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Abstract. Increasingly complex physics-based models enhance the real-
ism of character animation in computer graphics, but they pose difficult
motor control challenges. This is especially the case when controlling
a biomechanically simulated virtual human with an anatomically real-
istic structure that is actuated in a natural manner by a multitude of
contractile muscles. Graphics researchers have pursued machine learn-
ing approaches to neuromuscular control, but traditional neural network
learning methods suffer limitations when applied to complex biome-
chanical models and their associated high-dimensional training datasets.
We demonstrate that “deep learning” is a useful approach to training
neuromuscular controllers for biomechanical character animation. In par-
ticular, we propose a deep neural network architecture that can effec-
tively and efficiently control (online) a dynamic musculoskeletal model
of the human neck-head-face complex after having learned (offline) a
high-dimensional map relating head orientation changes to neck muscle
activations. To our knowledge, this is the first application of deep learn-
ing to biomechanical human animation with a muscle-driven model.

1 Introduction

The modeling of graphical characters based on human anatomy is becoming
increasingly important in the field of computer animation. Progressive fidelity
in biomechanical modeling should, in principle, result in more realistic human
animation. Given realistic biomechanical models, however, we must confront
a variety of difficult motor control problems due to the complexity of human
anatomy.

In conjunction with the modeling of skeletal muscle [1,2], existing work in
biomechanical human modeling has addressed the hand [3-5], torso [6-8], face
[9-11], neck [12], etc. These prior efforts demonstrated different control schemes
for individual parts of the human body. Further research is needed to achieve a
fully robust control system for muscle-actuated biomechanical human animation.

The challenge in controlling biomechanical human models stems from
anatomical intricacy, which complicates the kinematics, dynamics, and actuation
of the character. For example, the neck-head biomechanical model developed in
[12] has 10 bones and 72 muscle actuators (Fig.2), while the full-body biome-
chanical model presented in [13] includes 103 bones and 823 muscle actuators,
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Fig. 1. Snapshots from an animation demonstrating robust online neuromuscular con-
trol of head orientation in a muscle-actuated biomechanical neck-head-face system.
Despite the continuously varying orientation of its shoulders that are fixed to the
unsteady wagon base, the character can visually track a moving target (doll) while
naturally supporting the mass of its head in gravity atop its anatomically accurate
flexible neck. Facial expressions are automatically produced in response to the observed
movement of the doll—the character expresses awe when the doll is raised above the
head, anger when the doll is shaken, and pleasure when the doll is held calmly at eye
level.

Fig. 2. Close-up views of the musculoskeletal structure of the biomechanical neck-
head model, comprising 7 cervical vertebra and 72 actuators: 48 deep muscles (red),
12 intermediate muscles (green), and 12 superficial muscles (blue) (Color figure online).

an order of magnitude greater complexity. Controlling such models requires the
specification of muscle innervations (i.e., activation signals) at every time step
of the biomechanical simulation.

1.1 Neuromuscular Control

As pioneered by Lee and Terzopoulos [12] in the context of neck-head control,
neuromuscular learning approaches are the most biomimetic and promising in
tackling high-dimensional, muscle-actuated biomechanical motor control prob-
lems. To control the neck-head system in gravity, rather than resorting to tra-
ditional inverse dynamics control, which is both unnatural and computationally
expensive, these authors employed a conventional, artificial neural network with
two hidden layers of sigmoidal units, which they trained offline through back-
propagation learning. The training data comprised tens of thousands of ran-
dom target head orientations as network inputs and the muscle activation levels
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Fig. 3. Control flow for the neck-head model.

required to achieve these target orientations as associated network outputs. Their
trained neuromuscular controller was capable of efficiently controlling the biome-
chanical model online, thereby achieving a real-time neuromuscular neck-head
control system. The neck-head biomechanical model is actuated by 72 muscles, so
their trained neural network controller maps 3 inputs (a target head orientation)
to 72 outputs (the muscle activations required to achieve this orientation) with
adequate generalization. Their offline training procedure took approximately
10h to complete the backpropagation learning process.

Conventional neural networks with only a few hidden layers have not proven
effective at coping with the higher dimensionalities and necessarily much greater
quantities of training data required to learn to control biomechanical models
of an order of magnitude greater complexity, such as the one presented in [13].
For this reason, Lee and Terzopoulos [12] made no attempt to generalize their
neck-head controller to deal with other than horizontally-oriented shoulders and,
unsurprisingly, their trained neuromuscular controller fails to maintain satisfac-
tory control unless the shoulders remain nearly horizontal.

1.2 Deep Learning of Neuromuscular Control

Deep neural networks with many hidden layers could not at first be trained due
to technical difficulties with the backpropagation learning algorithm such as local
minima and the vanishing gradient problem. Motivated by recent breakthroughs
in “deep learning” that have mitigated these problems, we have applied deep
neural network architectures to neuromuscular control. The long-range goal of
our research is to overcome the aforementioned challenges in the neuromuscular
control of complex biomechanical models.

In this paper, we adapt deep learning techniques to the neuromuscular control
of the human neck-head biomechanical model described in [12]. Our contribu-
tions include the introduction of a new neuromuscular controller, whose deep
architecture differs markedly from the one in [12], with dramatically enhanced
learning ability and efficiency even when employing much higher dimensional
training data. This enables us to push significantly beyond the prior benchmark,
training our neck-head neuromuscular controller to work well not merely for
horizontal shoulders, but for a considerable range of shoulder orientations.
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1.3 Overview

The remainder of this paper is organized as follows: In Sect. 2, we briefly explain
the neck-head model and its neuromuscular control system. We then develop our
novel neuromuscular learning approach in Sect. 3, and demonstrate the effective-
ness of our approach through experiments reported in Sect. 4. Section 5 presents
our conclusions and discusses future work.

2 Biomechanical Model and Control System

In our work, we use the anatomically accurate musculoskeletal model of the
human neck-head complex implemented by [12], which is illustrated in Fig. 2.
The model comprises a skull, whose mass is commensurate with that of an aver-
age adult male head, atop a cervical skeleton comprising 7 vertabrae connected
by 3 degree-of-freedom rotational joints, and a clavicle base. This skeletal system
is actuated by 72 contractile cervical muscles, modeled as Hill-type actuators,
arranged in three layers (Fig.2). Appendix1 presents additional details about
the biomechanical model.! The associated neuromuscular control architecture
(Fig. 3) involves a high-level voluntary controller that determines the head pose
and a lower-level reflex controller that produces the necessary muscle activation
inputs. Appendix 2 presents additional details about the hierarchical neuromus-
cular control system, as well as the gaze control mechanism.

The specific technical challenge that we address in our work is how best to
implement and train the voluntary controller. The considerable kinematic and
muscular redundancy of the biomechanical model makes it infeasible to control
the cervical muscles online in real time using an inverse dynamics approach.
Instead, as in [12], we pursue a biomimetic neuromuscular control approach. A
neural network controller is trained offline on a large dataset comprising several
tens of thousands of random head orientations (inputs) and the associated mus-
cle activations (outputs). To generate training data, each 72-dimensional muscle
activation output, which must achieve the associated target head pose and sus-
tain it against the pull of gravity, is synthesized off-line through (computationally
expensive) inverse kinematics/dynamics computations as in [12].

Lee and Terzopoulos [12] used a conventional, shallow neural network for
their voluntary controller. It typically took on the order of 10h to train this
network, which imposed practical limits on the dimensionality and size of the
usable training dataset. To surmount this obstacle in neuromuscular control,
we devise a deep neuromuscular control architecture that proves to be more
efficient to train and is capable of learning more proficiently from larger and
much higher-dimensional datasets. In principle, this makes it amenable to bio-
mechanical models of much greater complexity—potentially even to a full-body
biomechanical model with an order of magnitude more articular degrees of free-
dom and muscle actuators [8,13].

! Due to space limitations, the appendices are found in a supporting document (see,
e.g., https://db.tt/wn37j8rg).
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At each time-step of the biomechanical simulation, muscle activations are
computed by our trained deep neural network in the voluntary controller, and
they are input to the reflex controller. The latter adjusts the muscle activations in
accordance with the difference between the current state and the desired state of
each muscle. The biomechanical simulator computes the muscle forces induced
by the muscle activations, applies the muscle forces to the dynamic skeletal
system, and numerically updates the accelerations, velocities, and positions of
the articulated bones, thereby advancing the simulation in time.

2.1 Egocentric Head-Eye Control

Humans obtain visual information about objects from their foveated retinal
images. Sensing a target of interest in the periphery of the visual field triggers
a rapid eye rotation to foveate the target in conjunction with a comparatively
sluggish head rotation (due to the greater mass of the head) toward the target.
Lee and Terzopoulos [12] synthesized desired head rotation trajectories through
the spherical linear interpolation (slerp) of head Euler angles, which is unnatural.

By contrast, in our neuromuscular control system, we define the angular
error vector as the difference of the current head orientation and the target
head orientation. In each time step, our neuromuscular controller acts to reduce
this 2-D angular error vector (with horizontal angle 6 and vertical angle ¢). Our
neck-head control system does not require knowledge of the position of the visual
target nor of the orientation of the head relative to the world frame. Rather, the
relevant variables are represented relative to the egocentric frame whose origin
is at the head and which rotates with the head.

3 The Deep Neuromuscular Controller

Our neuromuscular controller differs substantially from the shallow (3-input,
72-output, 2-hidden-layer) network described in [12]. We map to the 72 mus-
cle activation outputs not only the target head orientation inputs, but also the
72 current muscle activations, so that the current muscle activation state affects
the computation of the output muscle activations. Incorporating the current
muscle activations as inputs is necessary in order to reduce the angular error vec-
tor in egocentric coordinates while achieving robust control regardless of shoul-
der orientation. The higher input dimensionality of our controller along with
the much greater quantity of data necessary to train it at a variety of shoulder
orientations exceeds the capabilities of the shallow network used in [12], and this
problem is unlikely to be overcome without the use of a deeper network.

Our proposed deep network architecture includes 74 inputs, comprising the
2 angles, 6 and ¢, of the head orientation error vector plus the 72 current muscle
activations, along with 72 muscle activation outputs. The intermediate, hidden
layers of the network implement an n-stage stacked denoising autoencoder (SdA)
[14], which will be described in the next section. The bottom layer outputs the
modified 72 cervical muscle activations (illustrated in Appendix 3).
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A more powerful neuromuscular controller learning method is needed to train
our deep network. Our learning method has two phases. The first is a pre-training
stage, where we apply unsupervised learning to the SAA. The second is a fine-
tuning stage where we apply supervised learning to the multilayer perceptron.
The first phase contributes to finding better initial parameters and the second
phase tunes those parameters by comparing the output from the network and
the training example values.

The overall learning process proceeds as follows: We generate a training
dataset comprising many input/output examples by numerically simulating the
biomechanical model. Then, we run the SAA pre-training phase on this dataset.
After pre-training, we initiate fine-tuning with the multilayer perceptron. Sub-
sequently, we can employ the trained deep network online to control the biome-
chanical model.

Additional technical details about our deep neuromuscular controller learning
process are presented in the following sections.

3.1 Stacked Denoising Autoencoder (SdA)

An autoencoder is a multilayer neural network that minimizes the difference
between its input and output after encoding/decoding through its hidden layers.
The encoding is as follows:

Ye = 0(Wx +b), (1)

where x is the input, y. is the encoded output, o is a nonlinearity with sigmoidal
o(z) = 1/(14e~ %) components, W is the weight matrix, and b is the bias vector.
Likewise for the decoder,

ya=0(W'y. +b), (2)

where yq is the decoded value, and W’ and b’ are the weight matrix and bias
vector. After encoding/decoding, the inputs are compared to the outputs, yield-
ing the error function

1 ol 2
B = (b vl ®

where ¢ indexes over the N training examples. The error gradient VE is used
to update the weights and biases through gradient descent (in our work, we set
the learning rate to 0.1).

In mini-batch stochastic gradient descent, VE is estimated using a limited
number of training examples. We include 32 training examples in each mini-
batch. Processing all the mini-batches in this way constitutes a training epoch.
We use a tied-weight scheme, W’/ = W7 which has a beneficial regularization
effect and requires less memory. Hence, the parameters to be updated are W,
b, and b’.

A Denoising Autoencoder (dA) forces its hidden layers to discover more
robust features and prevent learning the identity mapping, which the simple
autoencoder may uselessly determine as being the zero-error optimal solution.
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To this end, one adds noise to the training data, and the dA tries to reduce the
noise and recover the original data from the corrupted data. Associating a prob-
ability (0 implies certainty) with each unit in each layer, we set the probabilities
to 0.1 for the hidden layers and randomly mask some inputs by setting them to
Zero.

We stack the dAs to form a Stacked Denoising Autoencoder (SAA), where
the outputs of each dA are propagated as inputs to the next dA. The advantage
of the SAA is that each dA is trained independently and sequentially, and the
dAs may be stacked as deeply as necessary to produce a good output.

3.2 Pre-training Phase

During the pre-training phase, the training starts at the input layer of the SdA
and advances to the output layer, completing the training one layer at a time.
We run 300 epochs for each layer sequentially such that each dA can learn a
good representation and the input data are mapped to the output data with
minimal information loss.

The initial weights are uniformly sampled from the interval [—v,v], where
v = 4/6/(n; +n,), with n; being the number of inputs and n, the number of
outputs in a layer. It is known that uniform sampling from this interval works
well with sigmoidal units [15]. This prevents the learning process from becoming
trapped in a local minimum early in the pre-training phase and it yields better
optimization and faster convergence.

3.3 Fine-Tuning Phase

During the fine-tuning phase, we start with the weights and biases obtained in
the pre-training phase, and then we update them using the multilayer backprop-
agation algorithm. This phase is supervised, as we compare the outputs to the
labeled training data and reduce the error by updating the weights and biases
using mini-batch stochastic gradient descent with (mean sum-of-squared) error
backpropagation.

The training process is stopped when it ceases to improve sufficiently on a
validation dataset (we set the threshold in each training epoch to 0.005 %). This
“early stopping” prevents the training process from overfitting.

4 Experiments and Results

4.1 Fixed, Horizontal Shoulder Orientation

Our first set of experiments evaluates the performance of our deep neuromuscu-
lar controller relative to the shallow one reported in [12] with fixed horizontal
shoulder orientation. Figure4 plots the learning performance of different net-
work structures. The plots indicate the superiority of our deep neuromuscular
controller learning method with pre-training. Appendix 4.1 presents the details
of this experiment.
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Fig. 4. Training error with different network structures when fine-tuning on the vali-
dation dataset.

4.2 Robust Control with Varying Shoulder Orientation

We verified that the shallow neuromuscular controller developed in [12] fails
to maintain control of the head when the shoulders are not in a horizontal
orientation. To facilitate comparison, the motion of the doll visual target is
the same as the one in the head-eye gaze behavior demonstration illustrated
in Fig. 10 of reference [12]. The more the orientation of the shoulders deviates
from the horizontal, the more difficulty the shallow neuromuscular controller
experiences in tracking the visual target. More strikingly, as the shoulders tilt
back moderately, the neck-head skeleton collapses backward in gravity, resulting
in catastrophic failure. We will next explain how we train our deep neuromuscular
controller to accomplish this more challenging control task.

Synthesis of Training Data: First, with horizontal initial shoulder orientation,
we synthesize training data by incrementing the head by 1° angles around the 6
and ¢ axes in the range —50° < 0 < 50° and —50° < ¢ < 50°. Then, we repeat
the same process with different shoulder orientations, varying the orientation of
the shoulders by 5° from —25° to 25° around both the frontal z axis along the
shoulders and the sagittal z axis. This yields 1,000,000 example target angu-
lar error vectors with associated muscle activations computed through inverse
kinematics/dynamics. The training data synthesis took 6.5 days to complete.
Finally, we partition the data into training, validation, and testing datasets in
the ratio 70 %:15 %:15 %, respectively.

We trained our deep neuromuscular controller with the aforementioned
dataset and verified that, unlike the shallow neuromuscular controller, our con-
troller enables the neck-head system to smoothly track the visual target while
the orientation of the shoulders varies continuously in the range of —25° to 25°
around both the z and y axes. We used the 5-stage SAA network with 400 units
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in each stage—metwork (iv) in Fig. 4—since it proves to learn best as is shown
in the figure.

Figure 1 shows snapshots from a demonstration video of our neck control
system, demonstrating that it copes very well with continuously varying shoulder
orientations. Although our training dataset was 33 times larger (and higher-
dimensional) than the one used in [12], our off-line training process completed in
only 23.0h, with the pre-training phase taking 19.3h and the fine-tuning phase
taking 2.7 h.

The pre-training phase worked well with our training data, and our deep
neural network learned the appropriate initial weights and biases after 300
epochs of training for each autoencoder layer. Subsequently, the fine-tuning
phase started with a relatively small 0.021 error (the error would have been
much higher had we simply set random initial weights and biases). This reduced
the time for the fine-tuning phase, which completed with 0.003 error after satis-
fying the early stopping condition in 82 epochs.

For a fair comparison, we replicated the shallow neural network presented in
[12] and tested it with our larger dataset. Appendix4.2 includes a plot of the
training progress. It took 2.5 days to complete 500 training epochs, and the error
fluctuated between 0.0525 and 0.0545 without decreasing. None of the different
parameter settings and shallow network structures that we tried resulted in
successful convergence.

5 Conclusion and Future Work

We have introduced a new approach to the design and training of neuromus-
cular controllers of complex biomechanical human models for use in computer
graphics animation. To our knowledge, this is the first application of deep neural
networks to the problem. Our approach proves to be superior to previous meth-
ods both in terms of the efficiency of the learning process and, potentially more
importantly, in the ability to learn effectively from much larger quantities of
higher-dimensional training data. These benefits enabled us to train a deep neu-
romuscular neck-head controller to work well over a continuous range of shoulder
orientations.

Our experiments demonstrated that our deep network, which incorporates
significantly more units in its hidden layers, can learn effectively from our largest
training datasets (in our case, one million input/output examples), reinforcing
the notion that deep networks are generally more suitable than shallow networks
for the regression, with good generalization, of massive quantities of training
data.

We expect our deep learning approach to architecting and training neuro-
muscular controllers to work for other, similarly complex biomechanical models,
such as those for arms and hands. Furthermore, our approach seems promising for
the neuromuscular control of full-body human models with a dramatically higher
dimensional muscle activation space, on the order of 1,000 muscle actuators.
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