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Image Analysis Using Multigrid Relaxation Methods

DEMETRI TERZOPOULOS, MEMBER, IEEE

Abstract—Image analysis problems, posed mathematically as varia-
tional principles or as partial differential equations, are amenable to
numerical solution by relaxation algorithms that are local, iterative,
and often parallel. Although they are well suited structurally for im-
plementation on massively parallel, locally interconnected computa-
tional architectures, such distributed algorithms are seriously handi.
capped by an inherent inefficiency at propagating constraints between
widely separated processing elements. Hence, they converge extremely
slowly when confronted by the large representations of early vision.
Application of multigrid methods can overcome this drawback, as we
showed in previous work on 3-D surface reconstruction. In this paper,
we develop multiresolution iterative algorithms for computing lightness,
shape-from-shading, and optical flow, and we examine the efficiency of
these algorithms using synthetic image inputs. The multigrid method-
ology that we describe is broadly applicable in early vision. Notably, it
is an appealing strategy to use in conjunction with regularization anal-
ysis for the efficient solution of a wide range of ill-posed image analysis
problems.

Index Terms—Image analysis, inverse problems, lightness. multigrid
relaxation, multiresolution algorithms, optical flow, parallel algo-
rithms, partial differential equations, shape from shading, variational
principles.

I. INTRODUCTION

ARIATIONAL principles and partial diffential equa-

tions have played a significant role in the mathemati-
cal formulation of early visual information processing
problems (representative examples include [1], [5], [7],
[12], [171, [191, (23], [25]-29], [33], [34], [41]-[44],
[46]). An attractive feature of variational and differential
formulations, once discretized, is the possibility of com-
puting their solutions by numerical relaxation methods.
These iterative methods require only local computations,
which can usually be performed in parallel by many lo-
cally intercommunicating processors distributed in com-
putational networks or grids.

Local, parallel algorithms are appealing in the context
of early vision. They offer a means of attaining high per-
formance in this extremely compute-bound task, while at
a certain level of abstraction they do not appear incom-
patible with the apparent structure of sophisticated biolog-
ical vision systems [3], [38], [46]. Moreover, they are
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suitable for implementation on massively parallel com-
puters. Such computers, which will certainly proliferate
as VLSI technology advances, promise great processing
power through the concurrent use of numerous simple and
locally interconnected processing elements, rather than
through the sequential use of a few fast, general purpose
processors [4], [24].

The desired solutions to many image analysis problems
possess certain global characteristics (e.g., consistency,
coherence, etc.) that are formally manifested in the vari-
ational principle or associated partial differential equation
formulations.' Given only local interconnections among
processors, however, global characteristics must evolve
indirectly, typically through the iterative propagation of
visual constraints across the grid network. Indirect prop-
agation can lead to substantial computational inefficiency
in early vision applications, where the computational grids
tend to be extremely large. Convergence of the iterative
process is often slow, and this severely erodes the compu-
tational power of massive parallelism.’ Indeed, for fine
discretizations on large grids, excruciatingly slow conver-
gence rates have handicapped iterative algorithms for
computing lightness ([5]; see also [25]), shape-from-
shading [29], [39], optical flow [27], [33], 3-D surfaces
[19], [41], [42], and other visual reconstruction problems.

Since spatial locality of computation is dependent on
spatial resolution, local (e.g., nearest neighbor) compu-
tations on a coarse grid over a given region are analogous
to more global computations on a fine grid over the same
region. This suggests the possibility of counteracting the
sluggishness of global interactions by deploying local it-
erative processes over a multiresolution hierarchy of grids.
This is the basis of the multigrid relaxation methods which
are gaining popularity in applied numerical analysis [20].
The computational structure of multigrid methods bears
an interesting analogy to the multiresolution nature of spa-
tial frequency channels in the human early visual system
[6], and it is similar to pyramid structures for image pro-
cessing [37].

'Variational and differential formulations can be related through the Eu-
ler-Lagrange equations of the calculus of variations, given appropriate con-
tinuity and symmetry (or self adjointness) conditions [ 14].

’It is possible to accelerate basic Jacobi (parallel) and Gauss-Seidel (se-
quential) relaxation methods so that fewer iterations are generally required
to obtain solutions. However, practical accelerated methods such as succes-
sive overrelaxation, Chebyshev semi-iteration, alternating direction im-
plicit methods, and even the conjugate gradient method, use global com-
putations to determine the acceleration parameters [21]. Aside from the
greater per-iteration complexity of these globally accelerated methods, in a
local, parallel implementation the communications costs of performing the
global operations neutralize any potential gains from acceleration.

0162-8828/86/0300-0129$01.00 © 1986 IEEE



130

In earlier work, we developed an efficient surface re-
construction algorithm based on multigrid relaxation
methods [41], [42]. We suggested, as has Glazer [18], that
multigrid methods are broadly applicable in low-level
computer vision.- After a brief overview of multigrid
methodology, we apply it to three other vision problems:
the well-known problems of computing lightness, shape-
from-shading, and optical flow from images. Novel mul-
tiresolution algorithms are developed for each problem,
and the algorithins are shown empirically to offer order-
of-magnitude gains in efficiency over their conventional,
single-level counterparts. Finally, we discuss the approach
of the paper within a broader theoretical perspective which
unifies the applications.

II. MuLTIGRID METHODOLOGY

Pioneering investigations into multigrid methodology
include the work of Fedorenko [15], Bakhvalov [2], Brandt
[9], [10], and Nicolaides [35]. It has been applied to many
boundary value problems (see [8] for an extensive bibli-
ography) and there has also been some development in the
context of variational problems [11], [35].

A. Mulrigrid Relaxation Methods

Multigrid relaxation methods take advantage of multiple
discretizations of a continuous problem over a range of
resolution levels. The coarser levels trade spatial resolu-
tion for direct communication paths over larger distances.
Hence, they effectively accelerate the global propagation
of information to amplify the overall efficiency of the it-
erative relaxation process.

The inherent computational sluggishness of local itera-
tive algorithms can be studied from a spatial frequency
perspective. A local Fourier analysis of the error function
(or, more conveniently, the dynamic residual function)
from one iteration to the next shows that high-frequency
components of the error—those components with wave-
lengths on the order of the grid spacing—are short-lived,
whereas low-frequency components persist through many
iterations [10]. Hence, common (L, or L_) error norms
decrease sharply during the first few iterations, so long as
there are high-frequency components to be annihilated,
but soon degenerate to a slow, asymptotic diminution when
only low-frequency components remain (see Fig. 1). This
suggests that while relaxation is inefficient at completely
annihilating the error function, it can be very efficient at
smoothing it. From this point of view, the grid hierarchy
enables the efficient smoothing properties of relaxation to
be exploited over a wide range of spatial frequencies.

Empirical studies of model problems (Poisson’s equa-
tion in a rectangle) indicate that multigrid methods can
converge in essentially order O(N) number of operations,
where N is the number of nodes in the grid [10]. This can
be compared to typical complexities of O(N?) operations
for the solution of model problems by standard (single
level) relaxation. Therefore, in image analysis applica-
tions, where N tends to be very large (order 104—106, or
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more), multigrid methods offer potentially dramatic in-
creases in efficiency over standard relaxation methods.

The multiresolution visual algorithms developed in this
paper combine several features: 1) multiple visual repre-
sentations covering a range of spatial resolutions, 2) local
iterative relaxation processes that propagate constraints
within each representational level, 3) local coarse-to-fine
extension processes that allow coarser representations to
constrain finer ones, 4) fine-to-coarse restriction pro-
cesses that allow finer representations to constrain and
improve the accuracy of coarser ones, and 5) (recursive)
coordination schemes that enable the hierarchy of repre-
sentations and component processes to cooperate towards
increasing efficiency.

In multigrid methods, the intralevel processes usually
are basic relaxation methods such as Gauss-Seidel or Ja-
cobi relaxation, the extension processes involve local La-
grange (polynomial) interpolations, and the restriction
processes involve local averaging operations. The exact
form of these operations is problem-dependent.

B. Discretization

The intralevel relaxation processes can be derived by
local discretization of the continuous image analysis prob-
lems. The finite element method [40] can be applied di-
rectly to variational principle formulations, while the finite
difference method [16] may be applied directly to the par-
tial differential equation formulation.

The basic idea behind the finite element method is that
a global approximation can result from interactions among
many very simple local approximations. This is accom-
plished by tessellating the continuous domain into a num-
ber of polynomial elements, whose dimensions depend on
a fundamental size h. The degrees of freedom of the local
polynomials define a set of element nodal variables. The
continuous functional is then expressed as a discrete sum-
mation over all the element contributions. In the finite dif-
ference method, typically a grid of nodes with spacings
proportional to a parameter 4 is set up over the domain.
The differential operator is then replaced by finite differ-
ence equations involving nodal variables at neighboring
nodes. The collection of finite difference equations defines
a discrete system which approximates the given differen-
tial equation.

Note that for the case of quadratic variational principles
and, consequently, linear partial differential (Euler-La-
grange) equations, the discrete problems resulting from
both the finite element and finite difference methods take
the form of large and sparse systems of linear equations
A'u" = f" where " is the vector of nodal variables. This
case covers a wide range of vision applications [41]-[43].
A great deal of effort in numerical analysis has been di-
rected to the solution of large, sparse systems—they turn
out to be especially suited to solution by relaxation meth-
ods [21].

C. Multigrid Structure and Coordination
In this paper, a spatially uniform discretization of the
continuous visual problems is employed to obtain uniform
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Fig. 1. Asymptotic reduction by error relaxation. The mean square (dy-
namic residual) error is plotted as a function of the iteration number for
a sequence of (Gauss-Seidel) relaxation iterations of a surface recon-
struction algorithm. The curve exhibits a typical behavior of local itera-
tive methods: convergence is rapid during the first few iterations, but
quickly degenerates to slow asymptotic error reduction.
Z i ¥4 z procedure FMG
a2 e s W u" < SOLVE (1, u", f");
for!/ < 2to L do
fine begin
s LAl IS
—— MG (I, v", f*)
end;
applying the multigrid algorithm
A procedure MG (I, u, g)
if | = 1 then u + SOLVE (1, u, g)
else
begin
fori < 1ton, [while ... ] dou ~ RELAX ([, u, g);
v+ oo u;
de A" "o+ L., (g — A"u);
fori < 1ton,[while...]do MG (Il =1, v, d);
£o1NY. u'—u+f;_|_;{v—l;_,-_1u);
fori + 1tonydo[while...]u+~ RELAX (/, u, g)
end;

Fig. 2. Possible grid organization of a multiresolution algorithm. A small
portion of three levels of the 2:1 multigrid hierarchy is shown. Only
nearest-neighbor interprocessor connections are included.

grids on each level of the multigrid hierarchy. Multigrid
implementation can be further simplified by having a 2:1
decrease in grid resolution between adjacent levels® and
by having the grid nodes of coarser grids coincide with
grid nodes on adjacent finer grids. The resulting regular
hierarchy, a small portion of which is illustrated in Fig. 2,
maps readily, in principle, onto regularly interconnected
VLSI architectures. In a fully parallel implementation each
node represents a separate processing element.

The multiresolution visual algorithms to be described
utilize simple injection /,_,_, for the fine-to-coarse re-
strictions, bilinear interpolation [, _, ., for the coarse-to-
fine extension, and an adaptive multigrid coordination
scheme which was employed successfully in the surface
reconstruction algorithm (see [41]-[43] for details). The
scheme first performs a sufficient number of relaxation it-
erations to solve the coarsest level discrete system
A"u™ = f" to desired accuracy (procedure SOLVE), and
then proceeds to the finest level / = L according to

‘The 2: 1 resolution ratio also appears to be near optimal with regard to
multigrid convergence rates [10].

After n; relaxation iterations (procedure RELAX) have
been performed at level /, MG performs a restriction to
the next coarser level / — 1. It then calls itself recursively
on the coarser level n, times. Finally, it performs an ex-
tension from the coarser level back to level /, following up
with n; more iterations on level /. The equations on the
coarsest level / = 1 may be solved to desired accuracy
with sufficiently many iterations (procedure SOLVE). One
can readily show that when MG is invoked on level [ it
calls RELAX a total of nb"Mn; + n3) times on level A
# 1 and it calls SOLVE né" times on level 1. In general,
most of the relaxation iterations are performed on the
coarser levels [22].

The optional [while . .. ] clauses denote conditions that
may be checked during the computation and used to ter-
minate some iterations. Dynamic conditions, typically
convergence rates measured by error norms, are incor-
porated into adaptive coordination schemes, whereas fixed
schemes are controlled only by the constants n, n,, and
n; [10]. Although adaptive schemes tend to be more effi-
cient in practice, fixed schemes lend themselves better to
theoretical analysis and, moreover, they are easier to im-
plement on distributed local-interconnect architectures
due, in part, to the absence of error norms which require
global computations.
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III. THE LIGHTNESS PROBLEM

The lightness of a surface is the perceptual correlate of
its reflectance. Irradiance at a point in the image is pro-
portional to the product of the illuminance and reflectance
at the corresponding point on the surface. The lightness
problem is to compute lightness from image irradiance,
without any precise knowledge of either reflectance or il-
luminance.

A. Analysis

The retinex theory of lightness and color proposed by
Land and McCann [31] is based on the observation that
illuminance and reflectance patterns differ in their spatial
properties. Illuminance changes are usually gradual and
give rise to smooth illumination gradients, while reflec-
tance changes tend to be sharp, since they originate from
abrupt pigmentation changes and surface occlusions. Horn
[25] proposed a two-dimensional generalization of the
Land-McCann algorithm for computing lightness in Mon-
drian scenes, consisting of planar areas divided into
subregions of uniform matte reflectance.

Let R(x, y) be the reflectance of the surface at a point
projecting to the image point (x, y) and let S(x, y) be the
illuminance at that point. The irradiance at the image point
is given by E(x, y) = S(x, y) X R(x, ¥). Denoting the
logarithms of the above functions as lowercase quantities,
we have e(x, y) = s(x, y) + r(x, y). Applying the Lapla-
cian operator A gives d(x, y) = Ae(x, y) = As(x, y) +
Ar(x, y). In a Mondrian, illuminance is assumed to vary
smoothly so that As(x, y) is finite everywhere, while Ar(x,
y) exhibits pulse doublets at intensity edges separating
neighboring regions. A thresholding operator T can be ap-
plied to discard the illuminance component: T[d(x, y)] =
Ar(x, y) = f(x, y). Hence, the reflectance R is given by
the inverse logarithm of the solution to Poisson’s equation

Ar(x, y) = f(x,y), inQ,

where ) is the planar region covered by the image.

Horn solved the above partial differential equation by
convolution with the associated Green’s function. We in-
stead pursue a local, iterative solution based on the finite
difference method.

Suppose that 2 is covered by a uniform grid with spac-
ing h. We can approximate Ar = r,, + ryy using the order
h* approximations r,, = (rivry.— 2rl; + ri_, )/k? and
ryy = (rljc1 — 2%, + rl;_)/h? to obtain a standard dis-
crete version of Poisson’s equation (rf,,; + ri_,, +
rije1 + rijoy — 4rt)ik* = f'. This denotes a system
of linear equations with sparse coefficient matrix.

Rearranging, the Jacobi relaxation step is given by

h(n+1)

— 1h ho )
Tij =i + i ;"

Ko h 2
+ i+ tpa™ = hf?.j),

where the bracketed superscripts denote the iteration in-
dex. Jacobi relaxation is suited to parallel synchronous
hardware, whereas the Gauss-Seidel relaxation step given
by
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% f‘ff,:'—1("+” = hsz",j
is more suitable on a serial computer and, moreover, re-
quires less storage.

Note the Poisson’s equation Ar = f is the Euler-La-
grange equation for the variational principle associated
with a membrane problem. The solution can be character-
ized as the deflection v(x, y) = r(x, y) of a membrane
subject to a load f(x, y), and it minimizes the potential
energy functional &(v) = | fo3(v} + v?) — fu dx dy [14].
Blake [5] offers an alternative variational principle for
lightness. Posing the lightness problem as a variational
principle permits the direct application of the finite ele-
ment discretization method, which for instance does not
require a uniform discretization of .

B. Results

A four-level multiresolution lightness algorithm (with
grid sizes 129 X 129, 65 X 65, 33 x 33, and 17 x 17)
was tested on a synthesized Mondrian scene consisting of
patches of uniform reflectance, subjected to an illumina-
tion which increases quadratically from left to right. The
original image, which is 129 x 129 pixels in size, and
three coarser-sampled versions are shown in Fig. 3. All
images are quantized to 256 irradiance levels. The grid
functionff‘_j, shown in Fig. 4, was computed by maintain-
ing only the peaks in the Laplacian of rﬁ’J-. Zero boundary
conditions were provided around the edges of the images,
and the computation was started from the zero initial ap-
proximation r}; = 0.

Fig. 5 shows the reconstructed Mondrian which now
lacks most of the illumination gradient. Reconstruction of
the image from the functions shown in Fig. 4 required
33.97 work units.* The total number of iterations per-
formed on each level from coarsest to finest, respectively,
is 142, 100, 62, and 10. In comparison, a single-level light-
ness algorithm required about 500 work units to compute
a solution of the same accuracy at the finest level in iso-
lation. The single-level algorithm requires at least as many
iterations for convergence as there are nodes across the
surface, since information at a node propagates only to its
nearest neighbors in one iteration. The multilevel light-
ness algorithm is much more efficient because it propa-
gates information more effectively at the coarser scales.

IV. THE SHAPE-FROM-SHADING PROBLEM

In general, image irradiance depends on surface ge-
ometry, scene illuminance, surface reflectance, and im-
aging geometry. The shape-from-shading problem is to
recover the shape of surfaces from image irradiance. By
assuming that illuminance, reflectance, and imaging ge-
ometry are constant and known, image irradiance can be
related directly to surface orientation.

*For comparative complexity analyses, the total computational expense
of multigrid methods may be measured in convenient machine independent
units. The basic work unit is defined as the amount of computation required
to perform one iteration on the finest grid in the hierarchy.



TERZOPOULOS: IMAGE ANALYSIS USING MULTIGRID RELAXATION METHODS

133

Fig. 3. Synthesized Mondrian images. These images, input to the algo-
rithm, contain patches of uniform reflectances and a left-to-right illu-
mination gradient. The three smaller images are increasingly coarser
sampled versions of the largest image which is 129 x 129 pixels, quan-

tized to 256 irradiance levels.

Fig. 4. The grid function ff‘_, on each level. These functions were obtained
by maintaining only the peaks in the Laplacian of r}; at each level.

A. Analysis

Let u(x, y) be a surface patch with constant albedo de-
fined over a bounded planar region 2. The relationship
between the surface orientation at a point (x, y) and the
image irradiance there E(x, y) is denoted by R(p, q),
where p = u, and ¢ = u, are the first partial derivatives
of the surface function at (x, y). The shape-from-shading
problem can be posed as a nonlinear, first-order partial
differential equation in two unknowns, called the image-
irradiance equation: E(x, y) — R(p, q) = 0 [26]. Surface
orientation cannot be computed strictly locally because
image irradiance provides a single measurement, while

surface orientation has two independent components. The
image irradiance equation provides only one explicit con-
straint on surface orientation.

Ikeuchi and Horn [29] proposed an additional surface
smoothness constraint and the use of surface occluding
contours as boundary conditions. Since the p-g parame-
terization of surface orientation becomes unbounded at
occluding contours, however, surface orientation was re-
parameterized in terms of the (bounded) stereographic

mapping: f = 2ap, g = 2aq, where a = 1/(1 +
V1 + p* + ).

These considerations are formalized by a variational
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Fig. 5. The reconstructed Mondrian. This is the solution computed after
33.97 work units by the four-level lightness algorithm. Most of the illu-
mination gradient in Fig. 3 has been eliminated.

principle involving the minimization of the functional
&(f, &) = E L(ff +F) + @5+ g) dedy

A
g § L (E(x, y) = R(f, 9T dx dy.
The first integral incorporates the surface smoothness
constraint. The second is a least-squares term which
coerces the solution into satisfying the image irradiance
equation by treating the equation as a penalty constraint
weighted by a factor \. Other variational formulations for
shape-from-shading have been suggested, e.g., [12].

The Euler-Lagrange equations are given by the system
of coupled partial differential equations

Af = ME(x, y) = R(f, g)IR; = 0,
Ag = ME(x, y) — R(f, ®)R, = 0.

Discretizing these equations on a uniform grid with spac-
ing h using standard finite difference approximations
yields the Jacobi relaxation scheme.

I

h(n+1) +h (n)

h (r h
i =fij + NE; = R(fi", gl "R,
g::.j(n+ 1) — §:_:‘;m + R[E‘J - R(f::‘j(fll‘ gi;m)“Rg ]'I.j{f!]‘
‘i‘:-\“ﬂ- o= \5};11.1 *r 5&;'31._: L A TR j(.-‘k.j+]])4 and
8ij = I8-1;+ &w1;+ &i-1 + 8i.j+11/4 are local av-

erages of f" and g" at node (i, j) (a factor of 1/4 has been
absorbed into \), R, = dR/3f, and R, = 0R/dg. On a se-
qQuential computer, it is preferable to use the analogous
Gauss-Seidel relaxation in the multilevel algorithm, due
to its greater stability, faster convergence, and reduced
memory requirements. Appropriate boundary conditions
can be specified at occluding contours in the image.

B. Results

A four-level shape-from-shading algorithm (with grid
sizes 129 X 129, 65 x 65, 33 X 33, and 17 X 17) was
tested on a synthetically generated image of a Lambertian
sphere distantly illuminated from the viewing direction by
a point source. The original image, which is 129 x 129
pixels in size, and three coarser-sampled versions are
shown in Fig. 6. All images are quantized to 256 irradi-
ance levels. For the Lambertian surface, the expression
R(f, g) = max [0, cos i] was employed, where cos i =
[16(ff + 8:8) + (4 = f* — g)(@d — f1 — g)VI(4 + f?
+ g4 + f2 + g))] and where £, and g, are the light
source direction components [29], and analogous expres-
sions for its derivatives R, and R,. The orientation of the
surface was specified around the occluding contour of the
sphere, and by treating the contour itself as a possible ori-
entation discontinuity, the grid functions f and g were al-
lowed to make discontinuous transitions across it. Com-
putation was started from the zero initial approximation f
=g=0.

The solution computed at the four levels after 6.125 work
units are shown in Fig. 7. The total number of iterations
performed on each level from coarsest to finest respec-
tively is 32, 10, 4, and 4. In comparison, a single-level
algorithm required close to 200 work units to obtain a so-
lution of the same accuracy at the finest level in isolation.
As in the case of the lightness problem, the single-level
algorithm requires at least as many iterations for conver-
gence as there are nodes across the surface, since infor-
mation at a node propagates only to its nearest neighbors
after each iteration. Convergence is somewhat faster,
however, because shading information is available at every
node inside the occluding contour to constrain surface
shape according to the image irradiance equation. In any
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Fig. 6. Lambertian sphere images. These synthetic images input to the al-
gorithm show a Lambertian sphere distantly illuminated from the view-

ing direction. The three smaller ima

ges are increasingly coarser sampled

versions of the largest image which is 129 x 129 pixels, quantized to

256 irradiance levels.,

Fig. 7. Surface normals of the Lambertian sphere. The solution at the four
resolutions that was obtained after 6.125 work units is shown.

case, the multilevel shape-from-shading algorithm is again
much more efficient because it enables information to
propagate quickly at the coaser scales.

To obtain a representation of the surface in depth, the
surface normals in Fig. 7 were introduced as orientation
constraints to a four-level surface reconstruction algo-
rithm with identical grid sizes [43]. The normal vectors
were first transformed from the f-g stereographic param-
eterization used in the shape-from-shading algorithm to
the p-q gradient space parameterization used in the sur-
face reconstruction algorithm using the formulas p = —4f/
(f*+ g —4)and g = —4g/(f? + &> —4). Nodes out-
side the occluding contour of the sphere were treated as
depth discontinuities. Fig. 8 shows the surfaces generated
by the algorithm at the three coarsest resolutions. The re-
construction required an additional 8.8 work units.

_;7’;; e o ‘\‘:“._.
1%% 5 ...“:‘::Es‘:‘:‘i\‘{i‘*
AN
RN !
. ()
iy ’ ry ‘
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2 d \__r_.-" \T" \ X

\

Fig. 8. Surface representations of the Lambertian sphere. The depth rep-
resentations on the left were generated by a four-level surface reconstruc-
tion algorithm in 8.8 work units using the normal vectors in Fig. 7 as
orientation constraints. On the right, the orientation constrainis are de-
picted as “‘needles” on the reconstructed surfaces. Only the three coar-
sest levels are shown, since the finest resolution surface is too dense to
render as a 3-D perspective plot.

V. THE OpticaL FLow PROBLEM

Optical flow is the distribution of apparent velocities of
irradiance patterns in the dynamic image. The velocity
field and its discontinuities can be an important source of
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information about the configurations and motions of visi-
ble surfaces. The optical flow problem is to compute a
velocity field from a temporal series of images.

A. Analysis

Horn and Schunck [27] suggested a technique for de-
termining optical flow in the restricted case where the ob-
served velocity of image irradiance patterns can be attrib-
uted directly to small interframe motions of surfaces in
the scene. Under these circumstances, the change in im-
age irradiance at a point (x, y) in the image plane at time
t and the motion of the irradiance pattern can be related
by the flow equation E,u + E,v + E, = 0, where E(x, y,
7) is the image irradiance, and u = dx/dt and v = dy/dt
are the optical flow component functions.

An additional constraint is needed to solve this linear
equation for the two unknowns u and v. If opaque objects
undergo rigid motion or deformation, most points have a
velocity similar to that of their neighbors, except where
surfaces occlude one another. Observing that the velocity
field varies smoothly almost everywhere, optical flow can
be determined by finding the flow functions u(x, y) and
v(x, y) which minimize the functional

&u, v) = o’ Sgn W + u)) + () + v) dx dy

+ Hﬂ (Eu + E,v + E) dx dy,

where « is a constant. The first term is the smoothness
constraint, while the second is a least-squares penalty
expression which coerces the flow field into satisfying the
flow equation. Related variational formulations of the op-
tical flow problem have been suggested (e.g., [13], [33]).

The Euler-Lagrange equations for the functional & are
given by [27]

Eiu + E.Ev
E.Eu + Elv =

Assuming a cubical network of nodes with spacing h,
where i, j, and k index nodes along the x, y, and ¢ axes,
respectively, the following finite difference formulas may
be used to discretize the differential operators:

o’Au — E,E,,
E,E,.

Y

oa’Av —

[Ex]?.j.:c = (Eu-l_;k = E?—I,j.k)s
Ejx = (E,m v —Efjo1,
EX e = % Eljx+1 — ELiD,
M = 5 @ = ),
Ay = %(ﬁﬁj.k = v:‘.j.l-)-
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where

E?,j;k = %(“?—l.j.k + l‘:'.jﬂ,t + u?+l.j.k + “?.;'ul.k)
and

Ef".j.k = i‘(v?-],j,k + U'f'.j+1.k + v{‘.+1,j,k + v?.j—l.k)-

Other approximations are possible, including those sug-
gested by Horn and Schunck which, however, require over
four times the computation per iteration to gain some im-
proved attenuation of high frequency error. Given dy-
namic images over at least three frames, a symmelnc cen-
tral difference formula [E]J!;;, = (2R)E} k41 —
E,J «—1) would be preferable, provided it is stable.

Substituting the above approxlmallon into the Euler-
Lagrange equations and solving for u,J, & and v,), ¢ yields
the following Jacobi relaxation formulas

vh (n]
h o (n+ 1) _ =h (m LV
Uik =l e m a8
lj k
yh {n]
h (n+ 1) _ =h (n} £ L (m
Vij.k SWEpr un [EJ! .,
ik
where
h s E h 2 E h 2 4 2
pijx = ((Elij.o + (E)Ji;0° + 2 o
and

Vi = [EN; i + [EN; Ok + [EVs

The natural boundary conditions of the zero normal de-
rivative are appropriate on the boundaries of surfaces.
They can be enforced by copying values to boundary nodes
from neighboring interior nodes.

B. Results

A four-level optical flow algorithm (with grid sizes 129
X 129, 65 x 65, 33 x 33, and 17 X 17) was tested on a
synthetically generated image of a Lambertian sphere dis-
tantly illuminated from the viewing direction by a point
source. The sphere expanded uniformly over two frames.
The first frame, which is 129 X 129 pixels in size, and
three coarser-sampled versions are shown in the left half
of Fig. 9. The next frame, in which the sphere has ex-
panded is shown in the right half of the figure. All images
are quantized to 256 irradiance levels. The velocity field
was specified around the occluding contour of the sphere,
and by treating the contour as a possible flow field discon-
tinuity, 4 and v were allowed to make discontinuous tran-
sitions across it. The computation was started from the
zero initial approximation u = v = 0.

The solution computed on the three coarsest levels after
4.938 work units is shown in Fig. 10 as velocity vectors in
xy-space. The total number of iterations performed on
each level from coarsest to finest, respectively, is 40, 5, 4,
and 3. In comparison, a single-level algorithm required 37
work units to obtain a solution of the same accuracy at the
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Fig. 9. Lambertian sphere images. These synthetic images input to the al-
gorithms at four resolutions depict a uniformly expanding Lambertian
sphere, distantly illuminated from the viewing direction. Frames for the
first time instant are shown to the left of frames for the second time
instant.
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Fig. 10. Velocity vectors for the expanding Lambertian sphere. The solu-
tion at the three coarsest resolutions that was obtained after 4.938 work
units is shown (the finest-level solution is too dense to depict).

finest level in isolation. Again, the multilevel algorithm is
more efficient because it propagates information quickly
at the coarser scales. Glazer [18] aiso reports improve-
ments consistent with the above with regard to the con-
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vergence rate of a multilevel optical flow algorithm rela-
tive to a single-level algorithm. He employed the Horn-
Schunck relaxation formulas in his implementation.

VI. A METHODOLOGICAL PERSPECTIVE

A primary purpose of image analysis for computer vi-
sion is to reconstruct relevant physical characteristics of 3-
D scenes from their images. This paper has developed ef-
ficient algorithms for three visual reconstruction prob-
lems—the computation of lightness (a 2-D, static prob-
lem), shape-from-shading (a 3-D, static problem), and
optical flow (a 2-D, dynamic problem). However, the ap-
proach can be viewed in broader theoretical perspective.

As inverse mathematical problems, visual reconstruc-
tion problems tend to be ill-posed in that existence,
uniqueness, and stability of their solutions cannot be guar-
anteed a priori [36]. Among the techniques that have been
developed to come to grips with ill-posed problems is the
method of regularization [45]. A major attraction of re-
gularization analysis, from the point of view of the work
in the present paper, is that it leads systematically to well-
posed variational principles which are amenable to effi-
cient solution by multigrid relaxation methods. As a sys-
tematic design strategy for visual algorithms, regulariza-
tion analysis and multigrid methodology, in conjunction,
promise to impact on a broader spectrum of visual recon-
struction problems, including image restoration [17], ster-
eopsis [32], registration [1], motion analysis [46], and so
on.

Regularization achieves its goal by imposing stabilizing
conditions on possible solutions. The most straightforward
conditions are global smoothness constraints. Note that
identical stabilizing functionals impose the smoothness
constraint in both the shape-from-shading and optical flow
formulations. The inevitable occurrence of visual discon-
tinuities raises a crucial computational issue. It is impor-
tant to realize that the iterative algorithms developed in this
paper preserve discontinuities. The discontinuities appro-
priately restrict the propagation of smoothness con-
straints. The theoretical underpinnings of this technique
are based on a generalized “controlled continuity” con-
straint which is developed in [43] and [44].

Another issue of concern is that the regularization of
visual reconstruction problems cannot always be expected
to lead to convex variational principles having a unique
absolute extremum (and no other relative extrema). Un-
fortunately, classical relaxation or gradient descent meth-
ods are not directly applicable to nonconvex variational
principles, since they often get trapped in relative ex-
trema. Stochastic relaxation algorithms (such as simulated
annealing) do not suffer this disadvantage, in principle
[30]. However, since stochastic relaxation searches for ab-
solute extrema with processors that are restricted to local
interactions, it too suffers serious inefficiencies in prop-
agating constraints. Moreover, the nondeterminism of the
local computations exacerbates the slow convergence
rates. The inefficiency may be ameliorated by developing
stochastic multigrid methods.
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VII. ConNcLusiON

Many problems in early vision have been formulated as
variational principles or as partial differential equations.
Such formulations result naturally from the regularization
analysis of ill-posed visual reconstruction problems. Once
discretized, variational and differential formulations are
amenable to numerical solution by iterative relaxation
methods, which readily map into massively parallel com-
puter architectures. Distributed local-support computa-
tions, however, are inherently inefficient at propagating
constraints over the large network or grid representations
prevalent in computer vision applications.

In prior work on surface reconstruction algorithms, we
showed that multiresolution relaxation techniques can
overcome this inefficiency without sacrificing the local-
interconnect nature of the computations. This has been
corroborated in the present paper by applying multigrid
methods to the well-known problems of computing light-
ness, shape-from-shading, and optical flow from images.
For each problem, the novel multiresolution al gorithms are
substantially more efficient than the traditional single-level
versions.

Beyond its success as a (local) convergence acceleration
strategy, multigrid methodology leads to iterative al-
githms that compute mutually consistent visual represen-
tations over a range of spatial scales. Such multiresolu-
tion representations appear to be crucial in effectively
interfacing early visual processing to subsequent tasks
such as recognition, manipulation, and navigation.
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