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Abstract

Since their debut in 1987, snakes (active contour models) have become a standard image analysis technique with several variants now
in common use. We present a framework called “United Snakes”, which has two key features. First, it unifies the most popular snake
variants, including finite difference, B-spline, and Hermite polynomial snakes in a consistent finite element formulation, thus expanding
the range of object modeling capabilities within a uniform snake construction process. Second, it embodies the idea that the heretofore
presumed competing technique known as “live wire” or “intelligent scissors’ is in fact complementary to snakes and that the two tech-
niques can advantageously be combined by introducing an effective hard constraint mechanism. The United Snakes framework amplifies
the efficiency and reproducibility of the component techniques, and it offers more flexible interactive control while further minimizing
user interactions. We apply United Snakes to several different medical image analysis tasks, including the segmentation of neuronal den-
drites in EM images, dynamic chest image analysis, the quantification of growth plates in MR images and the isolation of the breast
region in mammograms, demonstrating the generality, accuracy and robustness of the tool.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Snakes (active contour models) quickly gained popular-
ity following their debut in 1987 (Kass et al., 1988). They
have proven to be especially useful in medical image anal-
ysis (Mclnerney and Terzopoulos, 1996; Singh et al., 1998)
and for tracking moving objects in video (Terzopoulos and
Szeliski, 1992; Blake and Isard, 1998), among other appli-
cations. Variants such as finite element snakes (Cohen and
Cohen, 1993), B-snakes (Menet et al., 1990; Blake and
Isard, 1998), and Fourier snakes (Staib and Duncan,
1992) have been proposed in an effort to improve aspects
of the original finite difference implementation (e.g., to
decrease initialization sensitivity, increase robustness
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against noise, improve selectivity for certain classes of
objects, etc.). No formulation has yet emerged as the “gold
standard”. Rather, the primary variants seem well-suited to
different applications with particular image modalities and
processing scenarios.

Given the broad array of choices for the user, there is a
need for a portable and reusable snakes implementation
which unites the best features of the variants while main-
taining the simplicity and elegance of the original formula-
tion. To this end, our first contribution in this paper is to
unify the most important snakes variants, including finite
difference, B-spline, and Hermite polynomial snakes, in a
comprehensive finite element formulation, where a particu-
lar type of snake can be derived by simply changing the
finite element shape functions at the user level.

Subsequent to snakes, a related technique, known as
“live wire” or “intelligent scissors” (Mortensen et al.,
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1995; Falcao et al., 1996; Barrett and Mortensen, 1997;
Falcao and Udupa, 1997; Mortensen and Barrett, 1998;
Falcao et al., 1998, 2000) emerged as an effective interactive
boundary tracing tool. Based on dynamic programming
(Falcao et al., 1998) or Dijkstra’s graph search algorithm
(Mortensen and Barrett, 1998), it was originally developed
as an interactive 2D extension to earlier optimal boundary
tracking methods. Live wire features several similarities
with snakes, but it is generally considered in the literature
as a competing technique. Our second contribution in this
paper is the idea that live wire and snakes are in fact com-
plementary techniques that can be advantageously com-
bined via a simple yet effective method for imposing hard
constraints on snakes. An advantage of this combination
is the efficient handling of large images — a potential obsta-
cle for live wire alone.

We call our software implementation United Snakes
(Liang et al., 1999a,b), because it unites several snake vari-
ants with live wire to offer a general purpose tool for inter-
active image segmentation that provides more flexible
control while reducing user interaction. United Snakes is
implemented in the highly portable Java programming lan-
guage. We have applied United Snakes to several different
medical image analysis tasks including the segmentation of
neuronal dendrites in EM images, dynamic chest image
analysis, the quantification of growth plates in MR images
and the isolation of the breast region in mammograms,
demonstrating the generality, accuracy, robustness, and
ease of use of the tool.

In the remainder of this paper, we first describe our
finite element framework in Section 2 and show how sev-
eral snake variants can be integrated within it. Section 3
describes the live wire technique. We justify the idea of
combining snakes with live wire in Section 4 and develop
a hard constraint mechanism in Section 5 that makes this
combination possible. Section 6 presents results utilizing
the United Snakes system in medical image segmentation
scenarios. We conclude in Section 7 and propose future
extensions of United Snakes.

2. Finite element unification of snakes

A snake is a time-varying parametric contour v(s,?) =
(x(s,1),¥(s,1))" in the image plane (x,y) € R*, where x
and y are coordinate functions of parameter s and time .
The shape of the contour subject to an image I(x,y) is dic-
tated by an energy functional &(v) = ¥ (v) + 2(v). The
first term is the internal deformation energy defined as

V(v):%/o (s)| o

—| ds 1
Os 0s? ’ (1)
where o(s) controls the “tension” of the contour and f(s)
regulates its “rigidity”’. The second term is an external im-
age energy

P(v) = /O Pi(v) ds, 2)

2

+ B(s)

which couples the snake to the image via a scalar potential
function Pi(x,y) typically computed from I(x,y) through
image processing. The Euler-Lagrange equations of mo-
tion for a dynamic snake are

v ov o[ av\ O [ 0%
R T% 7 5 (a&> +@(ﬁ@> =q(v). 3)

The first two terms represent inertial forces due to the mass
density u(s) and damping forces due to the dissipation den-
sity y(s). The next two terms represent the internal stretch-
ing and bending deformation forces. On the right-hand side
are the external forces ¢(v) = —VPy(v) + f(s, ), where the
image forces are the negative gradient of the image poten-
tial function. The user may guide the dynamic snake via
time-varying interaction forces f(s,#) (usually applied
through an input device such as a mouse), driving the
snake out of one energy minimizing equilibrium and into
another. Viewed as a dynamical system, the snake may also
be used to track moving objects in a time-varying (video)
image I(x,y,1).

2.1. Finite element formulation

In a finite element formulation (Zienkiewicz and Taylor,
1989), the parametric domain is partitioned into finite sub-
domains, so that the snake contour is divided into “‘snake
elements”. Each element e is represented geometrically
using shape functions N(s) and nodal variables u®(¢). The
nodal variables of all the elements are assembled into the
snake nodal variable vector u(¢). This leads to a discrete
form of the equations of motion (3) as a system of sec-
ond-order ordinary differential equations in u(?):

Mi + Ca + Ku = g, (4)

where M is the mass matrix, C is the damping matrix, K is
the stiffness matrix, and g is the external force vector, which
are assembled from corresponding element sub-matrices
that depend on the shape functions N (Appendix A details
the finite element formulation).

By using different shape functions and thereby generat-
ing different stiffness matrices, the behavior of the resulting
snake can be adapted to specific tasks. For example, snakes
that use B-spline shape functions are typically character-
ized by a low number of degrees of freedom, typically use
polynomial basis functions of degree 2 or higher, and are
inherently very smooth. Therefore, these ‘‘B-snakes”
(Menet et al., 1990; Blake and Isard, 1998) can be effective
in segmentation or tracking tasks involving noisy images
where the target object boundaries may exhibit significant
gaps in the images. On the other hand, object boundaries
with many fine details or rapid curvature variations may
best be segmented by a snake that uses simpler shape func-
tions and more degrees of freedom, such as a finite differ-
ence snake (Kass et al., 1988). Various contour
representations are reviewed in Gavrila (1996). The unifica-
tion of these different shape functions in a single frame-
work expands the range of object modeling capabilities,
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and the range of segmentation and tracking scenarios that
can be handled by a single tool.

The following sections address Hermitian shape func-
tions, B-spline shape functions, and “shape functions”
for finite difference snakes. Since the two coordinate func-
tions x(s) and y(s) of the snake v(s) are independent, we
shall discuss the shape functions in terms of only one com-
ponent x(s); the shape functions for y(s) assume an identi-
cal form.

2.2. Hermitian shape functions

In the case of Hermitian snakes, x(s) (0 < s < /, where /
is the element parametric length) is approximated with a
cubic polynomial function, parameterized by position x
and slope 0 at the endpoints s = 0 and s =/ of an element.
We can show that x(s) = N,u%, where u® = [x;, 0;,x;,1,
6),-+1]T are the nodal variables of element ¢; and N, =sH
are the Hermitian shape functions, with s=[l,s, sz,s3]
and the Hermitian shape matrix is

1 0 0 0
a_| © 1 0 0 5)
| =3/ =2/1 32 —1)1)

2/ 1P =2/ 1P

It is reasonable to assume that the mass density u(s), the
dissipation density y(s), the tension function o«(s) and rigid-
ity function f(s) are constant within the element. Hence,
for element e;, the mass matrix is

156 221 54 —131
_ 221 4P 131 =3P
M¢ = 11,4201 (6)
13/ 156 =221
—131 =37 221 4P
the damping matrix is
156 221 54 —131
, 47 131 =3P
C* = 17,4201 (7)
54 131 156 221
—131 =3 =221 4P

and the stiffness matrices associated with the tension and
rigidity components are, respectively,

36 31 36 3/
w | 30 4 =31 =P

Ko =_—— , 8
* 300 | —36 -3 36 —3I ®
31 =12 31 4P
12 6/ —-12 6/
| 61 4P —61 2P
Ky =L )

BBl —12 —61 12 —61
6/ 21> —61 4*

An analytic form of the external forces q(v) in (3) is gener-
ally not available. Therefore, Gauss—Legendre quadrature

(Kwon and Bang, 1997) may be employed to approximate
the value of the integral for the element external force vec-
tor F°. For element ¢; we have

F= [ NaO6) ds= Y pN@) a 0@, (10

where the subscript x indicates the association with coordi-
nate function x(s), and where ¢; and p; are the jth Gaussian
integration point and its corresponding weighting coeffi-
cient, respectively. F}' is derived in a similar fashion.

To make the global matrix assembly process identical
for all shape functions, we introduce assembling matrices.
Suppose that we have a snake with »n elements and N nodes
(N = n if the snake is closed and N =n+ 1 if it is open).
For the ith element ¢; of the snake (0 <i<n—1), the
assembling matrices are Gy = G¢ =G = Gy = Gy =
G®, where

6~

are (2d) x (dN) matrices, with d the number of degrees of
freedom of each node in an element (here d = 2). Hence,
K., Kz and F may be assembled as follows:

1 if (j+ di) mod (dN) =k,
0 otherwise

(11)

n—1

M = (G§) 'M“(Ggy), (12)
i=0
n—1 T

C=) (G¢) C(Gy), (13)
i=0
n—1

K, = (G)'K{(GY), (14)
i=0
n—1 T

Ky =) (G§) K{(Gj), (15)
i=0
n—1

F=) (G%)'F. (16)

=0

In our implementation, we set the element parametric
length / to 1. Only the shape matrix and the assembling
matrices are determined by specific shape functions. There-
fore, in the following section we shall focus only on the der-
ivation of the shape matrix and the assembling matrices for
B-spline shape functions, and briefly mention other kinds
of shape functions which are suitable for snakes.

2.3. B-spline shape functions

For B-spline shape functions, the x(s) coordinate func-
tion of v(s) is constructed as a weighted sum of Ny basis
functions B,(s), for n=0,...,Ng—1, as follows:
x(s) = B(5)"Q*, where B(s) = [By(s),...,By,_1(s)]", Q" =
[xo,...,xy,1]" and x; are the weights applied to the respec-
tive basis functions B,(s).

A B-spline span serves as an element in our finite ele-
ment formulation (hence “span” and ‘“‘element” are inter-
changeable terms). Consequently, we shall determine the
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nodal variables, the shape matrix, and the assembling
matrix associated with a span. When all spans are of unit
length, the knot multiplicities at the breakpoints are
my, - . .,my (L is the number of spans and the total number
of knots Nz = Zfzomi), the knot values k; are determined
by k; =1, such that 0 < (i — Z/ om;) < myy. Furthermore,
the nth polynomial By, in span ¢ can be computed as
follows:

1 if &,
By 17
1) = {O otherwise, (17)
(sto—k)By, 1(s) (knra—s—0)By 4 (5)
kn+d—l - kn kn+d - kn+l ’

<0< kn+la

B:,d(s) =
(18)

For span o, the index b, for the first basis function whose
support includes the span can be determined as
b, = [(>_7_ym:) — d] mod Ng. Therefore,
I=1[b,,(bs+ 1) modNg,...,(b, +d—1) modNy]
are the indices of the nodal variables and also those of the d
polynomials BZ‘d.l Now, the shape matrix for span ¢ can be
constructed by collecting the coefficients of each of the d
polynomials By, as its columns. For example, the shape
matrix of a regular cubic B-spline is
/6 2/3 1/6 0
—-1/2 0 1/2 0

H=11s 1 0p o (19)
-1/6 1/2 -1/2 1/6
and the element matrices for element e; are
20 129 60 1
o M 129 1188 933 60 (20)
5040 | 60 933 1188 129 |’
1 60 129 20
20 129 60 1
o _ Vi 129 1188 933 60 1)
5040 | 60 933 1188 129 |’
1 60 129 20
6 7 —-12 -1
o O 7 34 =29 -12
* 7120 -12 29 34 7 | (22)
-1 =12 7 6
2 -3 0 1
-3 6 -3 0
Kj :% 0 -3 6 -3| (23)
1 0 -3 2

! In an open B-spline snake, d knots are introduced at the two ends. As a
result, the index for the first basis function in the first span is zero (i.e.,
by = 0) and the index of the last basis function in the last span is Nz — 1.
For a closed B-spline snake, the index needs to be wrapped properly
(Blake and Isard, 1998).

The assembling matrix G* can be defined as

. 1 if (j+b,) modNp =k
(Gl)jk :{ '

. (24)
0 otherwise.

In a similar fashion as above, we may construct other kinds
of shape functions; for instance, NURBS shape functions
(Terzopoulos and Qin, 1994), Catmull-Rom shape func-
tions, Bézier shape functions, and Fourier shape functions
(Staib and Duncan, 1992). The latter are global shape func-
tions over the whole snake, thus the associated assembling
matrix becomes an identity matrix.

2.4. Finite difference snakes in element form

Despite the differences between finite element snakes
and finite difference snakes, the finite difference snakes
can also be constructed in the finite element fashion, using
the Dirac delta function 6(s) as the shape function. The
construction primitives are as follows. For a snake with n
nodes, M“ is a 1 x 1 matrix and its corresponding assem-
bling matrix Gy is a 1 X # matrix:

Me[:.ui[l]T[l]:.ui[l]» (25)
, 1 ifi=k
(G)o = {0 otherwise, (26)

where 0 < i < n — 1 for both open and closed snakes. C* is
also a 1 x 1 matrlx with a 1 x n assembling matrix Gg:
Cei:Vi[l]T[l]:Vi[l]a (27)
1 ifi=k
Gg),, = ' 28
( C)°=" { 0 otherwise, (28)

where 0 < i< n — 1 for both open and closed snakes. K’ is
a2x?2 matrlx and its corresponding assembling matrix GZ’
is a 2 X n matrix:

1 -1
Ky =af-t 1701 1=a) |, (29)
1 if (j+i dn=k
(G, :{ i (H—f) modn (30)
I 0 otherwise,
where 0 <i<n—2 for an open snake and 0 <i<n—1

for a closed snake. K;; is a 3 x 3 matrix and with 1t is asso-
ciated a 3 x n assembling matrix Gj:

1 -2 1
Ki=g[1 -2 1]"[1 -2 1]=4|-2 4 -2,
1 -2 1
(31)
1 if (j+i) modn =k
(61), = {0 " =" 32)
i 0 otherwise,
where 0 < i< n— 3foranopensnakeand 0 <i<n—1for

a closed snake. The 1 x n assembling matrix Ge’ is deﬁned as

) 1 ifi=k,
(GF')oﬁk :{

. (33)
0 otherwise,
where 0 <

< n — 1 for both open and closed snakes.
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With the above formulation of finite difference snakes,
we have a uniform finite element construction for a variety
of snake representations, which leads to a relatively
straightforward United Snakes implementation in an
object-oriented programming language, such as Java.

3. Live wire

Live wire (or intelligent scissors) is a recently proposed
interactive boundary tracing technique (Mortensen et al.,
1995; Falcao et al., 1996, 1997; Falcao and Udupa, 1997;
Mortensen and Barrett, 1998; Falcao et al., 1998; Falcao
et al., 2000). Although it shares some similarities with
snakes — it was originally developed as an interactive 2-D
extension to previous stage-wise optimal boundary track-
ing methods — it is generally considered in the literature
as a competing technique to snakes. Like snakes, the idea
behind the live wire technique is to allow image segmenta-
tion to occur with minimal user interaction, while at the
same time allowing the user to exercise control over the
segmentation process. However, live wire realizes the idea
differently from snakes.

Live wire is very easy to use. The user begins by placing
an initial seed point near the boundary of the object of
interest. As the cursor, or free point is moved around the
image, the current calculated boundary, called the /ive wire
or trace, from the seed point to the free point is dynami-
cally displayed. If the displayed trace is acceptable and
the user clicks the mouse, the free point is collected as an
additional seed point, and this trace will be frozen and will
become part of the extracted object boundary. The result-
ing live wire boundaries are piecewise optimal (i.e., optimal
between seed points), while the snake gives an optimal
solution over the entire contour.

The genesis of live wire has its origin in the early col-
laboration between Udupa (University of Pennsylvania)
and Barrett (Brigham Young University) (Mortensen
and Barrett, 1998; Falcao et al., 1998). Their two research
groups have since independently developed different live
wire systems. They share two essential components: a
local cost function that assigns lower cost to image fea-
tures of interest, such as edges, and an expansion process
that forms optimal boundaries for objects of interest
based on the cost function and seed points provided inter-
actively by the user. However, they employ different
underlying graph models with different local cost func-
tions. In (Mortensen and Barrett, 1998), each pixel repre-
sents a graph node, and directed, weighted edges are
created between each pixel and its eight adjacent neigh-
bors. In (Falcao et al., 1998), the graph nodes are pixel
corners and they are connected by oriented, weighted edge
cracks, called boundary elements (bels for short). In both
cases, when the image is large, a corresponding large
underlying graph may have to be maintained and live wire
performance will be compromised. To improve the effi-
ciency of live wire, the two groups have developed exten-
sions known as live lane (Falcao et al.,, 1998) and

toboggan-based intelligent scissors (Mortensen and Bar-
rett, 1998; Mortensen, 2000), respectively.

Live-wire-like user interaction techniques have been
proposed in the snakes literature. In (Cohen and Kimmel,
1997), Cohen and Kimmel compute the global minimal
path between two points using Sethian’s fast marching
algorithm (Sethian, 1997), which has sub-pixel accuracy?
and may eliminate metrication errors of graph search algo-
rithms. A minimal path between two points is also
obtained in (Grzeszczuk and Levin, 1994) based on simu-
lated annealing. In a technique called “static” snakes, pro-
posed in (Neuenschwander et al., 1994), the user initially
specifies two end snake points and then the snake takes
image information into account progressively from the
two end points to its center, resulting in a minimal path
between the two points. A similar technique has also been
proposed in (Hyche et al., 1992). Dubuisson-Jolly and
Gupta have formulated tracking an active contour with
shape constraints in an image sequence as a shortest path
problem (Dubuisson-Jolly and Gupta, 2001).

3.1. Trace formation

Boundary finding in live wire can be formulated as a
directed graph search for an optimal (minimum cost) path
using Dijkstra’s algorithm in the underlying graph model.
First, the graph is initialized with the local costs as
described in the next section. Once the user selects a seed
point (node), it will be used as the starting point for a
recursive expansion process. In the expansion process, the
local cost at the seed point is summed into its neighboring
nodes. The neighboring node with the minimum cumula-
tive cost is then further expanded and the process produces
a dynamic ‘“wavefront”. The wavefront expands in the
order of minimum cumulative cost. Consequently, it prop-
agates preferentially in directions of highest interest (i.e.,
along image edges).

For any dynamically selected goal node (i.e., the free
point) within the wavefront, the optimal path back to the
seed point which forms a live wire trace can be displayed
in real time. When the cursor (the free point) moves, the
old live wire trace is erased and a new one computed and
displayed in real time. The expansion process aims to com-
pute an optimal path from a selected seed point to every
other point in the image and lets the user choose among
paths interactively, based on the current cursor position.

Live wire may be implemented very efficiently in multi-
threaded programming languages, such as Java, because
the expansion process and the user interface can execute
in separate, parallel threads. Since the free point is gener-
ally near the target object boundary, the expansion process
will most likely have already advanced beyond that point
and the live wire trace can be displayed immediately. That

2 Toboggan-based live wire (Mortensen and Barrett, 1999) obtains sub-
pixel localization by fitting an edge model to the tobogganed region
boundaries.



220 J. Liang et al. | Medical Image Analysis 10 (2006) 215-233

is, the live wire trace can typically be displayed before the
expansion process has finished sweeping over the entire
image. Therefore, our implementation (Liang et al.,
1999a,b) is equivalent to the interleaved computation pro-
posed in (Mortensen et al., 1995; Mortensen and Barrett,
1998) or live wire-on-the-fly introduced in (Falcao et al.,
2000) in terms of computation cost, and the multi-threaded
Java implementation is more elegant in software design
and in supporting user interactions.

3.2. Local cost functions

Many local cost functions can be defined. In (Mortensen
et al., 1995), the local cost /(p,q) on the directed link from p
to a neighboring pixel q is defined as a weighted sum of six
local component costs created from various edge features:

I(p,q) = wz/z(q) + w6 fc(q) + wpfo(p,q) + opfe(q)
+ oif1(q) + wofo(q), (34)

where f7(q) is the Laplacian zero-crossing function at
q,/G(q) is the gradient magnitude at q,fp(p.q) is the gradi-
ent direction from p to q,fp(q) is the edge pixel value at
q,/1(q) and fo(q) are the “inside’” and “outside” pixel values
at q, respectively, while w7, wg, wp, wp, w; and wg are
their corresponding weights.

The Laplacian zero-crossing function f7(q) is a binary
function defined as

= {0 =0

1 otherwise,
where /1 (q) is the Laplacian of the image I at pixel q. The
gradient magnitude serves to establish a direct connection
between edge strength and cost. The function fg is defined
as an inverse linear ramp function of the gradient magni-
tude G

o= max(¢)-G¢ G
7 Tmax(G) 0 max(G)’

where G' = G — min(G). When calculating [(p,q), the
function fg5(q) is further scaled by 1 if q is a diagonal
neighbor to p and by 1/+/2 if q is a horizontal or vertical
neighbor.

The gradient direction fp(p,q) adds a smoothness con-
straint to the boundary by associating a higher cost for
sharp changes in boundary direction. With D’(p) defined
as the unit vector normal to the gradient direction D(p)
at pixel p (ie., D(p)=[L(p).L(p)] and D'(p)=[I,(p).
—1.(p)]), the formulation of the gradient direction cost is

(35)

(36)

Job.4) = - {arccosldy(p,)] +arccosldy . a)]}, (37

where dy(p,q) =D’(p) - L(p.q) and dy(p,¢) = L(p.q) - D'(q)
are vector dot products and

1 {q—p it D'(p)- (@ —p) =0,

“Ip—dallp-q ifD'p)-(@—p) <0 (38)

L(p,q)

is the normalized bidirectional link or unit edge vector be-
tween pixels p and q.

Along with the gradient magnitude fg, pixel value fea-
tures (fp, f; and fo) are used in on-the-fly training to
increase the live wire dynamic adaptation (Mortensen
and Barrett, 1998). With the typical gray-scale image pixel
value range [0,255], they are defined as

fol@) = 55510, (39)
/@) = 55 (p + kD)), (40)
fol@) = 55510 k- D)), (1)

where D(p) is the unit vector of the gradient direction as de-
fined above, and k is a constant distance value for deter-
mining the inside and outside features.

In (Falcao et al., 1998), the local cost assigned to each
boundary element (bel) b is a linear combination of the
costs with its eight possible features f;:

8
l(b) _ Zi:lwi;fx (ﬁ(b)) 7 (42)
Do Wi

where w; is the associated weight with feature f;, and where
¢y, called the feature transform function of feature f;, con-
verts feature value f{(b) into a cost value. The eight features
of a bel b include the intensity values on positive and neg-
ative sides of b (f] and f>), four different gradient magnitude
approximations (f3,fa,/s,/s), orientation-sensitive gradient
magnitude (f7) and boundary distance (fg). Each feature va-
lue (f;,1 < i< 8) may be converted into a cost value with
any of the following six feature transforms: linear (c;), in-
verted linear (¢,), Gaussian (c3), inverted Gaussian (cy),
modified hyperbolic (¢5), and inverted modified hyperbolic
(c6). Training methods have been developed for optimum
selection of the bel features and automatic selection of
the parameters with their feature transforms, based on
the typical segments painted by the user along the desired
object boundary.

4. Combining snakes and live wire

Excluding user interaction, an accurate initialization is
generally needed in order for a snake to lock onto image
features of interest in all but the simplest images. There-
fore, researchers have been actively investigating tech-
niques to mitigate the sensitivity of snakes to their
initialization. Among these techniques are the use of an
inflation force (Terzopoulos et al., 1988; Cohen and Cohen,
1993), a chamfer distance map (Cohen and Cohen, 1993)
and gradient vector flow (Xu and Prince, 1998). These tech-
niques can work well if the image feature map is relatively
clean. However, most clinical images are noisy, contain
many uninteresting edges, or texture is present. Hence,
these more automatic techniques can fail. For this reason,
we explore an alternative direction — instead of attempting
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to mitigate initialization sensitivity, we seek to increase the
efficiency of interactive initialization. In particular, we
enable the user to instantiate (i.e., construct, initialize,
and activate) snakes quickly and with minimal effort by
exploiting the strengths of the live wire technique.

In this section, we first justify the complementarity of
snakes and live wire, and then we show that the combina-
tion of snakes and live wire also provides an efficient mech-
anism for handling large images.

4.1. Snakes and live wire are complementary

There are numerous ways to define the local cost func-
tions in live wire, as long as sufficiently low cost values
are assigned to the desired object boundaries. Therefore,
various techniques developed for computing snake poten-
tials (Kass et al., 1988; Blake and Isard, 1998) can be used
for the generation of local cost maps in live wire. For
instance, the chamfer distance map (Cohen and Cohen,
1993) and gradient vector flow (Xu and Prince, 1998) are
readily usable. Similarly, the local cost map computed for
live wire may be treated as an image potential in snakes.
Therefore, in United Snakes, snakes and live wire may
share the same image potential (local cost map).

In general, live wire provides user-friendly control dur-
ing the segmentation process. The user may freely move
the free point on the image plane, and the corresponding
live wire trace is interactively displayed in real time. How-
ever, once the free point is collected as an additional seed
point, the trace is frozen and it becomes a part of the
extracted object boundary. At this point, the user has no
further control over the trace between seed points other
than backtracking. Therefore, when the shape of the object
boundary is complex or when object boundaries are noisy
and unclear, the user may need to backtrack to produce
acceptable traces. Consequently, many seed points may
be needed to guide the live wire to an accurate result. Fur-
thermore, it is not uncommon for the user to make small
errors when placing seed points using a mouse or other
input device, forcing the user to repeat the placement. By
contrast, a snake may be dynamically adjusted or refined
as it deforms at any time and at any point on the snake
via intuitive mouse-controlled forces. However, the best
performance of the snake is often achieved when user-spec-
ified constraint points are utilized. The constraint points do
not “lock in” the solution — they too may be changed
dynamically, allowing further refinement of the extracted
object boundary.

Live wire seeks a global minimal path between two
points. Therefore, when a section of the desired object
boundary has a weak edge relative to a nearby strong but
uninteresting edge, the live wire snaps to the strong edge
rather than the desired weaker boundary. In order to mit-
igate this problem, Falcao et al. (1998) have developed
training techniques for optimum feature selection and
automatic parameter selection, and Mortensen and Barrett
have proposed on-the-fly training (Mortensen and Barrett,

Fig. 1. (a) Delineation of the lung in X-ray fluoroscopy images using live
wire (seed points are shown). (b) A Hermite snake instantiated from live
wire traces with the first seed point imposed as a hard constraint. It is
interactively pulled out of the strong edge with spring forces and then
locks onto the lung boundary.

1998). Basically, these techniques (dynamically) update
the cost map to filter out the image features which do
not have edge characteristics similar to the sample bound-
ary specified by the user. In other words, these methods
rely on the assumption that the edge property is relatively
consistent along the object boundary. Training is most
effective for those objects with relatively consistent bound-
ary properties and may be counter-productive for objects
with sudden and/or dramatic changes in their boundary
properties (Mortensen and Barrett, 1998). For example,
in the lung image of Fig. 1(a), the live wire snaps to the
strong edges of the elliptical viewport rather than the
desired lung boundary. In this case, training is ineffective
since the edge property of the lung boundary varies consid-
erably over its extent and is also disturbed by the ribs (not
obvious to the eye). Consequently, it is difficult to specify a
typical segment of the lung boundary. Nevertheless, in situ-
ations where training can be effective, snakes can also take
advantage of it by utilizing the trained cost map. More-
over, in United Snakes, the user has more control, using
spring forces to pull the snake out of one minimum into
another without training, as shown in Fig. 1(b).

The underlying graph search makes it possible for live
wire to bridge boundary gaps and pass through noisy
areas. For instance, in MR wrist images from Falcao
et al. (2000) (Fig. 2), live wire bridges the gap along the ves-
sel boundary in Fig. 2(a) and passes through a noisy region
in Fig. 2(b). Even if there are no image features at all
between two points, live wire can still provide a minimal
path — a straight line. However, live wire is inherently

Fig. 2. Live wire bridges the gap along the vessel boundary (a) and passes
through a noisy region (b) in an MR wrist image.
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Fig. 3. (a) Delineation of the heart in X-ray fluoroscopy images using live
wire (seed points are shown). (b) The unacceptable segment replaced by
manual drawing. Alternately, the user may place multiple seed points and
let live wire generate a piecewise linear path between adjacent seed points
to approximate the missing cardiac boundary. (c) Initial B-spline snake
and control polygon instantiated from live wire traces in (b). (d) Resulting
segmentation after a few iterations with control point 3 as a hard
constraint, which effectively bridges the gaps along the cardiac boundary.

image-based, rather than model-based. Fundamentally, it
is not designed to bridge gaps in a manner that is consistent
with the image features bordering the gaps and the smooth-
ness of the traces cannot be guaranteed. For instance, in
Fig. 3(a), part of the live wire trace from seed point 1 to
seed point 2 is a straight line where the cardiac boundary
is missing, and the live wire technique does not generate
an acceptable cardiac boundary from seed point 3 to seed
point 1. The user may place multiple seed points and let live
wire generate a piecewise linear path between adjacent seed
points to approximate the missing cardiac boundary. In
this case, we have found that it is convenient to draw a
rough curve manually between the points (Fig. 3(b)).
Snakes, on the other hand, are model-based and were
designed to adhere to image edges and interpolate between
edge features in regions of sparse and noisy data (i.e., fill in
the gaps). For example, a B-snake instantiated from the
live wire traces is more effective in bridging the gaps along
the cardiac boundary, as shown in Fig. 3(d).

In summary, it is desirable to enable the user to exercise
more control over the live wire traces between seed points,

a b

impose smoothness on live wire traces, and bridge compli-
cated gaps along object boundaries. This is what snakes are
good at doing. Snakes adhere to edges with sub-pixel accu-
racy and they may also be adjusted interactively as para-
metric curves with intuitively familiar physical behaviors.
Furthermore, snakes have the power to track moving
objects, while live wire does not.

However, the efficient performance of interactive snakes
is linked to fast, reasonably accurate initialization and
user-specified constraints. Even with a few seed points, live
wire can quickly give much better results than casual man-
ual tracing. Hence, the resulting live wire boundary can
serve well to instantiate a snake. The live wire seed points
reflect the user’s prior knowledge of the object boundary.
They can therefore serve as either hard or soft point con-
straints for the snake, depending on the user’s confidence
in the accuracies of these seed points.

Because a live wire-traced initial object boundary is
more accurate than a hand-drawn boundary, and with
the further incorporation of the seed points as snake con-
straints, the snake will very quickly lock onto the desired
object boundary. If necessary, the user may then correct
mistakes inherited from the live wire-generated boundary
by applying mouse-controlled spring forces to the snake.
Because the user still has the opportunity to correct the
deficiencies of the trace as the snake is evolving, the num-
ber of seed points needed by live wire to generate the object
boundary can be further reduced. Consequently, a satisfac-
tory initial object boundary can be generated very quickly
using live wire. Other hard or soft constraints may be
added during the snake deformation process as well.
Because constrained values may be changed dynamically,
the user may adjust the seed points to further refine the
object boundary as the snake deforms.

To illustrate their performance, we apply United Snakes
to an angiogram (Fig. 4) and a vertebra image (Fig. 5), to
which Mortensen and Barrett applied their live wire algo-
rithm in (Mortensen and Barrett, 1998). With only a few
seed points, United Snakes generate the boundaries shown
in Figs. 4 and 5(c), which are comparable to the ideal
boundaries used as references in (Mortensen and Barrett,
1998).

As further evidence that the United Snakes framework
improves upon the robustness and accuracy of its compo-
nent techniques, Fig. 6 shows a synthetic image of a known
curve degraded by strong Gaussian white noise (variance

Fig. 4. Segmenting a vessel in an angiogram. (a) The image used in (Mortensen and Barrett, 1998). (b) Live wire segmentation. (c¢) United Snakes generate

boundaries comparable to ideal boundaries in (Mortensen and Barrett, 1998).



J. Liang et al. | Medical Image Analysis 10 (2006) 215-233 223
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Fig. 5. Segmenting the outer boundary of a vertebra. (a) The image used in (Mortensen and Barrett, 1998). In United Snakes, we only expect a coarse
object boundary from live wire. To illustrate this point, referring to Eq. (35), we have set wg = 0.50, wz = 0.5, and turned all the other parameters off (i.e.,
wp = wp = w] = W = 0), resulting in the live wire segmentation (b). From it, United Snakes generate a boundary (c) which is comparable to the ideal

boundary in (Mortensen and Barrett, 1998).

c

Fig. 6. Performance of United Snakes demonstrated using a noisy synthetic image. This image was designed to challenge the snakes and live wire with the
high curvature points as well as the small wave details. (a) A live wire is sensitive to noise (the required seed points are shown). (b) United Snakes are
robust against noise. (¢) The segmented boundary accurately conforms to the ideal boundary.

0.25). Given its image-based nature, the live wire is sensi-
tive to noise as shown in Fig. 6(a). A snake instantiated
by the live wire gives a better result (Fig. 6(b)). Fig. 6(c)
shows that the United Snakes result is very close to the
boundary in the ideal image, despite the strong noise. This
performance is a consequence of the imposed hard con-
straints, without which the snake would slip away from
high curvature points.

4.2. Handling large images

Large images are now common in clinical settings
because high resolution is often needed to make accurate
diagnoses. For instance, in the mammogram analysis task
(see Section 6.4), we need to handle images with a typical
resolution of 3500 x 6500 pixels. However, due to the nat-
ure of its underlying graph-based algorithm, the basic live
wire algorithm is unable to handle large images efficiently.
To support user interaction, live wire aims to compute an
optimal path from the last seed to every other point in
the image. Even with our efficient multi-threaded Java
implementation of Dijkstra’s algorithm (e.g., with bucket
sort (Mortensen and Barrett, 1998) or Dia’s method (Fal-
cao et al., 2000)), the performance of live wire will be sig-
nificantly compromised when working with large images.
The reason is that the lower bound of its computational
complexity is O(m), where m is the number of image pixels
involved in the computation of an optimal path from the
seed to the free point; that is, all the pixels within the wave-
front (i.e., the expansion process). In the worst case, m is
the total number of pixels in the image.

For effective user interaction, the thread responsible for
computing an optimal path from the seed point to every
other point in the image should not stop until the user
has selected the current free point as a seed. This ensures
the user may move with more freedom in the image plane
to select optimal paths and quickly generate an acceptable
object boundary with a minimal number of seed points.
That is, the user should be able to place two neighboring
seed points as far apart as desired. However, when the
desired object boundary is not clear/sharp (e.g., chest
images, mammograms, etc.) or has many branches (e.g.,
a retinal angiogram), the wavefront will spread too widely
and include many pixels for any path of reasonable length.
As a result, the memory required to maintain the auxiliary
information in Dijkstra’s algorithm will increase dramati-
cally for large images. Furthermore, as demonstrated also
in (Falcao et al., 2000), when the image size changes from
128 x 128 to 1024 x 1024, the live wire performance will be
reduced by a factor of 400, and the ultra fast live wire on
the fly may still be 40 times slower.

The combination of live wire and snakes in United
Snakes provides a new mechanism for handling large
images. The computational complexity of snakes is O(n)
in each iteration, where n is the number of snake nodal
variables. In United Snakes, we typically require live wire
to generate only a coarse boundary with a few seed points.
Therefore, we can construct a truncated pyramid of images,
and let the live wire work at the top of the pyramid with a
small image size (for example, 128 x 128 or 256 x 256), thus
efficiently supporting user interaction. The snake ‘“‘des-
cends” the image pyramid from coarse to fine levels of
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resolution, tolerating any live wire errors introduced at the
top of the pyramid, and accurately locks onto the desired
object boundary. The original large image is still displayed
to the user and thus the seed points can generally be accu-
rately specified or dynamically adjusted if necessary. The
extra memory needed to maintain the pyramid is offset
by the reduced memory necessary for the auxiliary infor-
mation in Dijkstra’s algorithm. In practice, we do not have
to maintain a pyramid for the original image, but only for
the image potential. Assuming the pyramid has » levels and
the original image occupies M amount of memory, the
extra memory required for the pyramid then is

1 1 1 1 1 \M

while the reduced auxiliary memory (e.g., only for the
cumulative cost map) in the live wire implementation is

(1— M.

e

As a demonstration, Fig. 7(a) shows a retinal angio-
gram with pixel resolution of 256 x 256 obtained by
down-sampling the original large image with resolution
1024 x 1024. Suppose we would like to trace the vessel
starting from point S to one of the target points 0-9
(see Fig. 7(b)). Once point S is selected as the first seed,
the corresponding branch should ideally be instantly
available once the user points to any of the 10 branch
end-points. This real-time user interaction is achievable
by live wire when the image size is under 300 x 300 on
modest PCs (Fig. 7(c)). For larger images, however,
real-time user interaction becomes increasingly difficult
to achieve using live wire alone. Table 1 shows the time
needed for the wavefront to reach the 10 targets as well
as the time needed to sweep over the entire image at dif-
ferent resolutions on an 866 MHz Pentium PC with SUN
JDK1.3. From the table, we can see that the time
required at 256 X 256 resolution is approximately 1/4 of

Fig. 7. (a) A retinal angiogram with pixel resolution 256 x 256 obtained by down-sampling the original 1024 x 1024 image. (b) The seed point S and 10
marked target points. (c) The superimposed live wire traces shown only for the first and last target points. (d) The superimposed snakes dynamically
instantiated from the live wire traces in (c) descend the truncated pyramid reaching the intermediate level with resolution 512 x 512 (e) and the original
large image (f). This mechanism supports real-time user interaction: once point “S” is selected as a seed, the corresponding vessel branch is instantly
available when the user points to a new position (such as, the 10 targets) on the original large image.
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Table 1
The time (in milliseconds) needed for the wavefront to reach the 10 targets shown in Fig. 7, as well as the time needed to sweep over the entire image at
different resolutions on an 866 MHz Pentium PC with SUN JDK1.3

Targets 0 1 2 3 4 5 6 7 8 9 Entire image
256 x 256 65 109 118 131 131 170 205 211 225 240 405
512 x 512 374 526 545 604 805 875 979 1025 1081 1248 2178
1024 x 1024 1562 2293 2393 2703 3479 3683 4425 4543 4688 5481 9802

The time required at 256 x 256 resolution is approximately 1/4 of that at 512 x 512 resolution, which is roughly 1/4 of that at 1024 x 1024 resolution. The
time needed for a snake sliding down is O(n) in each iteration, where n is the number of snake nodal variables. We use five iterations at each level of the
pyramid. The longest snake (from point S to point 9 in Fig. 7) in this experiment has 100 nodal variables. When the live wire trace is available at the top
level (256 x 256), it takes 15 iterations or 77 ms for the snake to descend the pyramid. So, the total time needed is 317 (77 + 240) ms, which is much less

than 5481 ms when working directly at the resolution of 1024 x 1024.

that at 512 x 512 resolution, which is roughly 1/4 of that
at 1024 x 1024 resolution. This can be justified by the
observation that reducing an image by a factor of 2 in
linear dimension while maintaining its aspect ratio
reduces its area in pixels to 1/4, and that the complexity
of the wavefront computation is proportional to the lat-
ter. Thus, with a three-level pyramid, we can make the
algorithm approximately 16 times faster and, with four
levels, it becomes approximately 64 times faster.

In United Snakes, snakes that are dynamically instanti-
ated from live wire traces at the top of the truncated image
pyramid can easily descend the pyramid, reaching the ori-
ginal large image (Fig. 7(f)) via intermediate level(s)
(Fig. 7(e)), resulting in real-time user interaction on the ori-
ginal large image. Thus, United Snakes with the image
pyramid scheme yields real-time response — a critical factor
in any interactive segmentation scheme — with sub-pixel
accuracy in original large images.

5. Hard constraints

Our combination of snakes and live wire relies on an
efficient constraint mechanism. A constraint on a snake
may be either soft or hard. Hard constraints generally com-
pel the snake to pass through certain positions or take cer-
tain shapes, whereas soft constraints merely encourage a
snake to do so. Two kinds of soft constraints, springs
and volcanos, were described in the original snakes paper
(Kass et al., 1988) and they are incorporated into our finite
element formulation. Hard constraints have been used to
prevent snake nodes from clustering in dynamic program-
ming snakes (Amini et al., 1990). Generic hard constraints
are discussed in (Fua and Brechbiihler, 1997,). In this sec-
tion, we propose a convenient mechanism, called pins, as a
simple yet effective way to impose hard constraints on
snakes for the integration of snakes and live wire.

Suppose that we wish to guarantee that the snake node i
sticks at position (x{,)¢) in the Hermitian parameteriza-
tion. Recall that in the Hermitian parameterization, the
polynomial shape of each element is parameterized by the
position and slope of x(s) and y(s) at the two nodes (posi-
tion and slope variables occupy alternating positions in the
nodal variable vector u). Therefore, the snake stiffness
matrix K may be updated with

Ko, — {1 if 2i .j, (44)
0 otherwise,

where 0 <j<2(N—1) and N is the number of snake
nodes. The system force vector F is updated as

F=x, F=), (45)
where x and y indicate coordinate function x(s) and y(s),
respectively. It is then guaranteed that the snake node 7 is
always at position (x{,)?).

A drawback of this simple technique, however, is that
the updated system stiffness matrix is no longer symmetric.
Consequently, we are unable to store the stiffness matrix
economically using skyline storage, nor factorize it into
LDLT form (see Appendix A). Nevertheless, since the posi-
tion of node i is given, a constant force may be derived
from the stiffness matrix for each degree of freedom and
subtracted from its corresponding position in the system
force vector so that we can restore the symmetry of the
stiffness matrix while keeping the system in balance. In
our implementation, we store column 2i of K into a vector
K e, ka.i =K, for 0 <j<2(N — 1), before K is made
symmetric with

1 if 2i =,
KjAzz = .
0 otherwise.

To keep the system in balance, the system force vector F is
updated with

W o X cy,2i ) 2 c1, 20
Fy=F —xki, F=F -k (47)

(40)

for 0 <j# 2i < 2(N — 1). We can constrain the slope in the
same way. If we constrain two node variables of an element
in both position and slope, this element will be frozen. Its
two neighboring elements will also be influenced by the
constraint. The constraints on a B-snake are imposed on
the nodes of its control polygon. Imposing hard constraints
in this manner also lessens computational cost, in terms of
both memory and time, since the number of entries in the
skyline storage of the stiffness matrix is reduced. Conse-
quently, the LDLT factorization and forward/backward
substitutions can be performed more efficiently (see Appen-
dix A). It is also possible to apply more general constraints
to any point on the snake as is described in (Terzopoulos
and Qin, 1994).
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In the formulation above, the updated stiffness matrix
only indicates which degrees of freedom of the snake are
constrained, it does not contain any constraint values.
These are recorded in the system force vector. As a result,
the constraint values may be updated dynamically during
snake deformation. Hence, the user can move the con-
straint points around the image plane to refine the object
boundary as the snake is deforming. This property is very
useful when integrating snakes with live wire. While a
snake is deforming, additional hard constraints may be
imposed on the snake to restrict its deformation. Because
these constraints are unknown before the snake is instanti-
ated, they may be incorporated on-the-fly using reaction
forces on the system force vector without changing the stiff-
ness matrix. However, small time steps are required to
ensure the stability of the snake. In our implementation,
we create a new snake from the current snake plus the hard
constraints, since the LDLT factorization is fast.

Hard constraints play very important roles in capturing
the intricate details and bridging gaps along object bound-
aries in image segmentation. For instance, to segment the
bladder from an MR image of a female abdomen shown
in Fig. 8, neither the live wire (Fig. 8(a)) nor its correspond-
ing, instantiated dynamic snake (Fig. 8(b)) would be able to
capture the intricate details indicated by the rectangle,
which require additional seed points (Fig. 8(c)). With all
the seed points imposed as hard constraints, the corre-
sponding snake accurately captures the details without

Fig. 8. Segmenting the bladder in an MR image of a female abdomen.
Neither the live wire (a) nor its corresponding dynamic snake (b) would be
able to capture the intricate details indicated by the rectangle without
additional live wire seed points (c). (d) With all the seed points naturally
imposed as hard constraints, the corresponding snake accurately captures
the fine, intricate details without any further user intervention. (e) Hard
constraint point 1 is deliberately moved far away from the desired bladder
boundary to illustrate the adjustment capability. (f) Releasing the hard
constraints will lose the details.

Fig. 9. Segmenting the corpus callosum in an MR head image of a human
volunteer. (a) The live wire snaps to the nearby strong edge. (b) An
additional seed bridges the missing boundary. (¢) The corresponding snake
with the seed points naturally imposed as hard constraints nicely captures
the desired object. (d) When releasing the hard constraints, the strong
image force in the region of region A will gradually drive the snake away
from the desired boundary, while, in region B, the snake will become
insufficiently peaked due to its internal energy.

any further user intervention as shown in Fig. 8(d). Hard
constraint points may be adjusted to refine the object
boundary. For illustration purposes, hard constraint point
1 has been deliberately moved far away from the desired
bladder boundary in Fig. 8(e). Releasing the hard con-
straints will lose the details as shown in Fig. 8(f).

The desired object boundary might be unclear or even
missing in many clinical images. For example, in segment-
ing the corpus callosum in an MR head image of a human
volunteer, the live wire snaps to the nearby strong edge
9(a), and additional seed points are required to bridge the
missing boundary 9(b). These seed points can be naturally
imposed as hard constraints on the corresponding snake,
which nicely captures the desired object in Fig. 9(c). When
releasing the hard constraints, the strong image force in
region A (see Fig. 9(d)) will gradually drive the snake away
from the desired location, while the snake will become
insufficiently peaked in region B due to its internal energy.

5.1. Static vs. dynamic constraint integration

We have argued that a hard constraint mechanism is
crucial in practical image segmentation. Live wire generally
requires seed points at the critical, complicated locations
where the desired boundary is twisted, unclear, weak or
even missing. These seed points, interactively provided by
the user to guide the live wire, capture the user’s expert
prior knowledge about the desired object boundary, and
they can naturally be imposed as hard constraints on the
snake that is then instantiated from the complete live wire
trace. We refer to this form of livewire-snake integration as
static integration — once the live wire result is used to
instantiate a snake, the segmentation process continues
using only the constrained, user-controlled snake.

A more dynamic constraint integration “mode” is often
useful — once the live wire trace between the last seed point
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Fig. 10. Using United Snakes in dynamic mode to segment neuronal EM images. (a) Live wire boundary showing three seed points and free point
(rectangle indicates a problem area). (b) Open snakes dynamically generated from the live wire traces and constrained by seed and free points. (¢) Third

snake corrected in the problem area using the mouse.

and the free point is formed, a corresponding open snake
with constraints at the seed point and the free point is
instantiated and set in motion. When the free point is cho-
sen and collected as a seed point, this open snake is merged
with the snake (if any) instantiated from previous live wire
traces. All seed points are automatically applied as con-
straints. Fig. 10 illustrates this process where “+” indicates
the current free point. The live wire and snake results are
shown separately in the neuronal EM images in Figs.
10(a) and (b), respectively. Since the snake is automatically
set in motion, the user may use the mouse-controlled
springs to adjust it in any problematic areas along the
snake trace (Fig. 10(c)).

6. Applying United Snakes

In this section, we apply United Snakes to several differ-
ent medical image analysis tasks, demonstrating the gener-
ality, accuracy, robustness, and ease of use of the tool.

6.1. Segmenting neuronal dendrites in EM images

A neuronal dendrite is the receiving unit of a nerve cell.
The area of contact between the dendrites of different cells
is called a synapse and is located on the dendritic spines. In
humans, morphological changes in dendritic spines are
seen with aging and with diseases that affect the nervous
system, such as dementia, brain tumors and epilepsy (Carl-
bom et al., 1994). Detailed anatomical models of dendritic
spines and their synapses will provide new insights into
their function, thus providing better opportunities to
understand the underlying causes and effects of these dis-
eases. To build such models, the dendrite must be seg-
mented from the surrounding tissue in positive electron
micrography (see Carlbom et al., 1994 for a detailed
description of how snakes are used in reconstruction of
3D nerve cell models from serial microscopy). Here, we
are interested in localizing nerve cell membranes, which
appear dark in positive micrography.

In the United Snakes system, the user begins an image
segmentation task using a live wire. An initial seed point
is placed near the boundary of the object of interest. As
the cursor, or free point, is moved around, the live wire,
or trace, is interactively displayed from the seed point to

Fig. 11. Using United Snakes in static mode to segment neuronal EM
images. (a) Approximate live wire boundary using just three seed points
(rectangle indicates a problem area). (b) Additional seed points can
improve live wire’s accuracy. (c) Instantiated from the live wire traces in
(b), the snake tolerates live wire errors and locks on cell boundary without
further user interaction. (d) Instantiated from the live wire traces in (a), the
snake “sticks” in the problem area, but it is easily adjusted (e) using the
mouse. (f) Snake adjustment capability illustrated by moving constraint
point 2.

the free point. If the displayed trace is acceptable, the free
point is collected as an additional seed point. For example,
we can capture an approximate cell boundary in Fig. 11(a)
with just three seed points.

The live wire tends to stick to the object boundary using
the seed points as a guide. The trace between the two adja-
cent seed points is frozen. The user has no further control
over these traces other than backtracking. In order to gen-
erate a more accurate result in the area indicated by a rect-
angle, more seed points may be placed as in Fig. 11(b).
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Although the live wire boundary is somewhat jagged and
exhibits some small errors, it is in general as accurate as
manual tracing, but more efficient and reproducible.

Next, we instantiate a snake from the live wire-gener-
ated boundary and use the seed points to constrain it.
The user may select a shape function for the snake which
is suitable for the object boundary. In our cell segmenta-
tion example, if the live wire result with five seed points
is used to instantiate a finite difference snake, it is able to
tolerate the live wire errors and very quickly and accurately
lock onto the cell boundary without any further user inter-
action (Fig. 11(c)). Using the live wire result with three seed
points, the snake becomes “stuck” in the problematic area
(Fig. 11(d)) due to the live wire-generated boundary errors.
However, this situation can be easily remedied using the
mouse spring (Fig. 11(e)). Furthermore, as the snake is
deforming, the hard constraints may be adjusted to refine
the snake boundary. In Fig. 11(f), for example, constraint
point 2 is moved to illustrate this snake boundary adjust-
ment capability. By contrast, it is not nearly as easy to
adjust a seed point in the live wire algorithm.

In summary, the information from live wire including
the user guidance and expert prior knowledge is fully uti-
lized by the snake; the snake very quickly locks onto the
image features of interest with reasonable tolerance to mis-
takes in the live wire traces.

6.2. Dynamic chest image analysis

The aim of the dynamic chest image analysis task is to
show focal and general abnormalities of lung ventilation
and perfusion based on a sequence of digital chest fluoros-
copy frames collected over a short time period (typically
about 4 s) (Liang, 2000; Liang et al., 1997a,b, 1998, 2001,
2003). The project uses only plain X-ray fluoroscopy for
the ventilation and perfusion studies; the radiation dose
to patients is low and, unlike a nuclear medicine scan, no
preparation is required before the examination and radio-
active isotopes are unnecessary. The information gleaned
from these images is helpful in several aspects of cardiotho-
racic radiology. Diseases directly related to the parameters
being measured include pulmonary embolism, pulmonary
emphysema, cardiac failure, congenital heart disease and
other diseases (tumors, obstructive lesions or infections)
which may change pulmonary ventilation and/or perfu-
sion. The shapes and motions of the lung and heart give
an indispensable clue to ventilation and perfusion examin-
ations. Therefore, an essential first step for ventilation and
perfusion analysis is the delineation of the lungs and the
heart from each frame in a chest image sequence. The Uni-
ted Snakes system has been used for this purpose. Typically
most of the user interactions to initialize and edit the snake
are applied to the first image of the sequence only. The
resulting snake is then propagated and deformed through
the remaining frames of the image sequence.

We employ the dynamic integration mode, which was
described in Section 5.1, to delineate the lung boundaries

c

Fig. 12. Dynamic lung delineation with United Snakes. (a) An automat-
ically instantiated Hermite snake. (b) United Snakes result for the left lung
with three seed points. (c) The final result for both lungs. (d) Releasing
hard constraints except those at both lung apices for lung motion tracking.

interactively for the first image in the sequence. Fig. 12(a)
shows the first dynamically instantiated Hermite snake
with two end points (seeds) applied as hard constraints.
Three seed points are sufficient for delineating the left lung
(Fig. 12(b)), similarly, for the right lung shown in
Fig. 12(c).

In the dynamic integration method, all seed points are
automatically applied as hard constraints. Although hard
constraints can be dynamically adjusted, for motion
tracking it is not convenient to perform hard constraint
adjustments in each frame. Therefore, the United Snakes
system allows the user to add or release hard constraints
dynamically. The edge information at the lung apex is
very weak and there is no observable motion in quiet
breath. Consequently, it is desirable to maintain a hard
constraint there. All other hard constraints are released
for lung motion tracking. Fig. 12(d) shows a Hermite
snake with the first seed imposed as hard constraint for
each lung.

We apply the snake motion tracking mechanism on the
entire image sequence, resulting in the registration of the
lung from one frame to another. Since the first seed is
applied as hard constraint, the snake can firmly stick at
the apex, although the edge information there is rather
weak. Fig. 13 illustrates the tracking result for every fifth
image.

In the case of the heart, we first employ the static inte-
gration method for heart boundary tracing with the B-
spline shape function in the first image. A least squares
approximation to the initial curve shown in Fig. 3(b) with
a cubic B-spline with 5 knots can be used as an initializa-
tion to a B-snake in Fig. 3(c). A hard constraint may be
further imposed on control polygon node 3 to effectively
bridge the gap along the heart boundary. The resulting
B-snake for the first frame (Fig. 3(d)) is then used to track
the heart motion through the whole image sequence (see
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d Frame 20

h Frame 40

i Frame 45 i Frame 50 k Frame 55
Fig. 13. Lung motion tracking result for every fifth frame.
Fig. 14). Since, in this patient orientation, there is no signif-  node 3. In the case of cardiac motion tracking, the hard

icant motion with the missing cardiac boundary, it is desir-  constraint is not only effective for single images but also
able to apply a hard constraint on the control polygon  for the entire image sequence.

Frame 15 Frame 20

i Frame 45 j Frame 50 Kk Frame 55

Fig. 14. Cardiac motion tracking result for every fifth frame.
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Fig. 15. Quantifying growth plates in MR images. (a) An MR growth plate image. (b) The live wire results. (c) The United Snakes results.

6.3. Quantifying growth plates in MR images

The aim of the growth plate image analysis task is to
determine the right time for surgery for patients with
abnormal growth of the legs. To this end, the four tiny
(essentially horizontal) lines in the image (Fig. 15(a)) must
be detected to quantify the growth plate.

In this scenario, it is difficult for the user to trace an ini-
tial contour for a snake manually because of the small size

Fig. 16. Real-time isolation of the breast region in mammograms from a
3691 x 6466 pixel image using only three seed points.

of the lines and the small distance between each pair of
lines. However, live wire can be used to generate quickly
an acceptable snake initialization with just two or three
seed points as shown in Fig. 15(b). In the final results
shown in Fig. 15(c), two hard boundary conditions are
applied on each of four finite difference snakes.

6.4. Isolating the breast region in mammograms

The goal of the mammogram project is to use pattern
recognition techniques to detect abnormalities in the breast
tissue. The mammograms we are handling are very large
with a typical resolution of 3500 x 6500 pixels, requiring
about 30 MB of disk space. For effective and efficient
abnormality detection, it is essential to isolate the breast
region from the background (Ojala et al., 2000, 2001).
For instance, the original mammogram in Fig. 16 has a res-
olution of 3691 x 6466. In United Snakes, we can achieve
the real-time interactive segmentation of the breast region
on the original mammogram with only two or three seed
points using the truncated image pyramid technique pro-
posed in Section 4.2.

7. Discussion and conclusion

It is concluded in (Falcao et al., 1998) that the main
goals of research in interactive segmentation methods
are (i) to provide as complete control as possible to
the user of the segmentation process while it is being exe-
cuted and (ii) to minimize the user’s intervention and the
total user time required for segmentation. The entire seg-
mentation process may be thought of as consisting of
two tasks: recognition and delineation. Recognition deter-
mines roughly where the object (boundary) is, while
delineation defines precisely the spatial extent of the
object region/boundary in the image. For practical appli-
cations, we have found that an additional task — refine-
ment — 1s essential. The errors in reproducibility occur
mostly in the vicinity of seed points (Mortensen and Bar-
rett, 1999). In United Snakes, both live wire traces and
hard constraint points can be interactively adjusted for
refinement. Furthermore, dynamically instantiated snakes
can tolerate the live wire errors and thus reduce the
number of the seed points which are interactively given
by the user. In other words, United Snakes provides
more complete control to the wuser while further
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minimizing the user’s intervention in the interactive seg-
mentation process.

In summary, our United Snakes framework unites sev-
eral snake variants with live wire to provide a general pur-
pose tool for interactive medical image segmentation and
tracking. The union of these techniques amplifies the effi-
ciency, flexibility and reproducibility of the component
techniques. The United Snakes technique offers more con-
trol for relatively less user interaction. As it quickly locks
onto the image features of interest with reasonable toler-
ance to errors in live wire, the snake fully exploits the user
guidance and expert prior knowledge captured by the initial
live wire trace and the seed points. We have demonstrated
the generality, accuracy and robustness of United Snakes
in applications ranging from the segmentation of neuronal
dendrites in EM images, to the analysis of dynamic chest
images, to the quantification of growth plates, to the isola-
tion of the breast region in mammograms, among other
examples. We believe that United Snakes are in several ways
superior to live wire or snakes alone.

We the creators of the United Snakes, in order to form a
more perfect union of snake technologies, plan to incorpo-
rate within our framework, affine cell image decomposition
methods for snake topological adaptability (Mclnerney
and Terzopoulos, 2000), advanced snake motion tracking
mechanisms (Terzopoulos and Szeliski, 1992; Blake and
Isard, 1998), generic hard constraint mechanisms (Fua
and Brechbiihler, 1997; Fua, 1997), automatic learning
and adaptation of shape functions to specific images, and
other snake techniques. We anticipate that such efforts will
further enhance the effectiveness of this image segmenta-
tion tool.
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Appendix A. Finite element Snakes formulation

The two coordinate functions x(s,¢) and y(s,¢) of the
snake v(s, ) are independent, we shall develop the finite ele-
ment formulation and the corresponding matrix equations
in terms of only one component x(s,#). An identical form
will be assumed for component y(s, r). We apply Galerkin’s
method to the Euler-Lagrange equation for x(s, ?):

Hor 775 s \"as) T Pa) "I T
which expresses the necessary condition for the snake at
equilibrium. The average weighted residual is

o[ (Y E ()
), e e T e \%es) Tae \Pa) T IV

x w(s) ds =0, (A.2)

(A.1)

where w(s) is an arbitrary test function. By performing inte-
grations by parts once for the third term and twice for the
fourth term of (A.2), we arrive at the weak formulation of
the snake model:

L o' Lo L fow ox
/Ow,ua—t2 ds—i—/0 wis, ds—f—/0 <a—saa—s>ds

Lro*w d'x L
_ _ A.
—|—/0 (8s2 aS2>ds /0 wgds+b=0, (A.3)
where
x o[ ox\ ow o]
b= [‘W“WW& (/’a—) ‘al’@h (A4)

are the boundary conditions at the two boundary points,
s =0 and s = L. We approximate x(s, ) as

x(s,£) = N(s)u(?), (A.5)

where IN(s) = [Ni(s), Na(s), ..., N,(s)] are the shape func-
tions and u(7) = [uy(¢), us(?), . . ., u,(1)]" are the n nodal vari-
ables (degrees of freedom) of the snake model, implying the
derivatives of x(s, ) are

Ox Ni & ox ON  x N
2 w0 % st e et

In Galerkin’s method, the arbitrary test function w takes
the form

(A.6)

w = N, (A.7)

where N are the same shape functions as in (A.5), and ¢ is
an arbitrary vector. As w is a scalar, we have

w=w" =¢'N" (A.8)
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Substituting (A.5)—(A.8) into (A.3) yields the snake equa-
tions of motion

Mii + Cit + Ku — F + P = 0, (A.9)

where M is the mass matrix, C is the damping matrix, K is
the stiffness matrix, F is the force vector, and P is the
boundary forces, defined as follows:

L
M:/ NTuN ds, (A.10)
0
L
C:/ NT)N ds, (A.11)
0
K =K, + Ky, (A.12)
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Eq. (A.9) gives the finite element formulation for the whole
snake. To achieve acceptable accuracy in the finite element
approximation, the integration domain should be discret-
ized into a number of small subdomains, resulting in the fi-
nite element mesh. That is, the snake contour is divided
into small segments (elements), each of which can still be
considered a snake. Applying (A.9) to an element e, we
have M°i® + Ca° + K°u® — F° + P° = 0, where M° is the
element mass matrix, C° is the element damping matrix,
K¢ is the element stiffness matrix, F° the element force vec-
tor, and P° the element boundary forces applied to the
boundary points of the element. Assembling the element
matrices results in the system matrix motion equation (4).
In a closed snake, the boundary forces will cancel each
other. In an open snake, the boundary conditions may be
assumed to be zero at the two ends. However, for general-
ity and clarity, we introduce g for the external force vector.
To solve the motion equation (4), we replace the time
derivatives of u with the backward finite differences

i = (u(t+At) _ 2u(t) + u(tht))/(At)Z’ 0= (u(t+At) o u(t))/At7

where the superscripts denote the quantity evaluated at the
time given in the parentheses and the time step is Az. This
yields the update formula

Au2) — pa® +eul™d) g, (A17)

where A = M/(Ar)> 4+ C/At +K and b =2M/(Ar)> + C/At
and ¢ = —M/(A7)>. Because A is symmetric and banded,
it can be economically saved in skyline storage, and effi-
ciently factorized uniquely into the form A = LDLT,
where L is a lower triangular matrix and D is a diagonal

matrix (Bathe and Wilson, 1976). The solution u’ * 29 to
(A.17) is obtained by first solving Ls=bu® + cu'’ 2"
with forward substitution, then LTu=D"'s with back-
ward substitution. Since A is constant, only a single fac-
torization is necessary. Therefore, at each time step only
the forward/backward substitutions are performed to
integrate the snake equations of motion forward through
time.
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