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T-snakes: Topology adaptive snakes
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Abstract

We present a new class of deformable contours (snakes) and apply them to the segmentation of medical images. Our snakes are defined
in terms of an affine cell image decomposition (ACID). The ‘snakes in ACID’ framework significantly extends conventional snakes,
enabling topological flexibility among other features. The resulting topology adaptive snakes, or ‘T-snakes’, can be used to segment some
of the most complex-shaped biological structures from medical images in an efficient and highly automated manner.  2000 Elsevier
Science B.V. All rights reserved.
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1. Introduction as internal deformation energies, to compensate for noise,
gaps and other irregularities in object boundaries. Their

Segmenting anatomic structures from medical images underlying geometric representations provide a compact,
and reconstructing compact analytic representations of analytical description of an object. Moreover, these models
these structures is a challenging problem. This is due to the support highly intuitive interaction mechanisms that, when
complexity and variability of the anatomic shapes of necessary, allow medical scientists and practitioners to
interest and the sheer size of the data sets. Furthermore, the bring relevant expertise to bear on the model-based image
shortcomings typical of sampled data, such as sampling interpretation task.
artifacts, spatial aliasing, and noise, may cause the Their advantages notwithstanding, the classical paramet-
boundaries of structures to be indistinct and disconnected. ric snakes models have several limitations that mitigate
The challenge is to extract the boundary elements belong- their utility across the full range of medical image analysis
ing to the anatomic structure and integrate these elements problems and limit their potential for automation. A
into a complete and consistent model of that structure. This significant shortcoming in certain applications is their
process should be performed as efficiently and automat- topological inflexibility. In this paper we describe a new
ically as possible. class of deformable contour models known as topology

Deformable models (Terzopoulos et al., 1988), which adaptive snakes, or T-snakes. Our approach exploits an
include the popular deformable contours or snakes (Kass et affine cell decomposition (Allgower and Georg, 1990;
al., 1988), are a powerful segmentation technique designed Munkres, 1984) of the image domain, creating a mathe-
to meet this challenge (see the recent survey by McInerney matically sound framework that significantly extends the
and Terzopoulos (1996) and the compilation by Singh et abilities of standard snake models. The affine cell image
al. (1998)). Deformable models tackle the segmentation decomposition (ACID) divides the image domain into a
problem by considering an object boundary as a single, collection of convex polytopes.
connected structure. They exploit a priori knowledge of We immerse discrete versions of conventional paramet-
object shape and inherent smoothness, usually formulated ric snakes in ACID and incorporate an efficient reparame-

terization algorithm to produce T-snakes that are able to
*Corresponding author. conform to complex geometries and topologies. The ACID
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framework enables T-snakes to maintain the traditional snake in conjunction with the internal deformation
features associated with parametric snakes models, such as (usually arc-length and curvature) energy constraints can
user interaction and constraints through energy or force limit its flexibility and prevent the snake from conform-
functions, while overcoming several of their limitations. ing to long tubular shapes or shapes with significant
The ACID framework also provides a convenient mecha- branching and protrusions.
nism for the incorporation of ‘hard’ geometric and topo- • The fixed parameterization of a standard snake also
logical constraints. These properties in combination makes it incapable of topological transformations, thus
produce an effective and general tool for the efficient, the topology of the object of interest must be known in
accurate, reproducible, and highly automated extraction advance.
and analysis of anatomic structures from medical images. Several researchers have attempted to overcome some of

This paper focuses on the two-dimensional T-snakes these limitations by adding greater functionality to
formulation first proposed in McInerney and Terzopoulos parametric model formulations, such as ‘inflation’ forces
(1995b,c); however, we have recently extended the ACID (Terzopoulos et al., 1988; Cohen and Cohen, 1993), the
framework to 3D, leading to topology adaptive deformable use of automatic snake element subdivision mechanisms
surfaces, or T-surfaces (McInerney and Terzopoulos, (Ivins and Porrill, 1994; Lobregt and Viergever, 1995),
1999). Section 5 will present a brief introduction to T- and the integration of region-based information (Rougon

ˆsurfaces and an example of their use. and Preteux, 1991; Herlin et al., 1992; Chakraborty et al.,
1994; Gauch et al., 1994; Poon et al., 1994; Chakraborty
and Duncan, 1995). However, parametric models are

2. Background incapable of adapting to object topology and segmentation
results remain too dependent on initial position. Thus when

The segmentation of medical images – the partitioning dealing with images containing complex-shaped objects or
of image points into subsets corresponding to meaningful objects that are embedded in other objects, the improved
anatomic structures – is an essential first stage of most parametric models may still require extensive user inter-
image-based medical analysis tasks, including shape analy- action. Interestingly, in contrast to the 2D case, there are
sis, visualization, registration, labeling, and motion track- several 3D parametric deformable surface models that are
ing. These tasks usually require imaged anatomic struc- capable of automatically adapting to object topology
tures to be reduced to compact, analytic shape representa- (Leitner and Cinquin, 1991; Szeliski et al., 1993; Whitaker,
tions. The traditional, manual segmentation of medical 1994; Malladi et al., 1996; Lachaud and Montanvert,
images can be extremely labor intensive and time-consum- 1999). Unlike T-surfaces which are automatically re-
ing. Consequently, semi-automatic and, ultimately, fully parameterized via the ACID framework, the reparameteri-
automated techniques are a desirable goal. Increasing the zation process of these models is typically based on
degree of automation can not only relieve clinicians from subdivision rules and not on the intrinsic local geometry of
much tedious work, but it can also increase the efficiency, the target object; these triangle refinement mechanisms can
accuracy, and perhaps most importantly, reproducibility of create initial position sensitivity that adversely affects
the segmentations. However, since erroneous automated segmentation reproducibility.
interpretations of medical images are usually unacceptable, To introduce topological flexibility, several researchers
any successful segmentation technique should support have developed implicit snakes by adopting Osher and
intuitive, efficient interactive guidance or editing by the Sethian’s (1988) level-set evolution technique to the image
medical expert. segmentation problem (Caselles et al., 1993, 1995;

With this motivation in mind, our goal is to extend Whitaker, 1994; Malladi et al., 1995; Sapiro et al., 1995).
considerably the capabilities of standard snakes models These models are formulated as evolving contours (sur-
(see Appendix A for a review), improving their per- faces in 3D) or ‘fronts’ which define the level set of some
formance and increasing their degree of automation, while higher-dimensional (hyper-) surface over the image do-
retaining their traditional strengths. An important property main. The main feature of this approach is that topological
to maintain is the ability to design energy or force changes are handled naturally, since the level set need not
functions to constrain and interactively guide the model. be simply connected; the higher-dimensional surface re-
The most significant limitations to overcome are as mains a simple function even as the level set changes
follows: topology. While the Osher–Sethian technique is an attrac-
• Standard parametric snakes were designed as interactive tive mathematical framework, partial differential equations

models and they usually must be brought close to the governing curvature-dependent front evolution, implicit
boundary of the target object to capture the boundary formulations are not nearly as convenient as explicit,
well. To make snakes more automatic, mechanisms must parametric formulations when it comes to incorporating
be added that overcome the initialization sensitivity additional control mechanisms including internal deforma-
problem. tion energies and external interactive guidance by expert

• The fixed geometric parameterization of a standard users. Furthermore, the higher dimensional implicit surface
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formulation makes it difficult, if not impossible, to impose automatic model subdivision technique and the ACID grid
arbitrary geometric or topological constraints on the level provides a framework for robust topological transforma-
set indirectly through the higher dimensional representa- tions. This allows the model to be relatively insensitive to
tion. Therefore, the implicit formulation may potentially its initial position and ‘flow’ into complex shapes with
limit the ease of use, efficiency and degree of automation complex topologies in a stable manner. By providing a
achievable in the segmentation task. boundary representation as well as a representation of the

In this paper, we develop a ‘snakes in ACID’ approach interior region of an object, this hybrid snakes model
that endows a discrete version of a parametric deformable combines the space partitioning, intrinsic parameterization
contour model with the topological flexibility inherent to and topological flexibility properties of an implicit formu-
the implicit model formulation, thus gaining the best of lation with the boundary properties of a parametric model.
both worlds. The ACID automatically and efficiently The overall motion of a T-snake is analogous to the
reparameterizes the T-snakes as they evolve. The T-snakes motion of a propagating front. However, there are two
inherit the features traditionally associated with conven- distinct phases to the motion. In the first phase, between
tional snakes, such as user interaction and the incorpora- reparameterization stages, a T-snake behaves as a standard
tion of energy/ force-based constraints. At the same time, parametric snake and evolves according to Lagrangian
the ACID reparameterization mechanism enables T-snakes dynamics. This Lagrangian formulation phase allows any
to flow into complex shapes, changing topology as neces- data-derived or user-defined force to guide the snake.
sary. This allows T-snakes to segment objects with com- During the second or reparameterization phase, the snake
plex topologies or objects which contain smaller, embed- is reparameterized in terms of the ACID grid and the fixed
ded objects, as well as automatically merging with other grid points are used to track the interior of the closed
T-snakes introduced by the user. The T-snake will general- contour model, creating a space partitioning similar to that
ly produce very similar segmentations no matter where it is of an implicit function. This phase provides stability,
initialized within the imaged object of interest. If desired, intrinsic parameterization, and topological adaptability.
the underlying parametric formulation enables the use of Conversion to the traditional parametric snakes model
high-order polynomial finite elements to discretize the representation is simply a matter of disabling the ACID
contour and/or the integration of image information over grid at any time during the evolution process.
the extent of each element.

3.2. Model description

3. A T-snakes formulation The first component of T-snakes is a discrete form of the
standard snakes model described in Appendix A. A T-

3.1. Overview snake is defined as a set of N nodes, indexed by i 5

0, . . . ,N 2 1, connected in series by a set of N edges or
We define our T-snakes model as a closed 2D contour elements. We associate with these nodes time varying

consisting of a set of nodes connected in series. A T-snake positions x (t) 5 x (t), y (t) , along with tensile forcesf gi i iis a discrete approximation to a conventional parametric a (t), flexural forces b (t), inflationary forces r (t), andi i isnakes model and retains many of its properties. The external forces f (t) that act in the image plane. A periodiciinternal forces act as a smoothness constraint and users can boundary condition x (t) 5 x (t) is applied to produce a1 Ninteract with the model using spring forces and other closed contour model.
constraints. An ‘inflation’ force is used to push the model The behavior of a T-snake is governed by a simplified
towards image edges until it is opposed by external image version of (A.5) in discrete form. The result is a set of
forces. The deformation of the model is governed by first-order ordinary differential equations of motion
discrete Lagrangian equations of motion. We formulate the

~g x 1 aa 1 bb 5 r 1 f , (1)deformable contour model in Section 3.2. i i i i i i

Unlike traditional snakes, the set of nodes and inter-
~where x (t) is the velocity of node i and g is a dampingi iconnecting elements of a T-snake does not remain constant

coefficient. The internal tensile forcesduring its evolution. We decompose the image domain into
a grid of discrete cells. As the model moves under the a (t) 5 2x (t) 2 x (t) 2 x (t) (2)i i i21 i11
influence of external and internal forces, we reparameterize
the model with a new set of nodes and elements by (nodal indexes are evaluated modulo N) are a discrete
efficiently computing the intersection points of the model approximation to the second derivative of the coordinate
with this ACID grid. We also keep track of the interior functions with respect to s (third term of (A.5)) and act to
region of the model by ‘turning on’ any grid vertices maintain a uniform spacing between model nodes. The
passed over by the T-snake during its motion. By re- parameter a controls the resistance of the contour to
parameterizing the model at user-specified iterations of the stretching deformations. The tensile forces can be made
evolutionary process, we create a simple, elegant and scale invariant by dividing the right hand side of (2) by the
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distance between neighboring nodes. The internal flexural the potential P is defined by (A.4). The weights p and q
forces are usually chosen to be of the same order, with p slightly

larger than q so that a significant edge will stop the
b (t) 5 2a (t) 2 a (t) 2 a (t) (3)i i i21 i11 inflation but with q large enough so that the model will

pass through weak or spurious edges. The image edgeare a discrete approximation to the fourth derivative of the
force can also be averaged over a local neighborhoodcoordinate functions with respect to s (fourth term of
centered at x to improve robustness against noise.(A.5)). The parameter b controls the resistance of the i

Another effective external force is an inflation force thatcontour to bending deformations.
makes use of a Chamfer distance map (Borgefors, 1984) orOn the right hand side of (1), r and f are externali i

a gradient vector field that approximates the distance andforces. Since the model has no inertia, it comes to rest (i.e.,
direction to the nearest edge (Prince and Xu, 1996). In this~x 5 0) as soon as the applied forces balance the internali

scenario, the inflation force is weighted by the distance toforces. An inflation force is used to push the model
the edge and is directed along a T-snake node normal.towards intensity edges in the image I(x, y), until it is
Once equilibrium has been achieved the inflation force isopposed by the image forces. The inflation force is
turned off and the image edge force is activated. This

r (t) 5 qF(I(x (t))n (t), (4)i i i ‘force phasing’ approach is an effective means of prevent-
ing the T-snake from leaking into neighboring structureswhere n is the unit normal vector to the contour at node i,i
when there are significant gaps in the target object edges.and q is the amplitude of this force. The binary function
Other useful functions F that can be used as inflation force

1 1 if I(x, y) > T, weights include local variance and intensity (Lorigo et al.,
F(I(x, y)) 5 (5)H2 1 otherwise, 1998), texture (Durikovic et al., 1995), or other statistical

measures of the target object intensity.
links the inflation force to the image data I(x, y), where T We integrate (1) forward through time using an explicit
is an image intensity threshold. To calculate a continuous first-order Euler method. This method approximates the
image function I(x, y) we compute the intensity at an temporal derivatives with forward finite differences. It
arbitrary point (x, y) by bilinearly interpolating the inten- updates the positions of the model nodes from time t to
sities at the four pixels surrounding (x, y). The function F time t 1 Dt according to the formula
makes the T-snake contract when I(x, y) , T and is used to

Dtprevent the T-snake from leaking into the background. (t1Dt ) (t ) (t ) (t ) (t ) (t )]x 5 x 2 (aa 1 bb 2 r 2 f ). (8)i i i i igOscillation of the T-snake can be prevented by pro-
gressively lowering the magnitude q of the force toward The explicit Euler method is simple, but it becomes
zero once a change of direction is detected or if a T-snake unstable unless small time steps are used. In our T-snakes
element remains within the same grid cell for a specified application, however, a very reasonable range of time step
number of iterations. Region-based image intensity statis- sizes can be found that produce stable behavior resulting in
tics can be incorporated into the inflation force by extend- accurate segmentations.
ing the function as follows (Ivins and Porrill, 1994; Kapur
et al., 1996): 3.3. Affine cell decomposition

1 1 if uI(x,y) 2 m u < ks,
F(I(x, y)) 5 (6)H The second component of T-snakes is the affine cell2 1 otherwise,

image decomposition. A space decomposition subdivides
where m is the mean image intensity of the target object, s space into a collection of disjoint connected subsets. A
the standard deviation of the object intensity and k is a typical subset is a k-dimensional cell (i.e., a set which is
user-defined constant. The values of m and s are typically homeomorphic to an open disk of dimension k), where the
known a priori or computed from the image. The inflation boundary of each cell is defined to be a finite union of
force essentially creates an active region growing model lower dimensional cells. The subdivision of space using
that provides insensitivity to noise within the region such subsets is known as a cellular complex (Munkres,
through the connectivity and internal smoothness con- 1984). Cellular complexes are a powerful tool for con-
straints of the T-snake; smooth, subpixel-accurate region structing definitions and proofs for image topology
boundaries are produced and a T-snake will pass over (Kovalevsky, 1989).
small spurious regions, preventing the creation of small Affine cell decompositions are examples of special cases
holes in the region. of cell decompositions obtained by restricting the geometry

To stop the contour at significant edges, we include the of the cells to that of a convex polytope. There are two
external force main types of affine cell decomposition methods: nonsim-

plicial and simplicial. Most nonsimplicial methods employf (t) 5 p=P(x (t)), (7)i i a rectangular tessellation of space. The marching cubes
where the weight p controls the strength of the force and algorithm (Lorenson and Cline, 1987) is an example of
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Fig. 1. Example of ambiguous faces of a rectangular cell (black circle,
positive cell vertex; open circle, negative cell vertex). Given the diagonal
arrangement of vertex polarities, it is unclear which edge intersection
should be used.

Fig. 3. Simplex classification.

this type. These methods are easy to implement, but they
cannot be used to represent the boundaries of an implicitly the creation of robust, consistent local polygonal (affine)
defined object unambiguously without the use of a dis- approximations of the boundary contours of anatomic
ambiguation scheme (Ning and Bloomenthal, 1993). For structures. In 2D, an anatomic structure partitions an image
example, Fig. 1 shows two possible boundary representa- into two open sets of dimension 2 (the interior and exterior
tions within a rectangular cell of an implicitly defined points) and one open set of dimension 1 (the boundary

2object. A disambiguation scheme consists of a table lookup points). A simplex s can be classified in relation to this
to identify ambiguous cases followed by adherence to a partitioning of space by testing the ‘sign’ of its vertices. If
disambiguation strategy such as ‘preferred polarity’ – the signs are the same for all vertices, the simplex must be
always separate the positive vertices (and join the nega- totally inside or outside the structure. If the signs are
tives) or vice versa. different, the boundary of the structure must intersect the

In a simplicial cell decomposition (Allgower and Georg, simplex (Fig. 3). In a k-simplex, the negative (inside)
1990), also known as a triangulation, space is partitioned vertices can always be separated from the positive (out-
into cells defined by open simplices, where an n-simplex is side) vertices by a single (hyper-) plane; thus an unambigu-
the simplest geometrical object of dimension n: e.g., a ous polygonalization of the simplex always exists. Further-
triangle in 2D or a tetrahedron in 3D. When using cell more, by the definition of a simplicial complex, a con-
decomposition schemes, it is desirable to have a small sistent polygonalization of the entire boundary contour will
number of cell types, e.g., congruent cells, that differ only result.
by orientation or reflection. If all the cells are identical, In a 2D image, the set of grid cells that intersect the
computations can be made very simple and efficient. For boundary contour of the anatomic structure are termed the

nexample, the simplest triangulation of Euclidean space R boundary cells. These boundary cells form a two-dimen-
with this property is the Coxeter–Freudenthal triangula- sional combinatorial manifold that has as its dual a one-
tion (Fig. 2). It is constructed by dividing space using a dimensional manifold that approximates the contour. The
uniform cubic grid and the triangulation is obtained by one-dimensional manifold is constructed from the intersec-

1subdividing each cube into n! simplices. tion of the object boundary contour with the edges of each
boundary cell. Using simplicial cell decomposition, the

3.4. Simplicial approximation intersection points result in one line segment approximat-
ing the boundary contour inside each boundary triangle

Simplicial cell decompositions provide a framework for (Fig. 4). Each line segment intersects a boundary triangle
at two distinct edges, separating the inside vertices from
the outside vertices. The set of line segments comprises the
combinatorial manifold that approximates the boundary
contour of the object. We can obtain an approximation to
any desired degree of accuracy by decreasing the size of
the grid cells.

3.5. Iterative reparameterization
Fig. 2. Freudenthal triangulation.

A T-snake is reparameterized every M time steps of the
numerical time integration (referred to as a deformation

1We have implemented T-snakes using both non-simplicial and simpli- step), where M is user-controllable and typically set
cial decomposition methods. We will describe the simplicial grid approach

between 5 and 10. The entire T-snake is set to eitherin this paper. The formulation of the model using a non-simplicial grid is
expand or shrink during one deformation step. This policyessentially identical except for the addition of a simple disambiguation

scheme during the reparameterization of a T-snake. means that although a T-snake element is free to move
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forward and backwards during a deformation step, similar
to a parametric snake, at the end of the deformation step
the element cannot have moved such that a grid vertex
previously inside the T-snake is now outside. The reason
for this policy is explained later in this section (see phase
II). This deformation restriction also applies to the level-
set evolution techniques. However, a T-snake can alternate
between expansion and shrinkage deformation steps, effec-
tively mimicing the complete freedom of movement over
all deformation steps of a standard parametric snake. This
allows the user to interact with the T-snake in a manner
similar to that of a standard snake.

At the beginning of the deformation step, the T-snake
nodes are defined in terms of the edges of the grid
boundary cells. At the end of the deformation step, the
nodes have moved relative to the grid cell edges (Fig.
5(a)). We then re-establish the correspondence of the model
with the grid by computing a new simplicial approximation
of the deformed T-snake. This new simplicial approxi-

Fig. 4. Simplicial approximation (dashed-line) of an object contour
mation is computed using a robust two-phase reparameter-(solid-line) using a Freudenthal triangulation. The model nodes (intersec-
ization algorithm. We have explored several reparameter-tion points) are marked and the boundary triangles are shaded.
ization algorithms. One such algorithm is detailed in

Fig. 5. Phase II of T-snake reparameterization: (a) T-snake expands (solid line) and moves relative to the grid during the deformation step (dashed line), (b)
new model nodes are computed, (c) new T-snake nodes and elements.
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If the intersection points are of opposite signs, they cancel
each other out. If they are of the same sign, the new
intersection point replaces the existing point. If no inter-
section point currently exists for the grid edge, the new
intersection point is stored in the grid edge data structure.

Finally, if the grid vertex on the inside half-space of theFig. 6. 2D example illustrating the computation of the ‘sign’ of a grid
cell edge and model element intersection point. The T-snake element T-snake element is ‘off’, we also store it on a queue for
normal is used to determine which grid edge vertex is on the inside processing in phase II. Phase I of the reparameterization
half-space of the T-snake element and which is on the outside half-space.

process is simple, efficient and is inherently parallel; each
T-snake element can be processed independently.

(McInerney, 1997). We are currently using a newer and
simpler algorithm which is more readily extensible to 3.5.2. Phase II
higher dimensions. During a deformation step, as the T-snake expands,

some grid vertices that were outside the closed T-snake
3.5.1. Phase I will now be contained inside (Fig. 7(a)). We then update

In phase I of the reparameterization algorithm, we the state of these grid vertices from ‘off’ to ‘on’. In this
perform an efficient local search and intersection test of manner, we are able to determine and track the interior
each T-snake element with the grid cell edges. If an region of the T-snake. The total set of ‘on’ or inside grid
intersection point is found for a particular grid cell edge, it vertices unambiguously defines the boundary of the T-
is stored in a data structure associated with this edge. This snake; they are used to track the grid boundary cells
intersection point may become a node of the updated continuously (i.e., cells having both inside and outside grid
T-snake (Fig. 5(b,c)). The intersection point may be vertices) throughout the evolution of the T-snake and
unused and therefore discarded if after the second phase of hence determine which intersection points should be used
the reparameterization process both grid vertices of the to form the nodes and elements of the new T-snake.
grid cell edge are ‘on’. This means that both grid vertices Furthermore, the inflation force pushes a T-snake in a
must be inside the T-snake and the edge joining them is direction normal to the contour at each node. This form of
therefore not a boundary edge. evolution can result in singularities and self-intersections

Several intersection points may be found for a particular (although this is ameliorated by the smoothing effect of the
grid cell edge. This situation occurs when, during a internal forces). In these situations, it is not clear how to
deformation step, a T-snake intersects itself or when evolve the T-snake. We solve this problem by mimicing
multiple T-snakes intersect. In these cases, we take the the physically correct behavior for a propagating flame
lower-numbered vertex of the grid edge and determine on front. This behavior is selected by adhering to a so-called
which side of the line formed by the T-snake element it entropy condition (Osher and Sethian, 1988): once a grid
lies (Fig. 6). Consequently, every intersection point is vertex is turned on, it remains on.
given a ‘sign’ – either inside or outside (using the outward As mentioned in phase I, during a deformation step, for
pointing T-snake element normal as the reference direc- each T-snake element we compute its grid cell edge
tion). Thus, every intersection point is compared against intersection points and enqueue grid cell vertices to be
the existing intersection point (if any) of a grid cell edge. labeled ‘on’ or inside for processing in phase II. In phase

Fig. 7. Phase II of T-snake reparameterization: (a) new T-snake nodes along with new inside grid vertices (light-shaded), (b) new T-snake and active
boundary grid cells (shaded).
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Fig. 8. Examples of T-snake topological transformations: (a) self-intersection, (b) shrinking and splitting, (c) merging. The resulting T-snake(s) after the
transformations are shown as the dotted line(s). Node reconnections occur automatically in the shaded triangles so that inside and outside grid vertices are
separated by a T-snake element.

II, we dequeue these vertices and check their corre- vertices (i.e., whether they are off or on) in each boundary
sponding grid cell edge data structures. If an intersection cell and from the intersection points computed in phase I
point is stored in an edge data structure of a grid vertex such that the inside and outside grid vertices of these cells
(indicating that the T-snake has moved such that the grid are separated by the T-snake element (Fig. 8). Thus,
vertex is now inside) and the grid vertex is off, we turn it analogous to the evolving level set of an implicit function,
on. For all grid vertices that were turned on, we then use the simplicial grid and the reparameterization process
them as seed vertices in a standard region fill algorithm to guarantees that topological transformations are handled
turn on any neighboring vertices that are in the interior of automatically, consistently and efficiently.
the T-snake and are still off. A neighboring vertex is
turned on if the path of grid edges connecting it to a seed 3.7. The T-snake algorithm
vertex contains no intersection points (i.e., indicating that
it is inside the T-snake). Phase II of the reparameterization Unlike the level-set evolution techniques which accede
process is simple, highly efficient and inherently parallel. control to a higher dimensional implicit function, T-snakes
Typically only a small number of grid vertices are en- retain an explicit parametric model formulation. The
queued in phase I for processing in phase II. Fig. 7(a,b) explicit formulation allows us to track and control the
illustrates the second phase of the reparameterization evolution of the T-snake. Consequently, reparameteriza-
process. tions can be performed very efficiently and constraints can

be easily imposed on the model. The T-snake algorithm is
3.6. Topological transformations as follows:

For each deformation step (M time steps):
When a T-snake collides with itself or with another 1. For M time steps: (a) compute the external and internal

T-snake, or when a T-snake breaks into two or more parts, forces acting on T-snake nodes and elements; and (b)
2a topological transformation must take place. In order to update the node positions using (8).

effect consistent topological changes, consistent decisions 2. Perform reparameterization phase I.
must be made about disconnecting and reconnecting T- 3. Perform reparameterization phase II.
snake nodes. The grid and the reparameterization process 4. For all current T-snake elements, determine if the T-
provides us with an automatic and unambiguous mecha- snake element is still valid. A T-snake element is valid
nism to perform reconnections. By tracking the interior if its corresponding grid cell is still a boundary cell.
grid vertices (and hence tracking the boundary cells), Discard invalid T-snake elements and unused nodes.
adhering to the entropy condition, and re-establishing the 5. Use the grid vertices turned on in phase II above (if
correspondence of the model with the grid after a deforma- any) to determine new boundary cells and hence new
tion step, we can always unambiguously determine the T-snake nodes and elements.
boundary or ‘isocontour’ of the new T-snake(s). We simply The T-snake is considered to have reached its equilibrium
compute new T-snake elements from the signs of the grid state when all of its elements have been inactive for a

user-specified number of deformation steps. T-snake ele-
2 ment activity or movement is measured via the grid, againAnother topological transformation can occur when a T-snake shrinks

using a flame propagation analogy. Model elements aredown to nothing and disappears. This property can be utilized in
automatic segmentation scenarios (McInerney and Terzopoulos, 1995c). assigned a ‘temperature’ based on the number of deforma-
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tion steps during which the element (and its corresponding segmentation efficiency and reproducibility by making the
boundary cell) has remained valid. An element is consid- T-snake much less sensitive to its initial placement than a
ered inactive when its temperature falls below a pre-set standard parametric snake. A small T-snake may be seeded
‘freezing point’. Once a T-snake has reached equilibrium, practically anywhere within a target object or a large
the ACID grid can be deactivated and the model run as a T-snake may be initialized around the object – simpler and
standard parametric snake. The internal energy constraints much less time consuming tasks than initializing a standard
will then create more evenly spaced model nodes. snake close to the target boundary – and still produce

similar segmentations with similar intrinsic parameteriza-
3tions (Fig. 10).

4. Applying T-snakes to medical images
4.2. Topological adaptability

This section presents segmentation experiments using
T-snakes. We have segmented from a variety of medical As described in Section 3, the ACID grid provides a
images a range of anatomic structures with complex shapes mathematically sound framework for robust topological
and topologies, demonstrating the usefulness of the T- transformations. This feature allows a T-snake to seamless-
snake approach. In most of the segmentation examples ly split or merge and adapt to the topology of the target
presented, the segmentations complete in under a second object (Figs. 11(a–d), 12 and 13). Topological adaptability
on an SGI workstation (with the exception of the seg- combined with geometric flexibility can potentially sig-
mentation of the white matter of the brain which requires nificantly increase the automation of the segmentation
about 3 s), demonstrating the efficiency of the T-snake process. Note that in the example showing the segmenta-
reparameterization mechanism. All T-snake parameters are tion of the white matter in an MR image slice of the brain
currently set manually by experimentation. This process is (Fig. 12), the T-snake is effectively acting as an active
performed once for a specific image modality or for a region growing model as discussed in Section 3.2.
specific anatomic structure and requires only a few minutes
of experimentation. The time step Dt and deformation step 4.3. Multiple T-snakes
M parameters are set to achieve maximum T-snake ef-
ficiency. The parameter settings are usually similar for a Multiple T-snakes can be statically or dynamically
given image modality although the shape of the object created (or destroyed) (Fig. 14). This feature can be useful
often dictates the ratio of external forces to internal forces in several scenarios. Firstly, multiple T-snakes can evolve
– a higher ratio is sometimes needed to force the T-snake concurrently on different CPUs to improve segmentation
into narrow protrusions. efficiency. Secondly, users can seed T-snakes on several

objects or on part of an object that is blocked by an edge to
4.1. Geometric flexibility the object body. Finally, target objects can potentially be

identified automatically, seeded with multiple T-snakes,
Using the ACID grid to reparameterize a T-snake at and then automatically segmented.

each iteration of the evolution process is a simple, elegant
and automatic model subdivision technique. This process 4.4. Topology preservation
allows a T-snake to segment and reconstruct objects with
significant protrusions, tubular objects, or objects with Rather than allow the T-snake to alter its topology,
bifurcations (Fig. 9). Furthermore, the ACID grid parame-

3terizes the fitted T-snake in terms of the intrinsic local Noise and spurious image features can still affect T-snake behavior
object geometry. This property can significantly increase and, consequently, affect the result of the segmentation.

Fig. 9. Segmentation of the blood vessels in a clipped portion of retinal angiogram. The image sequence shows a snake flowing and branching along a
vessel. A pixel-resolution ACID grid was used with model parameters: p 5 51.0, q 5 50.0, a 5 35.0, b 5 5.0, Dt 5 0.003 and M 5 10 (the number of time
steps between reparameterization).
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Fig. 10. Segmentation of the corpus callosum from MR brain image slice. The top sequence shows the T-snake initialized in the left part of the corpus
callosum while the bottom sequence shows the T-snake initialized in the right part. Highly similar segmentation results are generated. A 128 3 128 squared
cell ACID grid was used with model parameters: p 5 41.0, q 5 40.0, a 5 20.0, b 5 20.0, Dt 5 0.003 and M 5 10. Note that a user-defined barrier constraint
was used to prevent the T-snake from leaking into the fornix.

another useful constraint that can be easily imposed is to algorithms a smooth segmented object which is guaranteed
ensure that the T-snake maintains its topology, guarantee- to have the topology of the real object can potentially
ing that no self-intersections will occur (Fig. 15). This result in more robust skeletonizations.
constraint can be used, for example, to ensure the correct- The ACID framework provides a robust mechanism to
ness of object skeletonization; a promising technique for identify and prevent self-intersections (and therefore pos-
the analysis and interpretation of medical images. In sible topology changes) of the T-snake. The result is a
standard parametric snake models, it is difficult to guaran- simple, efficient technique for imposing a global topo-
tee that no self-intersections of the fitted snake have logical constraint on a T-snake which guarantees that the
occurred. Consequently, incorrect object topology can be topology of the fitted T-snake matches the topology of the
generated during discretization. Providing to the thinning real object. We implement the global topological constraint

Fig. 11. Segmentation of two cross-sectional images of a human vertebra phantom illustrating the topological flexibility of T-snakes. 128 3 120 image
slices from a CT image volume of a human vertebra phantom. A 50 3 50 squared cell ACID grid is used and model parameters: p 5 51.0, q 5 50.0,
a 5 20.0, b 5 40.0, Dt 5 0.005 and M 5 10 (time steps per deformation step).
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Fig. 12. T-snake used to segment gray-matter /white-matter interface in MR brain image slice. A pixel-resolution ACID grid was used with model
parameters: p 5 0.0, q 5 50.0, a 5 20.0, b 5 40.0, Dt 5 0.003 and M 5 10. Statistics of white matter pixel intensity are used to weight the T-snake inflation
force.

a circle and its evolution consists of a sequence of
topology-preserving deformations. We are able to efficient-
ly perform the topology-preserving deformations, since our
model is defined in terms of a cell complex; labeling
T-snake elements surrounding an ACID grid vertex as
‘local’ or ‘non-local’ is a simple operation.

4.5. T-snake element cooling process

We have incorporated an element ‘cooling’ process into
the T-snake implementation. As described in Section 3.7,
T-snake elements are assigned a temperature based on the
number of deformation steps the element (and its corre-
sponding boundary grid cell) has remained valid. The
temperature attribute provides a measure of element activi-
ty or movement. When the temperature of an element falls
below a user-set freezing point, the element is removed
from the computational process and stored in a table. This
adjustable mechanism allows the system to maintain a
small, manageable computational burden for many seg-
mentation scenarios. Fig. 16 illustrates the cooling process.

Fig. 13. Closeup of T-snake segmentation.
As the T-snake flows along the object, only a few elements
are active (hot) at one time. The remaining elements are
inactive (frozen) and do not contribute to the computation-using topology-preserving T-snake deformations. A
al load.topology-preserving deformation is implemented by ensur-

ing that no T-snake element outside of a small, contiguous
4.6. Interactive controllocal neighborhood of the element can turn on an ACID

grid vertex that is close to this local T-snake neighborhood
The ACID framework allows T-snakes to maintain the(McInerney, 1997). The T-snake has an initial topology of

Fig. 14. Segmentation of the blood vessels in angiogram of retina using using multiple T-snakes.
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Fig. 15. Segmentation of cerebellum: (a) with topology preservation constraint, (b) without topology preservation constraint.

Fig. 16. Segmentation of the corpus callosum incorporating the element cooling process. The active portions of the T-snake are shown as white while the
frozen elements are shown as gray.

intuitive interactive capabilities associated with standard possibility for preventing accidental topology changes is to
snakes. Users can exert attraction or repulsion forces using convert the T-snake to a standard parametric snake by
mouse-controlled springs, anchored springs, ‘volcanos’, simply discarding the ACID grid thus disabling the
‘magnets’, etc. (Kass et al., 1988). For example, Fig. 17 reparameterization process. This conversion can be per-
shows a segment of a T-snake being pulled by a mouse- formed at any time during the T-snake evolution. Con-
controlled spring force into the correct position. Fig. versely, a closed snake can be converted back to a T-snake
18(a,b) shows the same segment being pulled close enough at any time during its evolution.
to the opposite side of the T-snake such that a topological Other useful T-snake interaction mechanisms are
transformation takes place and the T-snake breaks into two geometric point constraints. Geometric point constraints
parts. Fig. 18(c,d) shows the reverse of this process. One are incorporated into the T-snakes model either as soft

Fig. 17. T-snake segment (indicated by the circle) interactively pulled into the correct position by a mouse-controlled spring force.
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Fig. 18. T-snake segment interactively pulled until topological transformation occurs. In (a,b) the T-snake has broken into two parts. In (c,d) the T-snake
has been ‘mended’.

constraints to be satisfied approximately or as hard con- scenario. Both ‘soft’ and ‘hard’ constraints are employed
straints that must never be violated. Soft constraints are to segment neuronal cells in an EM photomicrograph. We
incorporated into the T-snakes physics-based formulation begin by defining a series of points on the cell boundary,
as force functions. The anchored spring force is an forming a closed polygon from these points and converting
example of a soft point constraint. the polygon into an initial T-snake (Fig. 19(a)). The T-

In the following experiments, we demonstrate the use of snake deforms and localizes the cell boundary (Fig. 19(b))
geometric point constraints in an interactive segmentation while being constrained to pass through the initial user-

Fig. 19. T-snake (derived from closed polygon) used to segment neuronal cells. The T-snake is constrained to pass through the initial user-specified points.
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Fig. 20. (a,b) T-snake formed from user-specified closed polygon deforms to segment neuronal cell. (c) Soft point constraints are used to pull T-snake off
spurious edges.

defined points (Fig. 19(c)). A second example is shown in (and the level-set techniques) are essentially region-based.
They are best suited for objects where the image intensityFig. 19(d,e). In a third experiment we make use of soft
is homogeneous or of a consistent texture within thegeometric point constraints in the form of anchored
object. Standard snakes or interactive semi-automaticsprings. The springs exert forces on T-snake nodes that are
tracing tools such as intelligent scissors (Mortensen andwithin a specified neighborhood of the springs. In Fig.
Barrett, 1995; Barrett and Mortensen, 1997) may be more20(a,b) the initialization and result of the T-snake seg-
appropriate for certain non-homogeneous images.mentation without spring constraints is shown. The T-

snake has attached itself to several interior parts of the cell.
Fig. 20(c) shows the addition of spring constraints (the

4.7. Constraints based on image statisticssprings were added dynamically) which result in a correct
segmentation of the cell boundary. All experiments use a

Section 3.2 described an image intensity statistics-160 3 122 cell ACID grid on the 640 3 488 pixel image
weighted inflation force that can be used along with imageand model parameters: p 5 51.0, q 5 50.0, a 5 20.0, b 5
edge forces, allowing a T-snake to effectively integrate40.0, Dt 5 0.005 and M 5 10.
edge information with region information. The integrationOther useful hard geometric constraints include barriers
of region and edge information can sometimes be effectiveor ‘forbidden zones’ which can be used to force a T-snake
in preventing a T-snake from leaking into regions sur-to take on the shape of the impacted region of the circle or
rounding the target object. Fig. 21(a) shows a CT imageellipse, allowing the user to ‘shore-up’ object boundary
slice of a canine heart. The bright region is the leftsections with sparse edges (this constraint was used in Fig.
ventricle (LV). Note that in this particular slice the LV10 to prevent the T-snake from ‘leaking’ into a neigh-
intensity diminishes considerably in some regions, re-boring structure (the fornix)).
sulting in very weak edges (Fig. 21(b)). Fig. 22(a–d)As the above experiments have demonstrated, T-snakes
shows a T-snake segmenting the LV using the statisticallymay be easily initialized with a few points such that they
weighted inflation force defined in (5).are close to the target object boundary. However, T-snakes

Fig. 21. CT image slice of LV and edge-detected version.
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Fig. 22. T-snake segmenting LV image slice using statistically weighted inflation force and image edge forces.

5. 3D extension: T-surfaces nodes time varying positions x (t) 5 x (t), y (t), z (t) ,f gi i i i

along with tensile forces, flexural forces, inflationary
We have extended the ACID framework to three dimen- forces, and external forces. The behavior of the T-surface

sions using tetrahedral (or hexahedral cells combined with is governed by a 3D form of (1).
a disambiguation scheme) to create topology adaptive The T-surface reparameterization process is analogous
surfaces (T-surfaces) – a discrete deformable closed-sur- to the T-snakes case. In phase I, ACID grid edge intersec-
face model that is a 3D generalization of T-snakes tion points and their signs are computed for each model
(McInerney and Terzopoulos, 1999). T-surfaces share all element (triangle) and potential inside grid vertices are
of the features and properties of their 2D counterpart. A enqueued. In phase II, inside grid vertices are turned on
T-surface is represented as a closed oriented triangular and new model nodes are computed using the intersection
surface mesh and, analogous to the T-snake, it is a discrete points from phase I. Old model elements and unused
form of a standard parametric deformable surface model model nodes are discarded. Topological transformations
(McInerney and Terzopoulos, 1995a; Terzopoulos et al., are again handled as in the T-snakes case. That is, by
1988). As in the T-snake, we associate with the model tracking the interior grid vertices (and hence tracking the

Fig. 23. T-surface segmenting vertebra phantom from CT volume image.
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Fig. 24. Two views of the fitted T-surface.

boundary tetrahedra) and re-establishing the corre- 6. Conclusion
spondence of the T-surface with the grid after each
deformation step, the boundary or ‘isosurface’ of the new Deformable models overcome many of the limitations of
model is uniquely determined. traditional image segmentation techniques by exploiting

We have applied T-surfaces to a variety of medical analytical representations of object shape, by incorporating
images in order to segment anatomic structures with a priori knowledge, and by providing intuitive interactive
complex shapes and topologies. Fig. 23 presents a repre- capabilities. A challenge has been to increase the degree of
sentative example where we apply a T-surface to a 120 3 automation of deformable models, reducing the labor-
128 3 52 CT image volume of a human vertebra phantom, intensive aspects of interactive anatomic structure seg-
which demonstrates the topological adaptability of the 3D mentation to a basic minimum, while maximizing seg-
model. We use a 32 3 30 3 13 cell ACID grid (where each mentation accuracy and reproducibility. In an effort to
cubical cell is divided into six tetrahedra). Fig. 24 shows meet this challenge, we have introduced an affine cell
two views of the final result after conversion to a standard image decomposition (ACID) framework for deformable
deformable surface. Fig. 25 shows several cross-sections of models. In this paper, we have developed our approach in
the fitted model. terms of a novel deformable contour model that we call

Full details and additional results are described in T-snakes.
(McInerney and Terzopoulos, 1999). The ACID framework provides an elegant mechanism

Fig. 25. Several cross-sections of T-surface overlaid on CT vertebra image volume slices.
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for contour reparameterization, allowing T-snakes to seg- boundary condition v(0, t) 5 v(1, t) produces a closed
ment and reconstruct objects with significant protrusions, snake.
tubular objects, or objects with bifurcations. The ACID The shape of the contour is dictated by the energy
grid also provides a mathematically sound basis for robust functional
topological transformations. This property enables T-

%(v) 5 6(v) 1 3(v), (A.1)
snakes to seamlessly split or merge, adapting to the
topology of a target object. The ACID reparameterization and the final shape and position of the contour corresponds
mechanism makes the model relatively insensitive to initial to a local minimum of %. The first term of the functional
placement, significantly improving the efficiency and

1
2 22automation of the segmentation process. ≠v ≠ vU]U ]6(v) 5E w (s) 1 w (s)U U ds (A.2)1 2 2The advantage of retaining an explicit active contour ≠s ≠s

0formulation as opposed to an implicit, level-set formula-
tion is that constraints expressed as energy or force is the internal deformation energy, characterizing the
functions can easily be incorporated into the energy- deformation of an elastic contour. Two physical parameter
minimization framework. Constraints may be introduced functions w (s) and w (s) determine the extent to which the1 2
either as soft constraints to be satisfied approximately or as snake can stretch or bend at any parametric coordinate s.
hard constraints that must never be violated. The second term in (A.1) consists of external energy

Using the ACID framework, contour evolution is per- potentials that couple the snake to the image I(x, y) and
formed by tracking and recording the interior region of a support user interaction. Traditionally,
T-snake as it expands or contracts under the influence of

1pressure forces. The strength of these pressure forces can
be directly linked to the local or global statistics of the 3(v) 5E P(v(s, t)) ds, (A.3)
image pixel intensity values of the target object. These 0

statistical constraints allow ACID-based models to behave
where P(x, y) denotes a scalar potential function defined onas active region growing models that can effectively
the image plane. To couple snakes to images, externalintegrate edge information with region-based information.
potentials are designed whose local minima coincide withWe have demonstrated the power and flexibility of
intensity extrema, edges, and other image features ofACID-based deformable models to segment complex
interest. For example, the contour will be attracted toobjects from medical images in a convenient, efficient, and
intensity edges in I(x, y) by choosing a potentialhighly automated manner.

P(x, y) 5 2 ci=[G p I(x, y)]i, (A.4)s

where G denotes a Gaussian smoothing filter of standardsAcknowledgements
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conveniently realized in the energy minimization frame-
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Appendix A. Review of parametric snakes potentials such as interactive springs, anchored springs,
and ‘volcanos’ (Kass et al., 1988).

This appendix briefly reviews parametric snakes models. While it is natural to view energy minimization as a
The reader is referred to (Kass et al., 1988; McInerney, static problem, a potent approach to computing the local
1997) for additional details. minima of a functional such as (A.1) is to construct a

Snakes models are typically defined as a time-varying, dynamical system that is governed by the functional and
Tparametric contour v(s, t) 5 (x(s, t), y(s, t)) in the image allow the system to evolve to equilibrium. The dynamical

2plane (x, y) [ R , where the contour coordinates x(s, t) and system may be constructed by applying Lagrangian mech-
y(s, t) are functions of the parametric variable s [ 0, 1 anics. A simple example is a dynamic snake with a massf g
and time t. Boundary conditions may be used to specify the density m(s) and a damping density g(s). The Lagrange
topology of the contour. In particular, free boundary equations of motion for a snake with the internal energy
conditions specify an open curve, whereas the periodic (A.2) and external energy (A.3) is
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