction factor of the
volume image pyramid to r ¼ 2. Fig. 6 shows an initial

icosahedron and the triangulated surface models refined
after 1 and 2 iterations of the global adaptive remeshing.

5.2. Local adaptive remeshing

Global adaptive remeshing adapts the global resolu-
tion of the model to the resolution of the image only

when moving from one level of the pyramid to the next
and not during model deformation. It matches the
average edge length to the volume image resolution.
Consequently, once the model starts deforming within

the current volume image, the local resolution of the
model may change. That is, some triangles of the model
may expand to extract the object of interest, while others

may shrink resulting in regions of the model that are

Fig. 4. Minimum (a) and maximum (b) edge length at the level

h of the image pyramid.

Fig. 6. Refinement of a triangulated surface model by global adaptive remeshing. (a) Initial icosahedron with 20 triangles. (b) (c) The

models with 80 and 320 triangles refined after 1 and 2 iterations of global adaptive remeshing.

Fig. 5. Triangle subdivision for global adaptive remeshing.

J.-Y Park et al. / Computers & Graphics 25 (2001) 421–440 427



irregularly sampled. If the sizes of triangles are irregular,
internal forces may prevent large triangles from

expanding further to capture highly curved boundaries
or concavities. Furthermore, global remeshing at this
point would subdivide triangles that have already

accurately conformed to boundaries and therefore not
only cause needless computation but may also cause
intersections between the resulting adjacent small
triangles.

Local adaptive remeshing adapts the local resolution
of the model to the resolution of the image by keeping
the edge lengths of all triangular elements in a range. It

forces the triangulated surface to remain regularly
sampled during the deformation. Therefore, it makes
the model adaptable to geometrically complex bound-

aries by responding to image features flexibly.
Several authors have employed some operations

for local remeshing in their deformable models

[12,13,18,28,29]. In [12,18,28], the operations for
subdividing overly large triangles were considered,
but small triangles were not treated. In [12], large
triangles are subdivided into four subtriangles and

adjacent triangles are subdivided into two subtriangles
to keep the topology consistent. This scheme was
implemented by a two-stage recursive process. The

recursive process requires considerable computational
time and memory to maintain a stack. The subdivision
algorithms of [18,28] consist of two steps, a bisection

operation and a conformation operation. The confor-
mation operation was intended to ensure that the
desirable triangular mesh properties of conformity,
non-degeneracy and smoothness are maintained. How-

ever, these operations are also recursively applied. The
methods described in [13,29] include bisection and
inversion operations for overly long edges as well as

melting for overly short edges. In [29], the authors
used the length of the three edges and the three angles
of a triangle to find an ill-conditioned triangle. However,

their remeshing algorithms also require iterative
procedures.
In addition to operations for remeshing overly long or

short edges, Lachaud and Montanvert [13] suggest axial
and annular transformations for topological changes.
They applied three geometric constraints to maintain
mesh uniformity for self-intersection detection, as well

as to allow topological transformations that include
breaking a connected mesh into pieces and merging two
meshes or two regions of the same mesh upon self-

intersection. This approach is very flexible and useful in
automatically extracting objects with complex topolo-
gies. However, the method that merges two mesh regions

when self-intersection is detected is not appropriate
when extracting concave areas such as brain sulci}an
incorrect cortical boundary may be generated (i.e.

instead of reconstructing the concavity it may be
smoothed over).

Our local adaptive remeshing includes operations for
both overly large and small triangles: melting (edge-

melting, triangle-melting), inversion, and subdivision
(bisection, trisection, or quadsection). However, we do
not allow topological transformations for the reason

mentioned above. Instead, when self-intersection is
detected, we apply a non-self-intersection force (see
Section 6). In addition, our local adaptive remeshing
algorithm does not use expensive recursive or iterative

processes.
Our local adaptive remeshing scheme checks the edge

lengths of each triangle at every deformation step or

once every several steps. For triangles with edges shorter
than minimum length at pyramid level h, a triangle-
melting or an edge-melting operation is applied. For

triangles with edges longer than the maximum length, an
inversion or a subdivision operation is performed.
Formally, the local adaptive remeshing ensures the

model satisfies the following condition:

dh
min4jxi � xkj4dh

max; ð7Þ

where xi; xk ði; k ¼ 1; . . . ;NÞ are the positions of ad-

jacent model nodes.
Local adaptive remeshing is implemented as a three-

pass process. These three passes are performed once and
do not require recursive or iterative processes. Three

traces of all triangles are sufficient. Figs. 7 and 8
describes the local adaptive remeshing operations that
may be applied at each pass.

* Melting: In the first pass, we trace all triangles of the

model in order to find triangles with edges shorter
than dh

min. If there is a triangle with only one edge
shorter than dh

min and the other two edges satisfy
condition (7), we perform an edge-melting operation.

In Fig. 7(a), AB of DABC is shorter than dh
min, but

edges BC; CA are equal to or longer than dh
min. Thus,

edge AB is melted. For a triangle with more than two

edges shorter than dh
min, we perform a triangle-melting

operation as in Fig. 7(b). After this pass, all short
edges violating condition (7) disappear.

* Inversion: The second pass traces all triangles to find
pairs of long thin triangles with a shared edge longer
than dh

max and all other edges satisfying condition (7).

If such a pair is found, we invert the shared edge. In
Fig. 8(a), DABC and DDCB share edge BC which is
longer than dh

max, while edges (AB;CA;BD;DC) are
equal to or shorter than dh

max. AD also satisfies

condition (7). The shared edge BC is swapped into
AD by an inversion operation. This pass removes a
most but not all overly large triangles from the

model.
* Subdivision: The third pass checks all triangles to find

overly large triangles untreated in the second pass.

The triangles may have one or more edges longer
than dh

max. For a triangle with just one such edge, we
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perform a bisection operation. The bisection opera-

tion divides the triangle into two subtriangles by
splitting the long edge into two equal parts. In
Fig. 8(b), BC is longer than dh

max and AB; CA satisfy

condition (7). We bisect DABC into DABD, DADC
by linking the midpoint D of BC to node A. For a
triangle with two edges longer than dh

max, we perform
a trisection operation. The trisection operation

divides the triangle into three subtriangles by
splitting the longest and second longest edge in half.
In Fig. 8(c), for BC > CA > dh

max and AB4dh
max, we

link the midpoint D of the longest edge BC to node A
and then connect the midpoint E of CA to D. For a
triangle with all three edges longer than dh

max, a

quadsection is executed as in the case of global
adaptive remeshing (Fig. 5). Through this pass, all
remaining overly large triangles are removed and all
edges longer than dh

max are bisected. This process

achieves conformity for the triangulation of the

model without the use of recursion. That is, any

two adjacent triangles share only either a node or an
edge without an additional conforming operation.
The example of Fig. 9 shows the subdivision satisfies

conformity.

Edge-melting, triangle-melting and inversion operations
may cause degeneration of the triangular mesh. To

prevent mesh degeneration, we use a constraint for
minimum node connectivity (i.e. a node should be
connected to at least three nodes). In Fig. 6(a), the

melting of edge AB decreases the connectivity of node C
and D by one. If the connectivity of node C or D equals
3, the melting of edge AB would cause a node

connectivity conflict that the connectivity of node C or
D becomes two. In Fig. 7(b), if the connectivity of node
D or F or I equals 3, the melting of triangle DABC
would also cause a node connectivity conflict. Therefore,
in Fig. 7(a), if the connectivity of node C equals 3
(i.e. node C is just connected to node A; B, and F , we
replace three adjacent triangles DCAB;DCBF , and DC
FA with one triangle DABF before edge-melting. And
also in Fig. 8(a), if the connectivity of node B or C
equals 3, the inversion of edge BC causes a node

connectivity conflict. In this case, the inversion is
rejected. We prevent mesh degeneration by checking
the minimum node connectivity constraint before every

edge-melting, triangle-melting and inversion operation,
and then avoiding node connectivity conflicts.

Fig. 7. Operations for local adaptive remeshing (1): (a) edge-

melting, (b) triangle-melting.

Fig. 8. Operations for local adaptive remeshing (2): (a)

inversion, (b) bisection, (c) trisection.
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6. Force formulation

The behavior of our deformable model is governed

by internal, external, and non-self-intersection
forces. Internal forces provide flexible connections
between model elements. External forces are compu-

ted from the image data in order to attract the
model towards image features such as edges or
contour boundaries. Non-self-intersection forces

prevent the formation of non-simple structures due to
self-intersection.
The dynamics of every node i ði ¼ 1; . . . ;NÞ in our

model are described by the discrete Lagrange equations

of motion

miai þ givi ¼ f int;i þ fext;i þ fnsi;i; ð8Þ

where xi ¼ ½xi; yi; zi� is the position vector of the

node i; vi ¼ dxi=dt and ai ¼ d2xi=dt2 are the velocity
and acceleration vectors of the node i; mi is the mass
of the node (we assume the same mass for all nodes),

and gi is the damping coefficient which controls the
rate of the dissipation of kinetic energy. f int;i; fext;i; fnsi;i
are internal, external and non-self-intersection

forces respectively applied to node i. The compu-
tation of the forces is specified in the following
subsections.
The initial position for each node i is specified

by the user and its initial velocity is set to zero.
We implement the actual deformation process as a
numerical time integration process in which the

whole state of the deformable model is calculated
at a sequence of discrete positions in time, as in [19].
After computing the total force f iðtÞ that acts on

node i at each time step t, we then compute the
current acceleration aiðtÞ, new velocity viðtþ DtÞ,

and new position xiðtþ DtÞ using the explicit
Euler method

f iðtÞ ¼ f int;iðtÞ þ fext;iðtÞ þ fnsi;iðtÞ � giviðtÞ;

aiðtÞ ¼ f iðtÞ=mi;

viðtþ DtÞ ¼ viðtÞ þ aiðtÞDt;

xiðtþ DtÞ ¼ xiðtÞ þ viðtþ DtÞDt: ð9Þ

The deformation process of the model is continued until
it is stabilized. We classify every model node into
‘‘active’’ and ‘‘inactive’’ based on its activity during last

n time steps. If the ratio of ‘‘inactive’’ nodes to the total
model nodes increases over a threshold value(d), the
model is regarded as stabilized.

6.1. Internal force

The internal force is intended to maintain the simple
topology of the initial model. We define the internal
force f int;i as a weighted combination of two forces:
a stretching force fst;i and a bending force fbd;i where

f int;i ¼ wstfst;i þ wbdfbd;i ð10Þ

and where wst and wbd are stretching and bending

coefficients. The stretching force controls the distance
between neighboring nodes and the bending force
controls the curvature of the model surface. The internal

force helps prevent the model from leaking out of gaps
in the boundary of object, as well as helping to prevent
the model from sticking to spurious image features.

The stretching force acts as if all nodes are linked
to adjacent nodes by elastic springs [20]. The force
increases as lengths between nodes are stretched or

compressed relative to a rest length drest. Thus, the
stretching force at node i acts to regularize the lengths

Fig. 9. An example of triangle subdivision satisfying conformity.
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between itself and all adjacent nodes, where

fst;i ¼
XnðxiÞ
j¼1

ðjxij � xi j � drestÞ
ðxij � xiÞ
jxij � xi j

� 	
; ð11Þ

where xij is the position of the jth adjacent node of

xi; j ¼ 1; . . . ; nðxiÞ, and nðxiÞ is the number of adjacent
nodes of node i. We set the rest length drest to an average
edge length for the whole triangles at time t� Dt,
because edge lengths are regularized in a range by local

adaptive remeshing.
The bending force essentially minimizes curvature.

That is, it acts to smooth the model based on an estimate

of local curvature. The discrete approximation to
curvature can be computed in various ways [12,13,23].
We approximate curvature by computing the distance

vector between a node position xi and the barycenter
cðxiÞ of its neighboring nodes [13]:

fbd;i ¼ cðxiÞ � xi �
1

nðxiÞ

XnðxiÞ
j¼1

ðcðxijÞ � xijÞ; ð12Þ

where the barycenter cðxiÞ is computed as an average
position of all neighboring nodes

cðxiÞ ¼
1

nðxiÞ

XnðxiÞ
j¼1

xij : ð13Þ

6.2. External force

The external force fext;i is a weighted summation of
two forces: an edge force fedg;i and balloon force fbal;i

fext;i ¼ wedgfedg;i þ wbalfbal;i; ð14Þ

where wedg and wbal are edge and balloon coefficients.
The edge force is designed to attract the model towards
significant 3D intensity edges in image. However, the

edge force influences the model only near intensity
edges. If the model is initially positioned far from the
object boundary, it will not be attracted towards. For

this reason, we also use a ‘‘balloon inflation’’ force to
push the model towards the object boundary.

The edge force is computed as follows:

fedg;i ¼ rjOMD*IðxiÞj; ð15Þ

where r is the gradient operator and OMD*Iðx; y; zÞ
denotes the 3D intensity edge field produced from a
volume image Iðx; y; zÞ by 3D Monga–Deriche (MD)
edge-detection operator OMD. We compute the gradient

operator r at any model points xi by tri-linear
interpolation using values at the eight surrounding
pixels.

The effectiveness of the edge force is dependent upon
the performance of the edge detection operator. We use
the 3D Monga–Deriche (MD) operator [30] because it is

less sensitive to noise than other simple gradient or sobel
edge detectors and thus detects real object boundaries
and fewer spurious edges. Fig. 10 shows the 3D intensity
edge fields detected from the MR brain volume images

at each level of the pyramid (Fig. 3) by 3D Monga–
Deriche operator.
The balloon force inflates or deflates the model locally

until it lies within a region of the image with the desired
intensity range, assuming that the image data can be
separated into object and non-object. The balloon force

takes the form

fbal;i ¼ BðIðxiÞÞni; ð16Þ

where ni is the unit normal vector to the model surface at
the node xi, computed by normalizing the sum of the
normal vectors of adjacent triangles. BðIðxiÞÞ is the
binary thresholding operator for the image intensity

IðxiÞ.

BðIðxiÞÞ ¼
ðþ1Þ; Tlow4IðxiÞ4Thigh;

ð�1Þ; IðxiÞ5Tlow or IðxiÞ > Thigh;

(

ð17Þ

where Tlow and Thigh are the lower and upper thresholds
for desired intensity values of the object of interest,

Fig. 10. The intensity edge fields detected from MR brain volume images at pyramid level 0, 1, 2, 3 (shown in Fig. 3) by 3D Monga–

Deriche operator.
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given by user. As the balloon coefficient wbal is positive,
the model will inflate on the desired intensity range,

while the model will deflate out of the desired intensity
range. If wbal is negative, the model will act in the
opposite direction.

6.3. Non-self-intersection force

The non-self-intersection force is intended to prevent
a model element from intersecting other non-neighbor-
ing model elements. At every deformation step we search
for pairs of candidate model triangles that are close

enough to intersect. We then apply the non-self-
intersection force to separate the two triangles.
To find candidate triangle pairs, we check the smallest

distance between all two non-neighboring triangles in
the model. The smallest distance dclsðTk;TlÞ between two
triangles, Tk and Tl , is determined by computing the two

points (one in each triangle) having minimum Euclidean
distance. If the smallest distance dclsðTk;TlÞ is smaller
than the minimum distance allowed for non-neighboring

triangles Dmin, the non-self-intersection force of the
triangle Tk against Tl ; fnsiðTk;TlÞ is computed as
follows:

fnsiðTk;TlÞ

¼

jjdclsðTk;TlÞ �Dminjj
dclsðTk;TlÞ

ðpðTk;Tl � pðTl ;TkÞÞ if dclsðTk;TlÞ5Dmin

0 otherwise

8>>><
>>>:

ð18Þ

where pðTk;TlÞ is the point in Tk which is the closest to
Tl ; dclsðTk;TlÞ is the Euclidean distance between pðTk;TlÞ
and pðTl ;TkÞ, and Dmin should be at least as large as
dh
min. The force causes the two triangles to repel each
other.
In practice, we apply the non-self-intersection force of

the triangle Tk to its three nodes. The non-self-
intersection force applied to a node i of the triangle Tk

against Tl , fnsi;iðTk;TlÞ, has the same direction to

fnsiðTk;TlÞ, but the magnitude is adjusted according to
the distance between the closest point pðTk;TlÞ and the
node position xi,

fnsi;iðTk;TlÞ ¼ wnsi
1

jpðTk;TlÞ � xi j
fnsiðTk;TlÞ; ð19Þ

where wnsi is non-self-intersection coefficient. In Fig. 11,

the non-self-intersection force applied to node A is larger
than the forces applied to B and C, because the distance
of A from pðTk;TlÞ is closer than B and C.

Obviously, it would be prohibitively expensive to
compute the distances between all non-neighboring
triangles in the model to find self-intersection candi-

dates. In practice, we do not need to check distances
between triangles which are very far away from each

other. We use an octree structure of model nodes to

search for self-intersection candidates efficiently by
traversing 3D space hierarchically. An octree structure
is a tree based on a node with eight children and each

node of an octree represents a cube in physical space.
Consequently, our non-self-intersection force ensures
that the model can prevent self-intersections efficiently
without heavy computational load.

7. Experiments

We have developed a prototype system of the
described model on an SGI Octane=SE R10000 work-

station and have used it to extract: (1) a sphere with
concavities from a computer-generated volume image
and (2) the complex brain cortical surface from a real

MR volume image. We initialized our model using a
superquadric function which can be quickly translated,
scaled, and rotated by the user in the volume image

(Fig. 12). The superquadric is then converted into an
icosahedron which is then further remeshed globally to
adjust the resolution of the model to the image
resolution. This section presents preliminary results of

these experiments.

7.1. Extraction of a sphere with concavities from a
synthetic volume image

We first tested our model on a computer-generated

volume image of a sphere with concavities. A volume
image pyramid of 4 levels was constructed from the
original volume image with dimensions 128� 128� 128

using a reduction factor of 2. The size of the remaining
levels of the image pyramid are 64� 64� 64,
32� 32� 32, and 16� 16� 16. We set the deformation

parameters to the following values: wst ¼ 5:0,
wbd ¼ 10:0, wedg ¼ 10:0, wbal ¼ 15:0, wnsi ¼ 10:0. Local

Fig. 11. Non-self-intersection force.
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adaptive remeshing was executed every five deformation
steps.

In Fig. 13, (a) shows an initial icosahedron and (c),
(e), (g), (i) show the sphere boundary surface with
concavities extracted at each level of the volume image
pyramid. Fig. 13(b), (d), (f ), (h) and ( j) also shows the

icosahedron and the models overlaid on the transaxial
slice images at each level. At the coarsest resolution,
shown in Fig. 13(c) and (d), the model found the rough

shape of the sphere with 162 nodes and 320 triangles
very quickly after 20 iterations. At finer resolutions, the
more detailed concave structure was gradually extracted.

The model was refined with 642 nodes and 1280
triangles after total of 50 iterations at level 2(Fig. 13(e)
and (f )) and with 3135 nodes and 6266 triangles after
140 iterations at level 1 (Fig. 13(g) and (h)). At the finest

level after 150 iterations, a complete boundary surface

with a deep concavity was extracted without any model
self-intersections as shown in Fig. 13(i) and ( j). The final

model contains 12,706 nodes and 25,408 triangles.

7.2. Extraction of brain cortical surface from a MR

volume image

We applied our model to extract the cerebral cortex
boundary from a volumetric MR brain image with

dimensions 256� 256� 136. The brain image has been
preprocessed to remove the skin, bone, fat and other
extracranial tissues. For the preprocessing, a semiauto-

matic software package such as BrainSuite [31] which
provides interactive mathematical morphological opera-
tions can be used. Multi-scale watershed algorithm

based on the generalized anisotropic nonlinear (GAN)
diffusion scheme [32] may be also applied. We then

Fig. 12. Model initialization using a superquadric. Top left, top right, bottom left: the transaxial, sagital, and coronal cross-sectional

images of the volume data overlaid by the cross-sectional contours of the superquadric, determining initial position and size of the

model. Bottom right: 3D view of the superquadric.
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constructed a volume image pyramid of 4 levels using a
reduction ratio of 2. The image resolutions at level 1, 2, 3

are 128� 128� 68, 64� 64� 34, and 32� 32� 17. We
set the deformation parameters to the following
values: wst ¼ 5:0, wbd ¼ 10:0, wedg ¼ 10:0, wbal ¼ 10:0,
wnsi ¼ 10:0. Local adaptive remeshing was executed
every deformation step.
Fig. 14 shows top, side, and front views of the brain

cortical surfaces extracted at each level of the image

pyramid. Fig. 15(a)–(d) also shows the models overlaid
on the transaxial slice images at each level. At

the coarsest level, shown in Figs. 14(a) and 15(a),
the model found a coarse outline of the cortex very
quickly after 50 iterations. At the next level after 350

iterations, the model progressed into interhemispheric
fissure, so that left and right hemispheres were roughly
identified (Fig. 14(b) and Fig. 15(b)). At level 1 and 0
after 450 and 550 iterations, many concavities including

Fig. 13. Phantom sphere boundary surfaces with concavities extracted at each level of a computer-generated volume image pyramid.

(a) Initial icosahedron. (c) (e) (g) (i) The deformable surface models converged after 20, 50, 140, 150 iterations at level 3, 2, 1, 0.

(b) (d) (f) (h) (j) Initial icosahedron and the models overlaid on transaxial slice images.
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the lateral fissure, central sulcus, and other small
sulci were gradually extracted in detail without

any model self-intersections (Fig. 14(c), (d) and
Fig. 15(c), (d)).
Table 1 shows the model components (the number of

model nodes, the number of triangular meshes, and

average edge length) observed at each level of the image
pyramid. When the model is transfered from h level to
h� 1 in the image pyramid, the number of model nodes

and triangular meshes increases about four times. On
the other side, the average edge length of the model
decreases by half, that is, by the same degree as the unit

voxel size of the image is reduced. Therefore, the model
resolution matches the image resolution for every level
of the pyramid.

In Table 2, we show the amount of CPU time (in ms)
taken to extract brain cortical surface at each level of the
image pyramid for each computational step: global
remeshing, local remeshing, internal/external force

computation, and non-self-intersection force computa-
tion. The total CPU time of about 21 min ð1; 279; 640
msÞ was spent mostly at level 0 ð1; 028; 600 msÞ, since the
computational time for fitting model is directly propor-

tional to the number of model nodes. The total time
consumed for local adaptive remeshing is small relative

to time for computing the forces, because it does not
require recursive or repetitive computation. On the other
hand, computing the non-self-intersection force is the
most expensive step, despite the use of an octree

structure for efficient computation. Additionally, it took
about 10 min to detect edges using the 3D Monga–
Deriche (MD) operator. However, the whole processing

time is very reasonable compared to times reported in
the literature [21,33]. Xu [33] reported a time of 4.5–
6:4 h on an SGI O2 R10000 system to reconstruct the

central layer of the cortex. MacDonald [21] reported a
time of about 100 h on an SGI Origin 200 R10000
system to identify both the inner and outer surfaces of

the cerebral cortical gray matter.
For comparison, we applied the model with the non-

self-intersection force disabled ðwnsi ¼ 0:0Þ, resulting in
numerous instances of model self-intersection (cf.

Fig. 16(a) to (b)). We also applied the model without
local adaptive remeshing and many concave regions
successfully extracted by the locally remeshed model

were smoothed over (cf. Fig. 16(c) to (d)).

Fig. 13. (continued)
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Fig. 14. Brain cortical surfaces extracted at each level of a MR volume image pyramid. (a) (b) (c) (d) Top, side, front views of the model

converged after 50, 350, 450, 550 iterations at level 3, 2, 1, 0.
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Fig. 15. Transaxial slice images overlaid by the brain cortical surfaces extracted at each level of the pyramid. (a) (b) (c) (d) Results after

50, 350, 450, 550 iterations at level 3, 2, 1, 0.

Table 1

Model components at each level of the image pyramid on brain cortical surface extraction

Pyramid level 3 2 1 0

iterations 50 150 250 350 450 550

No. of nodes 608 2966 3216 3390 18,291 97,615

No. of triangles 1212 5928 6428 6776 36,578 195,226

Average edge length 10.564 5.735 5.717 5.717 2.916 1.449

Table 2

Computational time(ms) for each processing step on brain cortical surface extraction

Pyr. level 3 2 1 0 Total

iterations 50 150 250 350 450 550

Global rem. 20 40 } } 260 1630 1950

Local rem. 480 3560 3830 4060 24,410 138,020 174,360

Int.=ext. for. 590 6010 6830 7520 42,070 245,700 308,720

NSI. for. 1920 14,140 17,060 19,450 98,790 643,250 794,610

Total 3010 23,750 27,720 31,030 165,530 1,028,600 1,279,640
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8. Conclusion

We have developed a multiscale deformable surface
model with an adaptive remeshing capability and a non-

self-intersection capability for extracting the boundaries
of complex-shaped anatomic structures from volumetric
medical images. Through global and local adaptive
remeshing, our model adapts its resolution to a pyramid

of multiresolution volume images derived from the input

volume image in a coarse-to-fine fashion. It then

deforms in accordance with a physics-based formulation
including conventional internal and external forces, as
well as a non-self-intersection force.

The multiscale approach allows a coarse model to be
fitted quickly to low resolution data and efficiently
reconstruct the rough overall shape of the anatomic
structure, while a series of progressively finer models

subsequently capture the detail in higher resolution data.

Fig. 16. Results obtained using the deformable surface model (a) without non-self-intersection force, (b) with non-self-intersection

force, (c) without local adaptive remeshing and (d) with local adaptive remeshing.
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The approach not only greatly reduces the overall
computation time for extracting object boundaries, but

also provides a model that is relatively independent of
initialization. Adaptive remeshing enables the model to
progress into deep concavities successfully, and conse-

quently improves the efficiency, compactness, and
accuracy of the reconstructed model. As demonstrated
by our experimental result, the deformable surface
model without local adaptive remeshing failed to extract

localized protrusive or concave surface features. Our
local adaptive remeshing method, which includes melt-
ing, inversion and subdivision operations, can be

performed efficiently in OðnÞ time without an additional
recursive conformation step. Furthermore, we not only
overcame the self-intersection problem by using an

effective non-self-intersection force, but also drastically
reduced its computation time by exploiting an octree
structure of triangles.

Although our current adaptive remeshing methods
provide effective results and proper triangulation, it has
the tendency to generate too many nodes and triangles
relative to the complexity of local areas. For this reason,

we are currently exploring the use of other metrics such
as curvature instead of edge length for deciding which
triangles should be remeshed. And an further improved

adaptive remeshing is also under consideration in order
that triangles from different refinement levels can be
joined, preserving the mesh consistency with no degen-

eration of triangle shape, as in
ffiffiffi
3

p
-subdivision [34]. We

currently use an octree structure to find self-intersection
triangle candidates, but more efficient spatial decom-
position or hierarchical bounding volume techniques

can be adopted to reduce its time cost. Finally, we are
considering further model improvements in order to
extract the brain sulci more accurately. For example, we

intend to explore the use of interactively placed point
and curve constraints with our model that will force the
model to correctly penetrate and segment the brain sulci

in highly noisy regions.
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