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Abstract

We introduce a new approach to medical image analysis that combines deformable model methodologies with concepts from the field
of artificial life. In particular, we propose ‘deformable organisms’, autonomous agents whose task is the automatic segmentation, labeling,
and quantitative analysis of anatomical structures in medical images. Analogous to natural organisms capable of voluntary movement, our
artificial organisms possess deformable bodies with distributed sensors, as well as (rudimentary) brains with motor, perception, behavior,
and cognition centers. Deformable organisms are perceptually aware of the image analysis process. Their behaviors, which manifest
themselves in voluntary movement and alteration of body shape, are based upon sensed image features, pre-stored anatomical knowledge,
and a deliberate cognitive plan. We demonstrate several prototype deformable organisms based on a multiscale axisymmetric body
morphology, including a ‘corpus callosum worm’ that can overcome noise, incomplete edges, considerable anatomical variation, and
interference from collateral structures to segment and label the corpus callosum in 2D mid-sagittal MR brain images.
   2002 Elsevier Science B.V. All rights reserved.
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1 . Introduction decision-making framework (Duncan and Ayache, 2000),
we contend that current frameworks of this sort are

Medical imaging has become essential to the practice of inflexible and do not operate at an appropriate level of
medicine, but accurate, fullyautomatic medical image abstraction, which limits their potential to deal with the
analysis (MIA) continues to be an elusive ideal. A most difficult data sets.
substantial amount of knowledge is often available about Deformable models demonstrated early promise in
anatomical structures of interest—characteristic shape, image segmentation and they have become one of the most
position, orientation, symmetry, relationship to neigh- intensively researched segmentation techniques (McIner-
boring structures, associated landmarks, etc.—and about ney and Terzopoulos, 1996). The classical deformable
plausible image intensity characteristics, subject to natural model methodology, which is epitomized by snakes (Kass
biological variability or the presence of pathology. Even et al., 1988), is based on the optimization of objective
so, MIA researchers have not yet succeeded in developing functions in conjunction with an interactive decision-mak-
completely automatic segmentation techniques that can ing strategy that relies on human expert initialization and
take full advantage of such prior knowledge to achieve guidance. The difficult challenge in automating this tech-
segmentation accuracy and repeatability. Although it may nique is to develop intelligent initialization mechanisms,
be generally acknowledged that this will require the along with control mechanisms that can guide the optimi-
incorporation of context-based information within a robust zation-driven segmentation process at an appropriately

high level of abstraction. Researchers have tried in vain to
obtain the right global behavior (i.e., on the scale of the*Corresponding author.

E-mail address: tmcinern@scs.ryerson.ca(T. McInerney). entire image) by embedding nuggets of contextual knowl-
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edge into the low-level optimization engine. As a result of of multiscale deformation operators affords the motor
such efforts, it has become painfully obvious that current center of the brain of the organism precise local growth
deformable models have little to no explicit ‘awareness’ of and shape control at a variety of scales. We have also
where they are in the image, how their parts are arranged, experimented with a variety of reusable behavior routines
or to what structures they or any neighboring deformable that support single organism behaviors and interacting,
models are converging during the optimization process. To multiple organism behaviors. Interaction among organisms
make progress towards full automation, we need to com- may be as simple as collision detection and the imposition
plement the powerful low-level feature detection and of non-penetration constraints between two or more organ-
integration abilities of deformable models with flexible isms in contact; or one or more organisms spawning a new
higher-level decision-making strategies. organism and supplying it with appropriate initial con-

With this in mind, we propose a new approach to ditions; or the sharing of statistical shape constraints and/
automated MIA that augments deformable model method- or image appearance information between organisms.
ologies with concepts from the field of Artificial Life More complex rule-based interactions are also possible.

1(ALife) (see, e.g., Terzopoulos, 1999). In particular, we Fig. 1 illustrates deformable organisms with a nontrivial
developdeformable organisms, autonomous agents whose example involving the detection and detailed segmentation
task is the automatic segmentation, labeling, and quantita- of the lateral ventricle, caudate nucleus, and putamen in
tive analysis of anatomical structures in medical images. the left and right halves of a transverse 2D MR image of
Analogous to natural organisms capable of voluntary the brain. Since the ventricles are the most discernible and
movement, our artificial organisms possess deformable stable structures, the segmentation process begins with the
bodies with distributed sensors, as well as (rudimentary) release of two ventricle organisms in the black background
brains with motor, perception, behavior, and cognition region outside the cranium, at the upper left and right
centers. Deformable organisms are perceptually aware of edges of the image in subfigure (1). Performing a coordi-
the image analysis process. Their behaviors, which mani- nated scanning behavior, the organisms proceed first to
fest themselves in voluntary movement and alteration of locate the tops of the ventricles, as shown in the zoomed in
body shape, are based upon sensed image features, pre- view of subfigure (2), and their inner and outer (with
stored anatomical knowledge, and a cognitive plan. respect to the brain) boundaries (3)–(5). Next, both ends

By synthesizing organisms in a bottom-up, layered of each ventricle organism actively stretch to locate the
fashion, we are able to separate the global, model-fitting upper and lower lobes of the ventricle (6), and then the
control functionality from the local, feature detection and organism fattens to finish segmenting the ventricle (7).
integration functionality, so that the deformable organism Each organism employs the information that it has gleaned
can make decisions about the segmentation process at an about the shape and location of the segmented ventricles to
appropriately high level of abstraction. This layered ar- spawn and initialize a caudate nucleus organism in an
chitecture facilitates the incorporation of plans in the form appropriate location (8). Each caudate nucleus organism
of sequential search strategies; for example, plans that first stretches to locate the upper and lower limits of the
direct organisms to look initially for the most stable caudate nucleus (9), then fattens until it has accurately
anatomical features in images before deforming or growing segmented the caudate nucleus (10). From its bottom-most
towards less stable features, and so on. The result is point in the image, each caudate nucleus organism then
autonomous and, to some degree, intelligent segmentation spawns and initializes a putamen organism (11), which
algorithms that are aware of their progress and apply prior then moves laterally outward towards the low-contrast
knowledge in a deliberate manner in different phases of the putamen (12). Each putamen organism then rotates and
segmentation process. Our layered architecture and reus- bends to latch onto the nearer putamen boundary (13).
able behavior routines facilitate the rapid implementation Next, it stretches and grows along the boundary until it
of powerful, custom-tailored deformable organisms that reaches the upper- and lower-most ends of the putamen
can serve as new tools for automated segmentation, object- (14), thus identifying the medial axis of the putamen (15).
based registration, and the quantification of shape vari- Since the edges of the putamen boundary near the gray
ation. matter are often weak, the organism activates an explicit

search for an arc (parameterized by a single curvature
1 .1. Illustrative examples of deformable organisms parameter) that best fits the low-contrast intensity variation

in that region, thus completing the segmentation (16).
To date, we have developed several prototype deform- As a second illustrative example, Fig. 2 shows a

able organisms based on an axisymmetric body morpholo- different type of axisymmetric deformable organism
gy. This geometric representation in conjunction with a set specialized to ribbon-like structures. The organism seg-

ments a vascular structure in a retinal angiogram. If it is
1 afforded insufficient prior knowledge, the organism canThe ALife approach to MIA was introduced in our MICCAI 2001

Conference paper (Hamarneh et al., 2001). latch onto the wrong overlapping vessel as shown in Fig.
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Fig. 1. Automatic brain MR image segmentation by multiple deformable organisms. The sequence of images illustrates the temporal progression of the
segmentation process. Deformable lateral ventricle (1–7), caudate nucleus (8–10), and putamen (11–16) organisms are spawned in succession and
progress through a series of behaviors to detect, localize, and segment the corresponding structures in the MR image (see text).

2(b). However, given a suitable repertoire of behavior cortical processes from opposite sides of the brain. The
routines, the vessel organism can distinguish between presence of morphologic differences in the corpus cal-
overlapping vessels and deal with bifurcations (Fig. 2(c)). losum in schizophrenics has been the subject of intense
When a bifurcation is encountered, the organism spawns investigation (Rosenthal and Bigelow, 1972). The corpus
two new vessel organisms (Fig. 2(d)), each of which callosum may also be involved in Alzheimer’s dementia
extends along a branch (Fig. 2(e)). (Pantel et al., 1999), mental retardation (Marszal et al.,

2000), and other disorders. MR imaging has allowed
1 .2. Overview researchers to study corpora callosa in vivo in order to

discover and quantify morphologic differences. The de-
In the remainder of this article we focus on a different tailed, automatic segmentation of the corpus callosum is

application of deformable organisms, the automatic seg- therefore considered an important, though difficult, MIA
mentation of the corpus callosum in a variety of 2D problem. To this end, we develop a prototype axisymmet-
mid-sagittal MR brain images. The corpus callosum is the ric deformable organism, which we call acorpus callosum
largest white-matter tract in the human brain. It serves as worm. We demonstrate that this organism can overcome
the primary means of communication between the two poor image contrast, noise, diffuse or missing boundaries,
cerebral hemispheres and mediates the integration of considerable anatomical variation, and interference from
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Fig. 2. Multiple deformable organisms segmenting vascular structures in an angiogram. (a) Automatic labeling of vessel overlap and bifurcation. (b) A
simplistic vessel organism incorrectly bends into the more prominent overlapping vessel. (c) Appropriate high-level behaviors enable the vessel organism to
identify the overlap and distinguish it from bifurcations. (d) Upon identifying a bifurcation, the organism spawns two new organisms, each of which
proceeds along a branch. (e) The segmented vessel and branches.

collateral structures to segment and label the corpus their parts are, and therefore the effectiveness of such
callosum in a variety of MR brain images. constraints is dependent upon appropriate model initializa-

The remainder of the article is organized as follows. tion. The lack of self-awareness may also prevent models
Section 2 motivates our artificial life approach to MIA and from knowing when to trust the image feature information
provides additional technical background. We describe in and ignore the constraint information or vice versa. The
Section 3 the architectural characteristics of deformable lack of optimization control can prevent these models from
organisms. Section 4 gives the details of the corpus performing intelligent searches over their parameter spaces
callosum worm organism. Section 5 presents our auto- during the fitting process; i.e, the constraint information is
mated segmentation results and validates them against applied more or less indiscriminately and, once set in
manual segmentations. Section 6 discusses the implications motion, the optimization process continues ‘mechanically’
of our approach and Section 7 draws conclusions. to completion.

Furthermore, because there typically is no active, delib-
erate search for stable image features, the models can latch

2 . Motivation and background onto nearby spurious features (Cootes et al., 1999). Their
short-sighted decision-making abilities prevent these

Current model-based MIA frameworks utilize geometric models from correcting missteps. Even if global optimi-
and often physical modeling layers. The models are fitted zation methods such as simulated annealing are employed
to images by minimizing energy functions, simulating to perform more extensive searches, the parameter space of
dynamical systems, or applying probabilistic inference the model is explored in a rather random fashion and there
methods, but they do not control this optimization process is no guarantee (other than an excruciatingly slow, asymp-
other than in primitive ways, such as monitoring conver- totic one) that the correct solution will be found. Moreover,
gence or equilibrium. Some deformable models incorpo- it remains an open question whether suitable solution
rate prior information to constrain shape and image metrics can be defined for many MIA tasks using the
appearance and the observed statistical variation of these ‘language’ of objective functions and low-level optimi-
quantities (Cootes et al., 1995, 1999; Szekely et al., 1996). zation, or even of probabilistic inference.
These models have no explicit awareness of where they or Alternatively, if a model is aware of itself and its
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environment, it can potentially be programmed to perform animals like the prototypical ‘artificial fishes’ (Terzopoulos
a more intelligent search for correct solutions by exploiting et al., 1994) are synthetic bodies, including functional
global contextual knowledge more effectively. It may motor organs (contractile muscles), sensory organs (eyes,
explore several alternative paths and choose the optimal etc.) and, most importantly, brains with motor, perception,
result. For example, it is often possible to prioritize the behavior, and learning centers. In the motor center of these
strength or stability of different features of the target brains, motor controllers coordinate muscle actions to
structure(s) and this knowledge may be significant in many carry out specific motor functions, such as locomotion and
segmentation scenarios. Indeed, hierarchical deformable sensor control. The perception center incorporates per-
model schemes that shift their focus from stable image ceptual attention mechanisms which support active percep-
features to less stable features have been explored tion that acquires information about the dynamic environ-
(McInerney and Kikinis, 1998; Shen and Davatzikos, ment. The behavior center realizes an adaptive sen-
2000). These features may occur at different locations and sorimotor system through a repertoire of behavior routines
scales and may vary from low level landmark points to that couple perception to action. The learning center in the
curves or surface patches to volumetric regions or to more brain enables the artificial animal to learn motor control
complex features. However, without control over the fitting and behavior through practice and sensory reinforcement.
process and without a proper language with which to To manage the complexity, artificial animals are best
define the high level features, it may be difficult to exploit organized hierarchically, with each successive modeling
this information. layer adding to the more basic functionalities of underlying

It is our contention that we must revisit ideas for layers (Terzopoulos, 1999). At the base of the modeling
incorporating knowledge that were explored usually with hierarchy, a geometric modeling layer represents the
limited success in earlier MIA systems (e.g., the ALVEN morphology of the animal. Next, a physical modeling layer
cardiac left ventricular wall motion analyzer (Tsotsos et incorporates biomechanical principles to constrain geome-
al., 1980)), and develop new algorithms that leverage try and emulate biological tissues. Further up the hierar-
top-down reasoning strategies against the powerful bottom- chy, a motor control layer motivates internal muscle
up feature detection and integration abilities of deformable actuators to synthesize lifelike locomotion. Behavioral and

2models and other modern model-based MIA techniques. perceptual modeling layers cooperate to support a reactive
To retain the core strengths of deformable models but behavioral repertoire. The apex of the modeling pyramid,
afford them the ability to control themselves, it seems the domain of classical artificial intelligence, simulates the
prudent to investigate analogies with living systems. deliberative abilities of higher animals. Here, a cognitive

modeling layer concerns how knowledge is represented
2 .1. Artificial Life modeling and how automated reasoning and planning processes

achieve high-level goals.
The modeling and simulation of living systems has

defined an emerging scientific discipline known as Artifi-
3cial Life (ALife). In recent years, the ALife paradigm has

had substantial impact in computer graphics, giving im- 3 . Deformable organism architecture
petus to several important avenues of research and de-
velopment, including artificial plants and animals, be- We create deformable organisms by adding high-level
havioral modeling and animation, and evolutionary model- control layers (a ‘brain’) atop the standard geometric and
ing (Terzopoulos, 1999). These graphical models typically physical layers of deformable models (Fig. 3). The deliber-
employ geometric and physics-based techniques, as is ate activation of these lower layers allows the brain to
characteristic of the deformable models used in MIA, but control the fitting/optimization procedure. This high-level
they also aspire to simulate many of the biological control is made possible by utilizing prior knowledge,
processes that characterize living systems—including birth memorized information, sensed image features, and even
and death, growth and development, natural selection, inter-organism interaction. The high-level control layers
evolution, perception, locomotion, manipulation, adaptive coupled with a multi-scale shape representation scheme
behavior, learning, and cognition. provide the ability to define anatomical features in a very

Most relevant to our MIA approach is the ALife general fashion and to prioritize the search for these
modeling of animals. The key components of artificial features, where the search priority is typically based on the

stability of the features found in an image.
We currently use an axisymmetric representation of

2Note that the ‘visual routines’ theory of Ullman (1984), which was object shape plus medial-axis-based statistics of (localized)
proposed as a model of intermediate visual perception, also includes ashape variation as our prior shape knowledge representa-
prominent top-down, sequential control mechanism.

3 tion scheme. This scheme allows us to represent a class ofSee (Levy, 1992) for an entertaining perspective of the artificial life
2D objects that are primarily ribbon or tube shaped. Thefield. Journals such asArtificial Life and Adaptive Behavior chronicle the

state of the art. axisymmetric shape descriptors may easily be mapped onto
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Fig. 3. A deformable organism: The brain issues muscle actuation and perceptual attention commands. The organism deforms and senses image features,
whose characteristics are conveyed to the brain. The brain makes decisions based on sensory input, memorized information and prior knowledge, and a
pre-stored plan, which may involve interaction with other organisms.

anatomical features of an object. A primitive cognitive motor (i.e., deformation) controller routines or growth
layer activates behavior routines (e.g., for a corpus cal- controller routines, enabling the organism to fulfill its goal
losum (CC) (Fig. 5(a)) organism: find-splenium, find-genu, of object segmentation. The plan (or plans) can be gener-
find-upper-boundary-of-CC) according to a plan or ated with the aid of a human expert, since the behavior
schedule (Fig. 4). The behavior routines, in turn, activate routines are defined using familiar anatomical terminology.

Fig. 4. (a) A procedural representation of a fragment of a deformable organism’s plan or schedule. The organism goes through several behavior routines
(bold path in (a)). (b) A simple example of a standard behavior routine.
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3 .1. Intelligent decision and control from a hierarchical (multi-scale) and regional (multi-loca-
tion) principal component analysis of the profiles. We

The layered architecture allows an organism to make describe these organism components in detail in Section 4.
deformation decisions at the correct level of abstraction. Finally, an organism may begin in an ‘embryonic’ state
An organism possesses a non-trivial ‘awareness’ (i.e. with a simple proto-shape, and then undergo controlled
knows where it is and where its parts are and what it is growth as it develops into an ‘adult’, proceeding from one
seeking at every stage) and is therefore able to utilize stable object feature to the next. Alternatively, an organism
global contextual knowledge effectively. An organism may begin in a fully developed state and undergo con-
begins by searching for the most stable anatomical features trolled deformations as it carries out its model-fitting plan.
in the image and then proceeds to the next best features Which type of organism to use, or whether to use some
and so on. Alternatively, an organism may interact with sort of hybrid organism, is dependent on the image and
other organisms to determine optimal initial conditions or shape characteristics of the target anatomical structure. In
resolve conflicting views of data. Once stable features are summary, the ALife modeling paradigm provides a com-
found and labeled, an organism can selectively use prior mon framework and standard behavior subroutines upon
knowledge in regions known to offer little or no feature which to build powerful and flexible ‘custom-tailored’
information. That is, the organism intelligently ‘fills in’ the models with the potential for robustness and generality.
boundary in ways tailored to specific regions of interest in
the target structure.

An organism carries out active, explicit searches for 4 . A corpus callosum (CC) worm organism
stable anatomical features. Its awareness allows it to
perform these searches intelligently. It need not be satisfied To demonstrate the potential of the intelligent organism
with the nearest matching feature, but can look further approach to MIA, we will describe the detailed construc-
within a region to find the best match, thereby avoiding tion of the layered-architecture for a corpus callosum
globally sub-optimal solutions. Furthermore, by carrying ‘worm’ organism, beginning with the lower layers and
out explicit searches for features, correct correspondences progressing upwards.
between the organism and the data are more readily
assured. If a feature cannot be found, an organism may4 .1. Shape representation (geometry)
‘flag’ this situation. If multiple plans exist, another plan
can be selected and/or the search for the missing feature We use axisymmetric shape profiles (Hamarneh and
postponed until further information is available (from, for McInerney, 2001) to describe the body of the CC worm
example, a neighboring organism). Alternatively, the or- organism. In this shape representation scheme, the CC
ganism can retrace its steps and return to a known state anatomical structure is described with four shape profiles
and then inform the user of the failure. A human expert derived from the primary medial axis of the CC boundary
can intervene and put the organism back on course by contour. The medial profiles describe the geometry of the
manually identifying the feature. This strategy is possible structure in a natural way and provide general, intuitive,
because of the sequential and spatially localized nature of and independent shape measures. These profiles are: a
the model fitting process. length profileL(m), an orientation profileO(m), a left (with

lExplicit feature search requires powerful, flexible and respect to the medial axis) thickness profileT (m), and a
rintuitive model deformation control coupled with a flexible right thickness profileT (m), wherem 5 1, 2, . . . ,N, and

feature perception system. We currently achieve this with a N is the number of medial nodes. The length profile
set of ‘motor’ (i.e. deformation) controllers and medial- represents the distances between consecutive pairs of
axis-based deformation operators. Deformation controllers medial nodes, and the orientation profile represents the
are parameterized procedures dedicated to carrying out a angles of the edges connecting the pairs of nodes. The
complex deformation function, such as successively bend- thickness profiles represent the distances between medial
ing a portion of the organism over some range of angle or nodes and their corresponding boundary points (Figs. 5
stretching part of the organism forward some distance. and 6).
They translate natural control parameters such askBEND-
ANGLE, LOCATION, SCALEl or kSTRETCH-LENGTH, 4 .2. Motor system
LOCATION, SCALEl into detailed deformations. Medial-
based profiles (Hamarneh and McInerney, 2001) are used4 .2.1. Shape deformation (motor skills)
for shape representation, which follow the geometry of the Aside from a few notable exceptions (e.g., Staib and
structure and describe general and intuitive shape variation Duncan, 1992; Terzopoulos and Metaxas, 1991), most
(stretch, bend, thickness). Shape deformations are obtained deformable models do not have intuitive, multi-scale,
either as a result of applying deformation operators at multi-location deformation ‘handles’. The lack of global
certain locations and scales on the medial profiles, or by shape descriptors makes them cumbersome for higher-level
varying the weights of the main variation modes obtained guidance and they are unable to perform global deforma-
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Fig. 5. (a) CC anatomical feature labels overlaying a reconstruction of the CC using the medial shape profiles shown in Fig. 6. (b) Diagram of shape
representation.

tions, such as bending, and global motions such as sliding, possible shape variations. Whereas general statistically-
or backing up. Therefore, it becomes extremely difficult to derived shape models produce only global shape variation
develop reasoning or planning strategies for such models. modes (Cootes et al., 1999; Szekely et al., 1996), we are

In addition to affine transformation abilities (translate, able to produce spatially-localized feasible deformations at
rotate, scale), we control organism deformation by defining desired scales, thus supporting our goal of intelligent
deformation operators in terms of the medial-based shape deformation planning.
profiles (Fig. 7). Controlled stretch (or compress), bend, Several operators of varying types, amplitudes, scales,
and bulge (or squash) deformations are implemented as and locations can be applied to any of the length, orienta-
deformation operators acting on the length, orientation, or tion, and thickness shape profiles (Fig. 8(a)–(d)). Similarly,
thickness profiles, respectively. Furthermore, by utilizing a multiple statistical shape variation modes can be activated,
hierarchical (multi-scale) and regional principal component with each mode acting at a specified amplitude, location
analysis to capture the shape variation statistics in a and scale of the shape profiles (Fig. 8(e)–(h)). In general,
training set (Hamarneh and McInerney, 2001), we can operator- and statistics-based deformations can be com-
keep the deformations consistent with prior knowledge of bined (Fig. 8(i)) and expressed as

Fig. 6. Example medial shape profiles.
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r rFig. 7. Introducing a bulge on the CC upper boundary by applying a deformation operator on the upper thickness profileT (m). (a) T (m) before and (b)
after applying operator. (c) Reconstructed shape before and (d) after applying operator.

]p 5p 1OO M w 1O a k , (1) able to disregard sensory information superfluous to itsd d S dls dls dlst dlstD
s tl current behavioral needs. Different parts of the organism

are dynamically assigned sensing capabilities and thus actwherep is a shape profile,d is a deformation type (stretch,
l as sensory organs (SOs) or receptors. The locations of thebend, left / right bulge), i.e.p (m): hL(m), O(m), T (m),d

r ] SOs are typically confined to the organism’s body (on-T (m)j, p is the average shape profile,k is an operator
board SOs) such as at its medial or boundary nodes, atprofile (with unit amplitude),l and s are the location and
curves or segments connecting different nodes. In our CCscale of the deformation,t is the operator type (e.g.
organism implementation, the SOs are made sensitive toGaussian, triangular, flat, bell, or cusp),a is the operator
different stimuli such as image intensity, image gradientamplitude, the columns ofM are the variation modes for a
magnitude and direction, a non-linearly diffused version ofspecificd, l ands, andw contains variation mode weights.
the image, an edge detected (using the Canny edgeDetails can be found in (Hamarneh and McInerney, 2001).
detector) image, or even the result of a Hough transform.
In general, a wide variety of image processing/analysis

4 .2.2. Deformation (motor) controllers techniques can be applied to the input images.
We build upon the organism’s low-level motor skills to

construct high-level motor controllers. These parame- 4 .4. Behavioral /cognitive system
terized procedures carry out complex deformation func-
tions such as sweeping over a range of rigid transformation An organism’s cognitive center combines sensory in-
parameters, sweeping over a range of stretch/bend/ thick-formation, memorized information, and instructions from a
ness amplitudes at a certain location and scale, bending atpre-stored segmentation plan to carry out active, explicit
increasing scales, moving a bulge on the boundary, etc.searches for stable object features by activating behavior
Other high-level deformation capabilities include, for routines. Behavior routines are designed based on available
example, smoothing the medial / left / right boundaries, in- organism motor skills, perception capabilities, and avail-
terpolating a missing part of the thickness profile, moving able anatomical landmarks. For example, the routines
the medial axis to a position midway between the left and implemented for the CC organism include: find-top-of-
right boundaries, and re-sampling the model by including head, find-upper-boundary-of-CC, find-genu, find-rostrum,
more medial and boundary nodes. find-splenium, latch-to-upper-boundary, latch-to-lower-

boundary, find-fornix, thicken-right-side, thicken-left-side,
4 .3. Perception system back-up. The behavior routines subsequently activate the

deformation or growth controllers to complete a stage in
The perception system of our organism consists of a set the plan and bring an organism closer to fulfilling its object

of sensors that provide information. We can incorporate a segmentation mission.
variety of sensors from edge strength and edge direction The segmentation plan provides a means for human
detectors to snake ‘feelers’, etc. Sensors can be focused or experts to intuitively incorporate global contextual knowl-
trained for specific image feature and image feature edge. It contains instructions on how best to achieve a
variation in a task-specific way and hence the organism is correct segmentation by optimally prioritizing behaviors. If
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Fig. 8. Examples of controlled deformations. (a)–(c) Operator-based bulge deformation at varying locations/amplitudes/scales. (d) Operator-based
stretching with varying amplitudes over entire CC. (e)–(g) Statistics-based bending of left end, right end, and left half of CC. (h) Statistics-based bulge of
the left and right thickness over entire CC. (i) From left to right: (1) mean shape, (2) statistics-based bending of left half, followed by (3) locally increasing
lower thickness using operator, followed by (4) applying operator-based stretch and (5) adding operator based bend to right side of CC.

we know, for example, that the corner-shaped rostrum of In mid-saggital MR imagery the middle of the CC is
the CC is always very clearly defined in an MRI image, known to be located approximately halfway across the top
then the find-rostrum behavior should be given a very high of the head. A priori knowledge about the appearance of
priority. The segmentation plan and its supporting be- the CC is that it has a homogeneous intensity and is
haviors give the organism an awareness of the segmenta- surrounded by the cerebrum, which appears darker and less
tion process. This enables it to make very effective use of homogeneous in intensity. Referring to the CC anatomy
prior shape knowledge, which it deliberately applies as which is labeled in Fig. 5(a), the CC is a bright, stripe-like
needed (for example, in anatomical regions of the target structure that curves downwards with respect to the top of
object where there is a high level of noise or known gaps the head and features a left and right ‘end-cap’. Its width is
in the object boundary edges). consistent (symmetric) in the middle portions. The left end

We describe a detailed segmentation plan for the CC cap (assuming the front of the head faces left) curves more
worm organism by example in the next section. rapidly towards the middle of the head and tapers to a

point (the rostrum), making the left end-cap roughly
triangular in shape. The right end-cap also curves inwards

5 . Experiments and results and is approximately circular (the splenium).
Although segmenting the CC may at first seem simple, it

The segmentation and labeling of the corpus callosum is is a deceptively subtle task that can be quite challenging,
an important first step for subsequent CC shape analysis especially when automatic labeling of the CC is a sub-
and classification. In addition, it may also form an im- sidiary requirement. Although the overall /global shape of
portant stage in the automatic segmentation of the entire the CC is relatively consistent, the local shape variation
brain and all of its parts. Identification and labeling of key (over many scales and locations within the CC) is
structures and shape features in the brain can ensure dramatic. The intensity of the CC also varies considerably
correct correspondence, a crucial part of subsequent brain from one MR image to another and there are often
comparison studies. spurious imaging artifacts to contend with. There can be

gaps of various sizes in the boundaries of the CC almost
5 .1. Corpus callosum data anywhere. Parts of the CC may narrow and bumps may

appear almost anywhere.
Our data comprises a set of 2D mid-sagittal MR brain The fornix is a thin structure that may or may not

images. For each image in the dataset, the corpus callosum contact the CC in the mid-sagittal MR image on the
has been manually segmented by an expert. We use these underside of the CC. It is approximately the same bright-
expert segmentations to validate our automatic segmenta- ness as the CC, and the size variation and position
tion algorithms. Details of the data can be found in variation of the contact region varies considerably. Since
(Shenton et al., 1992). the fornix is approximately the same brightness as the CC,



T. McInerney et al. / Medical Image Analysis 6 (2002) 251–266 261

it cannot be distinguished by intensity alone. For these regional statistics of CC shape variation that can be used to
reasons, a standard deformable contour model or pure keep model deformations consistent with prior knowledge
intensity-based techniques such as region growing will fail of possible shape variation.
to extract automatically the correct boundary in many, if Fig. 9 illustrates the progression of the segmentation
not most, cases—a single set of parameters does not exist plan of the CC organism. Starting from an initial default
that will guarantee a correct segmentation. position shown in subfigure (1), the CC organism goes

Even if a good solution is obtained, the subsequent task though different behaviors as it progresses towards its
of labeling the CC parts remains difficult. Even more goal. As the upper boundary of the CC is very well defined
tightly constrained models will have problems dealing with and can be easily located with respect to the top of the
the shape anomalies unless initialized very close to the head, the cognitive center of the CC organism activates
target boundary—a task almost as difficult as the seg- behaviors to locate first the top of the head (subfigures
mentation task itself. However, we do know that the upper (2–3)), then moves downwards through the gray and white
middle boundary of the CC is consistently distinguishable. matter in the image space to locate the upper boundary
The position of the contact region between the fornix and (4–7). The organism then bends to latch to the upper
CC is consistently right of middle. The left end-cap of the boundary (8) and activates a find-genu routine, causing the
CC (the rostrum) is consistently triangular in shape CC organism to stretch and grow along this boundary
(although a large variation in position, size, and shape of towards the genu (9–11). It then activates the find-rostrum
this triangle is exhibited) and the tip of the rostrum is a routine causing the organism to back up, thicken (12), and
rather stable landmark. track the lower boundary until reaching the distinctive

We have constructed a CC organism that utilizes the rostrum (13–15). Once the rostrum is located, the find-
above information to intelligently fit itself to the data. The splenium routine is activated and the organism stretches
information is used to assign measures of anatomical and grows in the other direction (15–16). The genu and
feature stability. We have also gathered multi-scale and splenium are easily detected by looking for a sudden

Fig. 9. Deformable corpus callosum organism progressing through a sequence of behaviors to segment the CC.
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Fig. 10. Segmentation result (a) before and (b) after detecting and repairing the fornix dip. (c) The CC organism’s self-awareness enables it to identify
landmark parts.

change in direction of the upper boundary towards the potentially connected fornix structure (18–21). Neverthe-
middle of the head. At the splenium end of the CC, the less, the lower boundary might still dip towards the fornix
organism backs up and finds the center of a circle that so a successive step of locating where, if at all, the fornix
approximates the splenium end cap (17). The lower does connect to the CC is performed by activating the
boundary is then progressively tracked from the rostrum to find-fornix routine (making use of edge strength along the
the splenium while maintaining parallelism with the organ- lower boundary, its parallelism to the medial axis, and
ism’s medial axis in order to avoid latching to the statistical thickness values). Thus, prior knowledge is

Fig. 11. Sample corpus callosum image segmentation results. (a)–(g) (top) CC organism overlaid on raw images; (bottom) manually segmented images
(gray regions) with overlaid CC organism for comparison. The CC organism in segmentation sample (h) deviates in some places from the manually
segmented result (i), but it accurately matches edges detected in the corpus callosum image (j).
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applied only when and where required. If the fornix is 6 . Discussion
indeed connected to the CC, any detected dip in the
organism’s boundary is repaired by interpolation using It is generally acknowledged that the success of auto-
neighboring thickness values (Fig. 10). The thickness of mated MIA depends on the effective use of all available
the upper boundary is then adjusted to latch to the global contextual knowledge. Current deformable model
corresponding boundary in the image (22–26). At this frameworks are making more sophisticated use of prior
point the boundary of the CC is located (26) and the CC shape and appearance knowledge, but they are attempting
organism has almost reached its goal. However, at this to do so within the confines of standard local and/or global
stage the medial axis is not in the middle of the CC optimization methods. This hampers the application of
organism (27) so it is re-parameterized until the medial prior knowledge and does not facilitate its incorporation
nodes are halfway between the boundary nodes (28–30). into deliberately customized global searches for good
Finally the upper and lower boundaries, which were reset solutions. Consequently, while current frameworks may
in the previous step, are relocated (31–36) to obtain the work well on data close to the norm, data with abnormal or
final segmentation result shown in subfigure (36). spurious features may cause these methods to fail in many

Fig. 11 shows several sample segmentation results. segmentation scenarios. We believe that higher-level con-
Table 1 presents quantitative error measurements for 26 trol and guidance of the model optimization is necessary in
corpora callosa relative to manual segmentations by an order to use global contextual knowledge effectively and
expert. Our validation study indicates the accuracy and of completely. Unfortunately, current optimization-based
the corpus callosum organism in these test cases. frameworks are not amenable to the addition of such

higher-level controllers.
The deformable organism approach, with its layered

architecture, is an attempt to construct a framework that
has the necessary properties. The cost, however, is in-
creased complexity. Our framework is admittedly more
complex than standard deformable model frameworks. We
have attempted to structure this complexity in a manage-

Table 1
able manner by adopting ALife modeling concepts andMean, maximum, and standard deviation of the shortest distances
terminology and using a layered architecture. Nevertheless,between automatically extracted and expert segmented CC boundaries.

The last column lists pixel distances between the automatically and we currently have no automatic scheme for designing
manually labeled rostrum tip suitable brains for deformable organisms. Identifying the
Case no. Mean error Max. error S.D. Rostrum tip correct set of behaviors, implementing the behaviors and

(pixels) (pixels) (pixels) (pixels) setting behavior parameters, choosing appropriate sensors,
and planning behaviors are all issues with which we are1 0.50 1.51 0.35 2.27

2 0.77 2.81 0.69 1.99 currently experimenting. For example, in Fig. 12 the CC
3 0.48 1.32 0.30 0.66 organism has slightly mislabeled the rostrum and was only
4 0.42 1.46 0.31 1.72 able to partially repair the minor fornix dip. We are
5 0.53 1.99 0.38 1.26

continuing to fine-tune the image feature sensors of the CC6 0.53 2.22 0.41 0.20
organism. However, we believe these issues are primarily7 0.54 2.31 0.41 1.22

8 0.53 1.60 0.34 1.16 implementation issues and the underlying principle of
9 0.46 1.50 0.32 0.97 using higher-level guidance is sound. We also intend to

10 0.44 2.14 0.36 2.17 explore ways to aid in the construction of brains, such as
11 0.43 1.71 0.33 0.53

supervised learning methods, and we are attempting to12 0.59 2.19 0.51 2.14
identify common behaviors that can be used by many13 0.57 2.46 0.51 3.66

14 0.66 3.39 0.65 1.29 organisms. We have already determined that once the CC
15 0.43 1.54 0.28 1.68 brain had been constructed, the other brains (lateral
16 0.46 1.34 0.29 1.48 ventricles, caudate nucleus, etc.) were much easier to
17 0.44 2.19 0.40 1.27

construct by reusing or slightly modifying existing be-18 0.67 2.24 0.46 2.95
havior routines (although admittedly these organisms have19 0.53 1.47 0.35 0.74

20 0.70 4.67 0.85 1.46 not been as well tested).
21 0.48 1.87 0.37 2.40 Another motivation for frameworks with explicit guid-
22 0.58 3.35 0.63 3.05 ance mechanisms is that the potential for human interven-
23 0.46 1.38 0.32 0.64

tion during the segmentation process is maintained. Com-24 0.47 1.47 0.30 0.64
pletely automatic analysis of all data sets may be an25 0.83 4.52 1.05 2.38

26 0.66 3.26 0.68 0.43 unrealistic goal, even in the long term. It may be more
Overall avg. achievable to design for highly-automated processing with
errors (pixels) 0.54 2.23 0.46 1.55 the ability to flag abnormal situations, allowing for varying
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Fig. 12. Our current fornix-detector was not able to detect this subtle fornix dip, and the rostrum was slightly mislabeled.

degrees of human expert intervention, and providing the deformation schemes, so long as they provide sufficient
ability to continue with the processing if the situation can support for intuitive, multi-scale and multi-location de-
be easily repaired. As a simple example, the CC organism formation of an organism’s body. For the axisymmetric
may not be able to find the rostrum tip (Fig. 13(a,b)). This deformable organisms presented in this paper, we associate
failure is flagged and the human expert intervenes by medial profiles only with a primary medial axis and have
deforming the model (Fig. 13(c)) to fit the rostrum tip. The not considered secondary axes. This may prevent the CC
expert reactivates the CC organism and the organism organism from accurately representing highly asymmetri-
proceeds to complete the segmentation (Fig. 13(d)). cal (with respect to the primary axis) parts of certain

With regard to bottom-up processing, a deformable corpora callosa. We also realize that our medial shape
organism’s layered architecture permits the replacement of representation needs improvement near the end caps. We
the lower levels with alternative shape representation and are currently exploring these issues and issues related to

Fig. 13. Example of human intervention for accurately locating the rostrum. (a) The organism latches onto the lower boundary of the CC and then activates
the find-rostrum behavior routine. (b) Utilizing knowledge of the rostrum shape and orientation, the organism was not able to detect a plausible rostrum tip
and flags the user. (c) The user intervenes and positions the model correctly. (d) The organism is reactivated to complete the segmentation.
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the extension of our model to 3D and we intend to make Canada. GH was funded in part by the Visual Information
use of the considerable body of work of Pizer and his Technology (VISIT) program, Swedish Foundation for
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