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Finding Structure in Co-Occurrence Matrices for Texture Analysis*
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Co-oceurrence matrices are a popular representation for the texture in images. They
contain a count of the number of times that a given feature (e.g., a given gray level)
occurs in a particular spatial relation to another given feature. However, because of
the large number of spatial relations that are possible within an image, heuristic or
interactive techniques have usually been employed to select the relation to use for each
problem. In this paper we present a statistical approach to finding those spatial (or
other) relations that best capture the structure of textures when the co-occurrence
matrix representation is used. These matrices should thus be well suited for discrimina-
tions that are structurally based.

1. INTRODUCTION

Texture can be viewed as a global pattern arising from the repetition, either
deterministically or randomly, of local subpatterns [11]. The strueture resulting
from this repetition is often important in diseriminating between different tex-
tures. In this paper, we present a statistical approach to selecting a deseription
from within a well-known class of representations that best reflects such structure.
The class of representations is the co-occurrence matrix introduced by Haralick
[67], which has been used for remote sensing, biomedical, and many other appli-
cation areas (see, e.g., the recent survey [5]).

The co-occurrence matrix is essentially a two-dimensional histogram of the
number of times that pairs of intensity values (or, more generally, arbitrary local
features) oceur in a given spatial relationship. Thus, it forms a summary of the
subpatterns that could be formed by intensity pairs and the frequency with
which they ocecur.

The success of this kind of representation is tied directly to the fidelity with
which it captures the structure of the underlying texture. To understand the
importance of selecting the spatial relationship properly, consider a textural
pattern with a dominant banded (i.e., almost constant) structure in the hori-
zontal direction, but with a random structure in the vertical direction. If the
co-occurrence matrix were built using a spatial relationship between vertical
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pairs of pixels (at some separation), then it would appear as if the underlying
texture were perfectly random. On the other hand, if a horizontal spatial relation-
ship were used, then it would appear as if the texture were highly structured.
For a co-oceurrence matrix computed as an average over several directions, the
description would be somewhere between these two extremes.

In the above example, only one variable (orientation) was considered in de-
fining the spatial relationship on which to base the co-occurrence description,
and this variable was shown to be eritical in capturing the structure of the texture.
In more realistic situations, such dependencies are rarely that obvious. Further-
more, similar difficulties arise in attempting to choose a spatial relation on which
to base first-order gray-level statistics [10] or generalized co-occurrence matrices
[3]. In fact, for generalized co-occurrence matrices, the situation is further com-
plicated by the wide choice of local features that can be used.

The specific problem to be addressed in this paper is the selection of spatial
relationships for defining co-occurrence matrices such that these matrices maxi-
mally reflect the structure of the underlying texture. The model adopted for
structure is statistical and is based on a (chi-square) measure of independence
of the rows and columns of the co-oceurrence matrix. Thus it provides quanti-
tative support for the design of co-occurrence-based classification schemes, and
supplements the interactive and heuristic (in particular, the exhaustive [10])
tools currently available.

The measure of independence is formulated by interpreting the co-occurrence
matrix as a contingeney table [7]. These notions are formally defined in the
next two sections, and are followed by example applications to several Brodatz
[2] textures and to the LANDSAT-1 images considered in [10]. The dependency
measure clearly indicates the size of the structural units in the Brodatz textures.
It further provides quantitative corroboration for Weszka, Dyer, and Rosenfeld’s
empirical observations about the merits of certain spatial relationships for the
LANDSAT images. Finally, it leads to the specification of co-occurrence matrices
upon which suceessful classifiers can be designed.

2. CO-OCCURRENCE MATRICES FOR TEXTURE CLASSIFICATION

In this section, we formally define co-occurrence matrices and list several
feature functions that can be computed over them. Such features usually provide
the basis for classification in practical problems.

Let f be a rectangular, discrete picture containing a finite number of gray
levels. fis defined over the domain

D= {(f, N]i € [0,n), jE[0,n),5 j €I}
by the relation

=GN 0GHEDE= TG EEDnkEI

where I is the set of integers, n; and n; are the horizontal and vertical dimensions
of f, and n, is the number of gray levels in f.

The unnormalized co-oceurrence matrix, ¥, is a square matrix of dimension
n, and is a function of both the image f and a displacement vector d = [a1, A7]
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in the (7, 7) plane; i.e.,

¥(f, d) = {i;(f, d)}.
Its entries, ¥.;, are the unnormalized frequencies of co-oceurring gray levels in f
which are separated by the spatial relation d:

Vis(f, &) = # [ ((ky, b), (ke 1)) | (ks 1), (Ko, ) & D,
Sk, 1) =4, f(ka, o) = j, [ko, 1] — [ky, 1] = d},

where # denotes the number of elements in the set.

Symmetric co-occurrence matrices are generated by pooling frequencies of
gray-level occurrences that are separated by both d and —d. That is, the sym-
metric co-oceurrence matrix, ®, is defined by the relation

d(f, d) =¥ (f d) +¥(f, —d).

For the remainder of this paper, we shall deal with symmetric co-occurrence
matrices exclusively,

It is often convenient to normalize co-oceurrence matrices so that they approxi-
mate discrete joint probability densities of co-oceurring gray levels. The appro-
priate normalization is accomplished by dividing each entry in the co-oceurrence
matrix by the total number of paired occurrences

1
Iy = — @, where N =33 ¢is.
N T g

Texture classification is usually accomplished by using certain characteristic
features of co-occurrence matrices. That is, the values of a number of feature
functions can be used to summarize the content of the matrices. Fourteen such
functions were introduced by Haralick et al. [6], four of which appear to be
the most widely used in practice. These functions are listed below since they are
used for the classification experiments described in Section 5.

(1) Angular second moment: ASM = 3 3 ¢.;2;
£ i

(2) Contrast: CONE = DUE = R
Rl

(3) Correlation: COR = X 3 (jdi; — patta)/ (0203) ;
T 7

(4) Entropy: ENT = -2 2 ¢i;10g ¢4;.

¢; denotes the (7, 7)th element of a normalized co-occurrence matrix Dy, o,
and o, are the mean and standard deviation of the marginal probability veetor,
obtained by summing over the rows of &y, and u, and ¢, are the corresponding
statisties for the column sums.

3. CONTINGENCY TABLES AND x® SIGNIFICANCE TESTS

A new point of view toward co-occurrence matrices can be developed by
Interpreting intensity pairs (or local feature values) in an image as samples ob-
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Fia. 1. A banded texture (gray levels 1 to 8 repeated every eight columns).

tained from a (two-dimensional) random process. The rows and columns of a
co-occurrence matrix separate the samples into various classes based on observed
intensities. The matrix thus tabulates the frequencies of samples belonging to
each class. ,

Such tables have been used for some time in statistics, and are called ‘“‘con-
tingency’’ tables. They typically take the following form:

B
Row
A IR ey totals
1 i1 - &Ly ot Lam T
a4 N i mos Dy e 0 d0ey Ty
T || ) B Aknle o ik
Column i So e N
totals

In the above table, x;; is the number of times that variable 4 has been observed
to fall into class ¢ while B has fallen into class j. Furthermore, the various row
and column totals are indicated.

If we interpret variables A and B as image pixels at either end of d, and the
classes into which they can fall as the gray levels [0, n,), the correspondence
between co-occurrence matrices and econtingency tables becomes clear. An
unnormalized co-occurrence matrix, ¥, is a square contingency table with
m=n =,

The importance of adopting this interpretation of co-occurrence matrices is
that it allows the formulation of a precise statistical measure for the amount
of textural structure that is contained in any particular matrix. For motivation,
we present the following simple example. Consider a highly structured, one-
dimensional, banded texture (Fig. 1) that repeats every eight columns. If we
restrict the displacement vector d to lie in the horizontal direction, different
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TABLE 1

Co-Occurrence Matrices, over Two Spatial Relationships,
for the Banded Texture of Fig, 12

Spatial relation: d = [3, 0]

0.0000 0.0000 0.0000 0.0574 0.0000 0.0656 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0656 0.0000 0.0574 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0656 0.0000 0.0574
0.0574 0.0000 0.0000 0.0000 0.0000 0.0000 0.0656 0.0000
0.0000 0.0656 0.0000 0.0000 0.0000 0.0000 0.0000 0.0656
0.0656 0.0000 0.0656 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0574 0.0000 0.0656 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0574 0.0000 0.0656 0.0000 0.0000 0.0000

Spatial relation: d = [8, 0]

0.1250 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.1250 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.1250 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.1250 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.1250 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.1250 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1250 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1250

= Note that the matrix becomes diagonal for distances that are integer multiples of eight pixels.

values of [d| would lead to co-occurrence matrices with very different entries.
In particular, a choice of |d| = 8-n, where n is an integer, would lead to a
diagonal ® (Table 1), conveying the banded structure; any other choice would
miss the important regularity, thus falsely indicating a more random underlying
texture. This example shows that different choices for d can lead to very different
deseriptions of the same textural pattern.

Our notion of structure, conveyed by co-occurrence matrices, is related to the
strength of the statement that can be made about variable B given observations
about A (and vice versa). If the texture is highly structured and the co-occurrence
matrix reflects this structure, then observations about A should bias the prob-
abilities of observing various classes for B. On the other hand, if the structure is
not being captured, then observations about 4 will not influence the probabilities
for B. In other words, 4 and B will be independent. The amount of structure
conveyed by a co-occurrence matrix clearly depends on the choice of variables 4
and B; that is, it is a function of d.

A quantitative measure of this structure can be obtained by hypothesizing
that the variables 4 and B are independent, and then using a chi-square goodness
of fit test to determine the degree to which this hypothesis can be rejected by
the observed data (i.e., the image). For textures with a lot of structure, it should
be rejected overwhelmingly. Operationally, the hypothesis translates into a state-
ment about row/column independence in contingency tables.

In general, the chi-square test is employed to determine whether observed
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frequencies of occurrences in a set of randomly drawn samples appear to have
been drawn from an assumed distribution. The test involves calculation of the
quantity

Bz — e)?

X' =2 ) (1)

i=1 e;

where the x; and e; represent observed and expected frequencies in the ith class,
respectively. As the number of samples drawn approaches infinity the above
distribution approaches that of a chi-square function with k — 1 degrees of
freedom.

The chi-square test can still be applied in situations where the expected fre-
quencies depend on unknown parameters, if maximum likelihood estimators are
used to estimate these parameters ([7, Seet. 9.67]; but see also [1, Sect. 3.1.17).
Furthermore, it becomes necessary to subtract one degree of freedom for each
parameter estimated.

To formulate the independence hypothesis consider an arbitrary contingency
table. Let p;; be the probability corresponding to the cell in the ith row and jth
column, and let p;. be the probability corresponding to the ith row and p.; the
probability corresponding to the jth column. The hypothesis that the two vari-
ables, 4 and B, are independent may now be written as

H(]:pijzp{.p.j, 1‘=1,...,m, j=1,...,n.
If N denotes the total number of samples, i.e.,
N =3 2 2
i=1 j=1

then the measure of compatibility between observed and expected frequencies is
(from (1))
m o n (xi; — Npij)®

D Z Z R ——
. i=1 j=1 Npi;
m n (T — Npip;F
D I 2)
el Npip.;

under hypothesis H,. Since p:. and p.; are unknown, it is necessary to compute
their maximum likelihood estimates. First, however, note that

> p =1 and > pi=1 (3)
= =1

Thus (m — 1) + (n — 1) = m + n — 2 parameters must be estimated. There-
fore, the number of degrees of freedom for testing H, is

» = (number of cells) — 1 — (number of estimated parameters)
= (m — 1(n — 1). (3.1)
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To determine the maximum likelihood estimates of p.. and p.;, note that the

data samples are discrete and independent. Then the likelihood of the sample
(ie., the probability of obtaining the sample in the order of its occurrence) is

which, under H,, becomes

i=1 j=1
= II II p¥ II II 2%
1

e F=1 B |
= Il p P
i=1 =1
m T
— T C:
= II » IT p%
i=1 F=1
where
n
Ty = Z Iij
=1
and
m
c; = E Tij
=i

are the sums of the frequencies in the 7th row and jth column, respectively. It is
convenient to express one of the p.;, say .., in terms of the others by using
relation (3).

Hence
n—1 m ) n—1 !
L= l=5 b=l 1 o
=1 i=l j=1
Taking logarithms, we have
n—1 m n—1
logL =c,log (1 — X p.;) + 3 rilog pi. + X ¢;log p.,.
§=1 i=1 =1

A maximum likelihood estimate of p.; may be obtained by differentiating with
respeet to p.; and setting the derivative to zero:

d ].Og L n—1 Cj
= —¢ /(1 — 3 pj)+— =0
ap.; J=1 yI

Now
n—1

1= pj= Pen
=1
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Thus
D-n
D.j = — € = A,
Cn
where A is independent of 7. Sinee this must be true for all j = 1, ..., n,

1=3% p;=A2> ¢; =AN.

gk Jj=i
Therefore, A = 1/N, and the maximum likelihood estimate of p.; is

¢
=
N

Similarly, the maximum likelihood estimate of p;. can be shown to be

T
B
N

Replacing p,. and p.; in the expression for X* (KEq. (2)) by their maximum likeli-
hood estimates, we obtain

=2 X (4)

i=1 j=1 rici/ N

m o (Fy — (Ticj/N)P‘

If N is sufficiently large and H, is true, then (4) will possess a chi-square distribu-
tion with (m — 1)(n — 1) degrees of freedom.

A more computationally efficient expression for (4) may be obtained after some
algebra:

n xz'jE

s 6)

i=1 §=1 1;C;

Computing (4) or (5) over a square contingency table yields a direct measure
of the significance of H, with respect to that table. The level of significance is a
funetion of the number of degrees of freedom and may be found by inspection
of X2 tables [7] or by numerical integration of the X* distribution. If X? (adjusted
by the proper number of degrees of freedom) exceeds a critical value, X¢* (usually
0.05), then H, is rejected ; otherwise H, is accepted. Or, for comparison purposes,
X2 provides a continuous measure of structure within contingeney tables.

4, AN ALGORITHM FOR SELECTING CO-OCCURRENCE MATRICES
FOR TEXTURE CLASSIFICATION

Since we are interested In co-occurrence matrices that reflect the greatest
amount of structure in the underlying texture, it is straightforward to devise
algorithms to select the best matrix (or matrices) from a set of candidate matrices
(these candidates may be obtained, for example, by using different spatial rela-
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tions d). One merely determines the goodness of fit of H, (by applying (4) or (5)
and selects the matrix (or matrices) yielding the highest value of x2.

As long as the co-occurrence matrices are complete (i.e., contain no zero entries)
the theory presented in the previous section is applicable as stated. However, in
the analysis of real texture pictures, one or more allowable gray levels may never
oceur. This causes entire rows and columns (due to symmetry) in co-oceurrence
matrices to have zero entries. When such matrices are interpreted as contingency
tables, each degenerate row will result in one of the »; having a value of zero,
while each degenerate column will result in a zero ¢;. Thus, zero maximum likeli-
hood estimates would be obtained for one or more of the p;. or p.; parameters.

Fic. 2a. A texture that has been subjected to several magnitudes of additive noise in order
to vary the structure.
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Fic. 2a—Continued.

The presence of nonestimable parameters requires that special action be taken
in the application of (4) or (5), as well as adjustments in the number of degrees
of freedom. Extensive discussion of the problems caused by incomplete con-
tingency tables may be found in [1].

For our purposes, since each nonestimable parameter contains no information
about a particular eategory (i.e., intensity), incomplete contingency tables may
be collapsed into smaller, complete tables by eliminating all degenerate rows and
columns. Equation (3.1) should then be used to determine the proper number of
degrees of freedom for the complete table. That is, if v is the result of (3.1) for the
original incomplete table, 8. the number of cells with zero estimates, and 3, the
number of nonestimable parameters, the adjusted number of degrees of freedom
is given by

V=v—3,+ 3,

In aectual practice, the proper number of degrees of freedom for any co-occur-
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TABLE 2

x* Values for Co-Occurrence Matrices Computed from the Images in Fig. 2a

Distance Angles
0° 45° 90° 1355
Noise = 0
2 4,781.5 1,100.4 1,261.2 1,200.4
5 5,046.8 2,659.0 2,199.7 2,601.1
4 4,082.2 1,097.8 738.2 1,114.0
5 3,537.9 923.5 1,853.3 896.9
6 5,466.1 6,112.5 5,749.3 6,794.2
7 6,048.3 2,267.1 1,826.3 2,323.1
8 3,688.7 738.4 738.1 830.7
9 3,055.4 1,874.4 1,698.4 1,873.6
10 4,029.7 986.8 844.2 925.9
11 3,668.5 763.3 2,278.2 627.8
Tl 4761.5 2,533.1 7.934.4 2,739.0
13 10,492.9 1,487.2 2,217.7 1,472.0
14 7,745.0 564.9 779.6 597.4
Noise = 4
2 1,636.4 500.7 501.7 559.3
3 1,605.7 1,159.0 621.2 1,066.0
4 1,476.8 580.8 361.1 639.6
5 1,543.1 483.4 820.0 451.4
6 1,983.1 2,455.8 2,082.4 2,675.5
7 2,136.2 993.0 902.0 1,073.4
8 1,668.3 440.6 368.9 345.4
9 1,255.2 963.8 571.9 819.9
10 1,372.8 4947 372.5 428.2
11 1,202.4 404.5 910.8 376.9
12 2,037.8 1,090.9 2,781.8 1.246.3
13 4,142.1 707.7 1,068.9 741.8
14 2,910.2 403.4 364.3 380.3
Noise = 6
2 972.9 407.8 366.9 377.7
3 934.6 599.6 555.3 700.9
4 1,002.0 394.6 418.7 387.6
5 843.6 519.7 635.2 454.2
6 1,073.6 1,065.7 1,013.1 1,209.3
7 1,141.2 669.1 572.2 633.1
8 920.6 202.8 346.2 315.3
9 778.2 582.0 447.3 484.0
10 791.2 326.1 343.9 377.9
11 853.5 439.6 552.8 418.4
12 1,119.9 7154 1,233.5 749.2
13 1,352.0 492.4 585.8 530.7
14 1,303.5 316.6 344.6 313.3
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TABLE 2—Continued
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Distance Angles
0° 45° 90° 135°
Noise = 8
2 714.8 446.0 407.6 433.7
3 608.4 528.4 438.8 485.9
4 601.3 386.5 448.4 438.1
5 601.3 445.1 527.2 481.5
6 629.1 687.7 582.3 682.8
71 651.8 611.1 438.5 463.2
8 525.8 378.4 353.2 420.3
9 500.1 530.7 380.5 426.2
10 624.0 379.5 371.5 358.8
11 533.9 398.2 522.5 361.6
12 586.3 508.8 623.0 429.6
13 677.5 451.1 576.1 4229
14 730.5 383.2 402.3 314.3

rence matrix is not required by our selection algorithm, because absolute levels of
significance need not be computed. Rather, only relative comparisons of the
magnitudes of X* values (computed over candidate matrices) need be made; the
degrees of freedom are constant and hence cancel out.

5. EXPERIMENTS

Two different kinds of experiments were performed. The first kind was designed
to show that the X* measure did indeed vary with the amount of structure in the

texture pattern, while the second kind involved the classification of textures.

1@

CHI-SQUARE (X 100>
— NOISE
L]
2}
4
8 o—p . p—i—p g
2 6 8 10 12 14
DISTANCE (PIXELS) a

F1a. 2b. Graph of x? vs distance (at 0°) for several magnitudes of additive noise. The curves
were generated from selected entries in Table 2.
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Fie. 3. A texture pattern on which the displacements (in pixels) between several major struc-
tural units are superimposed.

To show the relation between X? values computed over co-oceurrence matrices
and the degree of structure present in the underlying texture, we used a number
of Brodatz patterns. These texture samples were digitized into 256 X 256 images
with 256 gray levels. The image intensities were then requantized into 16 equi-
probable intensities in order to compensate for varying brightnesses and contrasts
among the originals. The amount of structure in each image was varied by the
pointwise addition of (uniform, zero mean) pseudorandom noise over different
ranges (i.e., uniformly distributed in [ —N, N7]). X* values for co-occurrence
matrices eonstructed over several spatial relationships (various distances over
the four angles, 0, 45, 90, and 135°) were computed. As expected, the X? statistics
decreased with increasing noise at all values of d for all images tested. A typical
texture is illustrated in Fig. 2a and the resulting x* values are shown in Table 2
and in Fig. 2b. The results confirm that the independence hypothesis, H,, be-
comes more plausible as the underlying texture becomes more random.

Similar variations in the X? measure ean be observed for a single image as a
function of the spatial relation d. For values of d that capture texture structure
very well, X2 will be high. To show this, consider the Brodatz texture in Fig. 3.
Co-oceurrence matrices were computed at various spatial relationships and the
corresponding X® statistics are shown in Table 3 and Fig 4. Maxima occur for
|d| = 16 and 32. A number of line segments of length 8 and 16 pixels have been
superimposed on the pattern in Fig. 3 to show corresponding image scales and
the distances between structural units.

A further property of the X* measure is that it accurately reflects image magnifi-
cation. That is, if a particular image is uniformly magnified, the maxima of the
X2 measure will oceur for displacements d that are correspondingly enlarged. I'or
example, the image of Fig. 3 was magnified by a factor just less than 2, as shown in
Fig. 5. Table 4 shows the corresponding set of X? values, and Fig. 6 is a graph
of some of them. Maximal X values clearly occur at a displacement |d| = 24,
almost twice the displacement obtained for the original image. In both images,
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TABLE 3

x* Values for Co-Occurrence Matrices Computed from the Texture of Fig. 3

Distance Angles
0° 45° 90° 135°

2 22,458 .4 8,320.1 14,298.8 8731.5

4 7,295.5 7,983.4 3,788.8 7,159.5

6 8,583.4 5,165.5 4,920.6 4,959.8

8 9,718.9 4,649.2 4,325.6 5,217.7
10 7,030.4 4,986.1 3,949.4 4,615.4
12 6,022.6 2,478.0 4,160.5 2,857.6
14 22,041.3 13,154.4 21,233.0 9,864.8
16 53,866.1 22,583.3 40,782.3 34,186.0
18 12,413.4 2,069.3 7,000.1 4,332.1
20 3,796.6 2,858.9 2,329.0 3,066.1
22 4,820.5 2,674.4 2,809.5 2,903.3
24 4,963.5 2,694.2 2,5658.3 3,400.9
26 3,413.6 1,608.0 2,028.5 2,215.3
28 5,338.6 2,658.9 6,942.3 1,097.8
30 20,597.7 14,588.6 23,054.7 8,588.1
32 25,696.2 5,582.3 13,537.1 12,547.6
34 6,747.6 778.5 2,489.9 2,041.3
36 1,950.7 1,401.9 1,320.9 1,299.0
38 2,724.4 2,078.3 1,950.6 2,146.6
40 2,478.9 1,454.2 1,244.9 2,236.6

the displacement between the major structural units in the texture are aceurately
reflected by the X* measure.
Next, we present the results of several texture classification experiments. A

CHI-~SQUARE (X 10,0688

= —8 DEG.
4
3
45 DEG.
2
1
0 1o 20 30 40

DISTANCE (PIXELS)
F1a. 4. Graph of x* vs distance at two orientations. The curves were generated from selected
entries in Table 3. Note how the displacements between structural units in Fig. 3 are reflected
by the location of the maxima in the curves.
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Fig. 5. The texture of Fig. 3 uniformly magnified. Displacements between major structural
units are shown.

TABLE 4

x? Values for Co-Oceurrence Matrices Computed from the Texture of Fig. 5

Distance Angles
0° 45° 90° 135°

8 3,452.6 5,724.2 3,987.1 5,379.1
10 41775 3,223.3 5,131.1 3,205.7
12 4,889.5 4073.3 5,333.7 3,959.5
14 3,884.0 2,798.1 4,709.8 2,486.6
16 2,328.3 2,442.9 3,923.9 2,394.3
18 3,375.6 4,037.4 3,012.7 3,271.7
20 8,574.5 1,435.3 5,015.7 1,382.5
22 18,968.3 6,518.4 12,719.5 7,777.2
24 42 427 4 19,8485 32,862.7 21,826.0
26 33,877.6 26,246.5 44,901.0 16,567.0
28 12,053.4 8,033.9 17,494.5 4.676.1
30 3,879.4 1,159.3 6,604.2 714.6
32 1,420.6 1,432.8 1,886.5 1,192.8
34 1,805.3 2,117.5 2,062.5 1,407.9
36 2,508.5 1,737.3 2,815.1 1,291.4
38 2,280.8 1,709.5 2,795.2 1,156.9
40 1,222.8 1,341.1 2,509.8 948.9
42 1,223.9 1,257.8 1,785.3 1,145.7
44 3,489.6 1,046.8 1,405.2 449.9
46 8,484.3 737.2 3,918.2 1,730.2
48 17,021.4 3,048.2 9,356.4 6,447.5
50 26,934.0 11,206.3 22,176.3 10,927.8
52 12,280.2 8,308.6 25,231.2 6,049.5
54 5,179.8 2,627.7 10,557 .4 2,089.6
56 1,261.7 236.3 3,844.9 756.4
58 620.4 662.4 924.3 1,294.4

60 1,064.8 893.5 1,164.0 1,519.2
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Frc. 6. Graph of selected x* values from Table 4. Compared to Fig. 4, the maxima oceur at
larger distances due to the magnification of the structural units.

minimum Mahalanobis distance, linear discriminant classifier was used, the
details of which are given in the Appendix.

The first experiment involved five Brodatz textures which are shown in Fig. 7.
Twenty-five samples were taken from each texture (class) by extracting 64 X 64
windows over the equiprobability quantized images. Co-occurrence matrices
were computed over several distances and orientations of 0, 45, 90, and 135°.
x* values were computed for each matrix and the distance yielding the maximum
X? measure, averaged over the four orientations, was chosen. The ASM, CON,
and COR feature functions were computed over the four chosen matrices (at the
above distance). The feature vectors (length 6) were generated by computing
the mean and range of the values of each feature function. The classifier was
trained on the 100 feature vectors (25 in each class). One hundred new windows
were then selected and classified. The classification was 1009, correct.

The second classification experiments involved the set of LANDSAT-1,
Eastern Kentucky terrain images used by Weszka ef al. [10] in their main study.
The data set consists of three groups consisting of 60 images each. Each image is
64 < 64 pixels and has been histogram flattened to cover 64 gray levels (see Fig.
8). Co-occurrence matrices were, once again, computed for each window over
several spatial relationships. For all of the 180 windows, d = [1,0]andd = [0, 1]
yielded matrices with the largest X2 values. Hence, these spatial relationships
should be preferred in a classification of the above texture sample. Table 5 shows
typical X* results. It is interesting to note that these findings support Rosenfeld’s
observation that displacements of 1 pixel in the horizontal paired with size 1
in the vertical direetion yielded the best classification results.

To further corroborate this observation, we trained our classifier on the basis
of matrices selected by maximal X* values. Feature vectors (length 3) were con-
structed for each of the 180 matrices using the ASM, CON, and ENT features.
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The training set was then classified into three classes. In the final analysis, 85%,
of the samples were classified correctly. This is comparable to the best result
obtained in [[107] using pairs of features and a Fisher linear diseriminant classifier.

6. DISCUSSION AND CONCLUSIONS

In this paper we have presented a statistical approach to selecting co-oceurrence
matrices for texture classification on the basis of how well they captured texture
structure. Although the methodology was only demonstrated for matrices of
intensity pair occurrence frequencies, its application to secondary images derived
from more general local features is straightforward.

oy

F1e. 7. The five Brodatz textures used in the first classification experiment.
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Fia. T—Continued.

The measure of texture structure captured by co-occurrence matrices, a X2
statistic, was used to select such matrices for classification. This implies that the
feature vectors for different samples in a particular classification experiment may
be computed from matrices derived from different spatial relationships. An
important variation on the technique presented here is to actually use the chosen
d values themselves as features for classification. Such a feature should separate
magnified images of identical textures very well, and should also reflect size
variations between texture primitives.

The X* measure of texture structure is only one possibility for quantifying the
association between variables in contingeney tables. Goodman and Kruskal [8]
have characterized several other measures of association which should also be
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Fia. T—Contrnued.

examined, both as features for texture classification and as measures of texture
structure. Such measures may provide the beginnings of a formal bridge between
statistical and structural models for texture.

APPENDIX: A LINEAR DISCRIMINANT CLASSIFIER

In this appendix we describe the classifier used in our texture experiments.
It is a minimum Mahalanobis distance classifier that computes a set of linear
discriminant funections.

Let wi, ¢ = 1, 2, ..., ¢, be the set of classes and X be a sample (i.c., feature
vector). The decision rule divides feature space into ¢ decision regions Ry, .. ., R..
Let g:(X), i =1, 2, ..., ¢, denote the set of diseriminant functions. If g;(X)

>¢;{X) for all ¢  j then X is in R; and the decision rule assigns X to class w,.

Fra. 8. LANDSAT terrain images used in the second classification experiment. A typical image
is shown from each of the three groups.
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Fra. 8—Continued.

It can be shown [47] that minimum error rate classification can be obtained
with the diseriminant functions

g:(X) = log p(X|w:) + log P(w;),

where p (X |w,) is the likelihood of w; with respect to X, and P(w,) is the a priori
probability of samples falling into w;. To evaluate the functions, we assume that
p(X|w:) are multivariate normal densities. Furthermore, we assume that the
covariance matrices are identical for all the classes (i.e., Z; = Z). Thus, geo-
metrically, the clusters for all classes are hyperellipses of equal size and shape,
with the cluster of the ¢th class centered about mean vector m;. Under these
conditions, the discriminant functions are linear and the resulting decision
boundaries are hyperplanes.

Suppose that there are ¢ classes and that the classifier is to be trained on a pool
of N samples, with ny, &k = 1, 2, .., ¢, samples belonging to each class. In addi-
tion, suppose that X is the 4th feature of X and that X has length d. For each
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TABLE 5

x* Values for Co-Occurrence Matrices, Computed over Several Spatial
Relationships for the LANDSAT Images®

Distance Angles
0° 45° 90° 135°
1 8,795.4 6,737.6 11,994.6 6,998.7
2 5,026.1 4,641.0 5,877.7 4,267.7
3 4,246.3 3,807.1 4,904.9 4,315.7
4 4,103.0 4,009.3 4,497.7 4,177.0
53 4,023.4 3,804.6 4,438.9 4,089.9
6 4,079.3 4,066.3 41724 42421
7 4,003.6 3,879.2 4,106.7 4,006.4
8 3,805.0 3,926.4 4,146.1 4,201.5
1 7,268.6 5,067.1 6,973.1 49497
2 4,660.9 4,131.5 3,985.6 4,002.5
3 4,112.1 3,744.2 4,257.4 3,974.1
4 4,056.8 4,035.2 4 356.5 4,037.5
5 3,970.7 3,950.1 4,143.4 4,039.1
6 4,152.3 3,968.3 4,488.4 4,013.9
7 4,041.1 4043.4 4018.1 3,928.8
8 3,958.3 4,043.3 3,802.7 4,121.6
1 13,628.7 9,618.6 17,446.3 11,182.7
2 7,282.4 5,560.0 7,814.8 6,275.2
3 9,858.3 4,450.6 5,486.4 4,861.8
4 4,988.2 4,329.8 4,616.3 4,390.2
5 4,473.5 4,309.3 4,305.2 4,265.8
6 4419.1 4,185.8 4,073.6 4,229.1
7 3,904 4 4,293.5 4,185.6 4,085.2
8 3,863.1 4,300.1 4,458.9 4,186.0

= The tables were generated from the images in Fig. 8, in the order of their appearance.

class, k = 1, 2, ..., ¢, we compute the means
ik
pi* = — 2 X%, =N 2 e
Ny i=1

and the matrix of cross products of deviations from the means
D= (@i} = X (Xh—w) (X =wd),  5l=12...,d
The pooled covariance matrix is then
2= o} = T D/ (X m) = )

Let o7 be the (4, 7)th element of -1 The coefficients of the linear discriminant
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functions are then given by

a
= 4
Wz'k = Z Uij ,Lljk, 1

=1

A P

and the constant term by

IVok =S

b=

=l
D e

1 5=

d
i=

—

Thus, the diseriminant funetions are

d
gk(X) = Wo 4 3 WHEX®

=1

The decision rule assigns X to the class yielding the largest diseriminant function.
The confidence in the classification is given by

[
P = 1/ e(rm—m,)’
k=1

where L is the elass whose diseriminant function gives the largest value, ¢z, for X.

One may obtain a general measure of the usefulness of a set of discriminant
functions obtained from a particular training set by computing a generalized
Mahalanobis D? statistic. Let m;, i = 1, 2, ..., d, be the common means for all
¢ groups.

€ <
m; = Z nk,uf"/z M.
k=1 k=1

The statistic is given by

d d c
D=3 ¥ o' T meud — ma) (ut — my).
k=1

i=1 j=1

D2 can be used as a chi square (under the assumption of normality), with m(k — 1)
degrees of freedom, to test the hypothesis that the d feature mean values are the
same in all ¢ groups (i.e., the groups are nonseparable).
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