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Regularization of Inverse Visual Problems Involving
Discontinuities

DEMETRI TERZOPOULOS, MEMBER, IEEE

Abstraci—Inverse problems, such as the reconstruction problems
that arise in early vision, tend to be mathematically ill-posed. Through
regularization, they may be reformulated as well-posed variational
principles whose solutions are computable. Standard regularization
theory employs quadratic stabilizing functionals that impose global
smoothness consiraints on possible solutions. Discontinuities present
serious difficulties to standard regularization, however, since their re-
construction requires a precise spatial control over the smoothing
properties of stabilizers. This paper proposes a general class of con-
trolled-continuity stabilizers which provide the necessary control over
smoothness. These nonquadratic stabilizing functionals comprise mul-
tiple generalized spline kernels combined with (noncontinuous) conti-
nuily control functions. In the context of computational vision, they
may be thought of as controlled-continuity constraints. These generic
constraints are applicable to visual reconstruction problems that in-
volve both continuous regions and discontinuities, for which global
smoothness constraints fail.

Index Terms—Controlled-continuity constraints, discontinuities,
early visien, inverse problems, reconstruction, regularization.

I. INTRODUCTION

HE well-known rendering problem in the field of

computer graphics involves the synthesis of images
from explicit representations of 3-D forms. Conversely,
early computational vision aims at understanding how ex-
plicit geometric representations of the 3-D world may be
reconstructed from 2-D images [3], [24]. Visual recon-
struction leads to inverse mathematical problems. Con-
sequently, it presents formidable theoretical and prag-
matic challenges.

Early vision has traditionally been regarded as an array
of specialized reconstruction processes operating on im-
ages. They include the reconstruction of 2-D image inten-
sity gradient and flow fields, as well as the reconstruction
of 3-D surface depth, orientation, and motion fields. A
broad range of visual reconstruction problems may be un-
ified mathematically as well-posed variational principles
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which characterize optimal approximation problems in-
volving a class of generalized multidimensional spline
functionals [38, Section 6]. These functionals embody ge-
neric smoothness constraints.

The essence of such a unification may be rationalized
from first principles. As is generally the case for inverse
mathematical problems, visual reconstruction problems
tend to be ill-posed in that existence, uniqueness, and sta-
bility of solutions cannot be guaranteed in the absence of
additional constraints. In this regard, constraints such as
smoothness have been useful expressions of generic, a
priori information about possible solutions.

The utilization of smoothness constraints in vision has
often received ad hoc justification that is implicitly based
on computational convenience rather than theoretical con-
siderations. However, a formal basis for similar con-
straints can be found in certain systematic approaches to
the mathematical solution of ill-posed inverse problems,
particularly the regulanization methods pioneered by Tik-
honov [44] and others (see [45] and [28] and references
therein). A very basic form of regularization, namely,
spatial smoothing to suppress detrimental high-frequency
noise, is mentioned by Duda and Hart in connection with
image restoration, a familiar inverse visual problem [13,
Section 7.4]. A broader perspective of regularization the-
ory, as it impacts on early vision, is presented by Poggio
and Torre in their review of the Tikhonov regularization
approach [31].

Through regularization, a wide range of ill-posed visual
reconstruction problems may be reformulated as varia-
tional principles. Tikhonov regularization employs a spe-
cific class of so-called ‘‘stabilizing functionals™ to re-
strict admissible solutions to spaces of smooth functions.
Under nonrestrictive conditions, the resulting variational
principles can be made well-posed within these spaces;
hence, their solutions are effectively computable. Regu-
larization therefore appears to offer a theoretical basis for
the smoothness constraints that have been applied to the
reconstruction problems of early vision (see [38, Section
6] and [31]).

Smoothness constraints have physical validity inas-
much as the coherence of matter tends to give rise to
smoothly varying instrinsic scene characteristics relative
to the viewing distance, over some range of spatial reso-
lution. However, most significant, spatially localized
physical transitions, such as abrupt changes in surface ge-
ometry (e.g., occlusions), surface composition (e.g., tex-
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ture), or illumination (e.g., shadows), lead to discontin-
uities in intrinsic scene characteristics, some of which
persist across all scales. Thus, discontinuities inevitably
play an important role in early visual reconstruction [40].

Standard Tikhonov regularization theory encounters se-
rious difficulties in application to real life visual prob-
lems, since smoothness assumptions clearly do not hold
indiscriminately across visual discontinuities. The diffi-
culty is due to the fact that the quadratic stabilizer func-
tionals prescribed in standard regularization offer no spa-
tial control over their smoothness properties.

As an nstance of standard regularization, the early work
of Terzopoulos [38], [39] in visual surface interpolation
(see also [17]) provides vivid demonstrations of the defi-
ciency of global smoothness constraints—globally smooth
surface interpolation (with quadratic ‘‘thin plate’” stabi-
lizers) destroys surface occlusions and creases (i.e., depth
and orientation discontinuities). It was clearly necessary
to overcome this deficiency in order to compute visible-
surface representations [40]. The computational frame-
work deveioped in [41] and [42] employs a nonquadratic
and spatially noninvariant stabilizer (the thin plate surface
under tension model) to regularize an ill-posed surface re-
construction problem whose basic mathematical state-
ment is reviewed in Appendix A.

Expanding on the underlying motivation for this non-
standard stabilizer, the need to preserve surface depth and
orientation discontinuities, the present paper proposes a
general variational approach to visual reconstruction of
arbitrary dimensionality that can accommodate visual dis-
continuities of arbitrary orders. A class of multidimen-
sional controlled-continuity stabilizers, composed of gen-
eralized spline kernels, is suggested for the regularization
of inverse visual problems. By adjusting a constituent set
of parametric weighting functions, the continuity prop-
erties of these nonquadratic stabilizers can be controlled
with spatial precision to reconstruct localized discontin-
uities.

One can view these more sophisticated stabilizers as
representing controlled-continuity constraints. Not only
do controlled-continuity constraints retain the mathemat-
ical elegance and potency of traditional smoothness con-
straints as applied to continuous problems, but they ex-
tend to the reconstruction of visual discontinuities as well
where global smoothness constraints fail.

[1. STANDARD TIKHONOV REGULARIZATION

To better understand Tikhonov regularization, consider
the textbook regularization example of reliably estimating
point derivatives v,(x;) of a function v (x) given only cer-
tain approximate samples v; of v(x;) forx; = ih, i = 1,
»+ -, N; Nh = 1[2, Section 5.4]. The errors {¢; = v(x))
— v; } ¥, of the approximate data {x;, v; } /_, are assumed
to be independent, normally distributed random variables
with zero mean and variance o°.

Difficulties arise because no matter how small the errors
€; , the differences between the true point derivatives v, (x;)

and the numerical derivatives of the data, say (v; — v;_)/

h, can be arbitrarily large [10]. Since one cannot guar-
antee that the solution will be stable with respect to small
perturbations of the data, numerical differentiation, unlike
numerical integration, is an ill-posed problem.' The above
problem may therefore be approached through regulan-
zation.

The common form of regularization for the numerical
differentiation problem seeks an approximating function
u(x) which minimizes the functional

;2
Aol i

where the subscripts on v denote partial derivatives and A
is a nonnegative regularization parameter [2, Sections 5.3,
5.4]. The desired estimates for the derivatives are ob-
tained as u,.(x;), and these estimates are robust against per-
turbations in the data. When & (&) is small, u(x) is a good
compromise between smoothness in the sense of minimal
stabilizing functional {§ v 2, dx and adhesion to the data in
the minimal sum of squared deviations sense. The above
problem and its variants are relevant to edge detection in
images since robust numerical differentiation is an issue
in this context [32].

Tikhonov proposed a general stabilizer for univariate
regularization, the pth-order weighted Sobolev norm

2 d™v(x)\°
2
”U"p - mgﬂ Siﬂ wm(x) ( dxm ) dx

where the w,(x) are prespecified, nonnegative, and con-
tinuous weighting functions [45, pp. 69-70]. The stabi-
lizer in the above example is a particular instance of
vl forp = 2, wy = w; = 0, and w, = 1.

Tikhonov’s stabilizer can be viewed as characterizing
univariate splines that impose smoothness on the admis-
sible solutions by restricting them to Sobolev spaces of
smooth functions. In fact, minimizing & (v), as given
above, is the variational formulation of the smoothing cu-
bic spline problem considered by Reinsch [33]. Tikhonov
regularization in this simple case is therefore equivalent
to fitting a common univariate cubic spline to the data,
and then using the approximating spline to robustly esti-
mate the desired derivatives.

i N
&) = Su Uix dx + Z:‘-tl [v(x) — Uf]z.

III. MULTIVARIATE REGULARIZATION AS OPTIMAL
APPROXIMATION

Although univariate problems appear in conjunction
with image contours, the bulk of visual reconstruction
problems are multivariate. Two-dimensional problems are
commonplace in the reconstruction of retinotopic repre-
sentations of physical scene characteristics, and a rich va-
riety of higher dimensional problems arise if time is in-
corporated as an ordinary geometric coordinate to
supplement the standard spatial coordinates. The formu-
lation in this paper emphasizes the aforementioned cor-
respondence between regularization and optimal spline

'The surface reconstruction problem discussed in Appendix A is ill-
posed, not merely due to lack of stability, but moreover, in that the solution
cannot be guaranteed a priori to exist nor to be unique.
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approximation and extends uniformly over any number of
dimensions. The abstract theory of optimal approximation
is well developed and a close connection has been estab-
lished with variational principles involving the con-
strained minimization of (semi-)norms in (semi-)Hilbert
function spaces [23].

Let 3C be a lincar, admissible space of smooth func-
tions defined on ®“. Let S(v): 3C — R be a functional
defined on JC which measures the smoothness of an ad-
missible function v(x) € 3 where x = [x, * '+ , x4] €
®“. Furthermore, let ® (v): 3¢ —» ® be a functional on
JC which measures the discrepancy between the function
and given data.

Consider the following variational principle.

VP: Find u € 3C such that

&) = inf &(v),

ve
where the functional
&) = 8(v) + ®(v).

This defines an optimal approximation problem—to find
the smoothest admissible function in JC which is most
compatible with the data. For instance, in the case of vis-
ible-surface reconstruction, u represents a reconstructed
depth function (Appendix A).

The necessary (but, in general, not sufficient) condition
satisfied by the minimizing function u(x) is given by the
vanishing of the first variation 6, which expresses the well
known Euler-Lagrange equations 6& (1) = 88 () + 6@ (u)
= (.

A. Penalty Functionals

The role of ® (v) is to ‘‘penalize’’ the discrepancy be-
tween admissible functions and given data.

Assuming independent, normally distributed measure-
ment errors ¢; with zero means and variances o}, the op-
timal & (v) is a weighted Euclidean norm of the discrep-
ancy between the admissible function and the data ¢;. This
can be written as

N
P) = 4 (&) - af,

where the £; are measurement functionals and the «; are

nonnegative real-valued weights. Ideally, o; = 1/A\o? (see

Section VI-D), but this penalty functional is still useful

when the above assumptions do not hold in the strict

sense,

For visible-surface reconstruction (see Appendix A) and
for other visual problems, the basic measurement func-
tionals of immediate concern are generalized point deriv-
atives of the form

k
L) = D) = — 57

> I TR S
6 enar el J1
3):1 iird xi

+jﬁr=k

Note that for £ = 0, this reduces to the evaluation func-
tional £,(v) = v(x;). It is also possible to incorporate
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integral functionals of the form £;(v) = [g« K;(x) v(x)
dx.

IV. MULTIVARIATE (GENERALIZED SPLINE FUNCTIONALS

To formulate basic multivariate smoothness constraints
for visual regularization, we turn to spline approximation.
Duchon [11], [12] and Meinguet [26], [27] study the in-
teresting properties of the following class of functionals:

d 2
d"v (x)
dx
fl."'zg"inu-:l S{Hd (axi; e axim)

Dy m!
Smdjt+"'+.-"d=mjl! L 7
3"v(x)

2
(a.x-;’ = 6x§‘>

defined on d-dimensional functions v(x), x = [xy, * * ",
xd].z

The positive integer m dictates the order of the partial
derivatives that occur in the functional, which in turn de-
termines the order of continuity that the admissible func-
tions v must possess. Since in a single dimension (d = 1)
the variational principle VP with 8 (v) = |v|3 reduces to
the approximation problem associated with classical
smoothing splines which can be generated with piecewise
polynomials of degree 2m — 1 [1], the functionals |v|,,
can be viewed as generating multivariate generalized
splines.

Generalized spline functionals are invariant under (i.e.,
commute with) translation, rotation, and similarity trans-
formations of the data in ® “. Such invariance properties
are essential in the context of visual reconstruction prob-
lems since, e.g., the solutions to visual reconstruction
problems should not change shape when objects in the
scene translate or rotate parallel to the image plane or
when they approach or retreat parallel to the view direc-
tion [38], [6].

The Euler-Lagrange equations characterizing functions
u(x) which minimize generalized spline functionals are
partial differential equations involving iterated Laplacians
of u(x). The reader is referred to Appendix B for a more
detailed discussion of this and other mathematical prop-
erties of generalized spline approximation problems.

ol

A. Special Cases: Two-Dimensional Surface Splines

In two dimensions (d = 2), the generalized spline func-
tionals can be written as

o (M a"v \°
§Sm2 réﬂ (1> (Bxiﬂ}’""f) dx dy.

The two-dimensional case pertains directly to the problem
of fitting surfaces to scattered data. This mathematical
problem is of considerable concern in numerous applica-

ol =

“These scalar-valued spline functionals can be extended in a natural way
to vector-valued functionals defined on v(x) = [v(x), '+ + | v,(x}] by
replacing the partial derivative expressions with |d™v{x)/ax{ -+ -+ ax¥|.
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tion areas [35] and, notably in vision, to visible-surface
reconstruction.

Surface splines have interesting physical interpretations
involving equilibria of elastic bodies with C™ ™' intrinsic
continuity. The two lowest order cases are of particular
imnterest.

For m = 1, the functional reduces to

v} = Hmz (v + v}) dx dy,

which is proportional to the small deflection energy of a
membrane (e.g., rubber sheet) [9].® The associated Eu-
ler-Lagrange equation is Laplace’s equation, —Au = 0
where Au = u,, + u,,

Form = 2,

vz = SLE (v + ZU%, + ui_,,,) dx dy

18 proportional to the small deflection bending energy of
a thin plate (with zero Poisson ratio) [9]. The associated
Euler—Lagran%e equation is the biharmonic equation A%u

0 where A = u,,, + ZHMW + u,,y,. Duchon [11]
refers to the minimizers of |v|3 as *‘thin plate splines.”’

Physically, the membrane spline characterizes a surface
of C° continuity, a continuous surface which, however,
need not have continuous first (and higher) order partial
derivatives. The thin plate spline is a C' surface, a con-
tinuous surface with continuous first partial derivatives,
which need not have continuous derivatives of degree
greater than one.

As the natural 2-D extensions to the cubic spline, the
thin plate spline |v|3 is a popular surface interpolant [35],
[14]. It has been employed in surface fitting problems such
as the interpolation of airfoils [18], the interpolation of
digital terrain maps [7], the interpolation of meteorolog-
ical fields [46], and in visual surface interpolation [17],
[61. [39].

V. CONTROLLED-CONTINUITY STABILIZERS

The generalized spline functionals are quadratic func-
tionals which specify global smoothness constraints. As
stabilizers in regularization, they do not apply to recon-
struction problems involving discontinuities. A conve-
nient way to control the continuity properties of a gener-
alized spline stabilizer of order m to accommodate this
wider class of problems is to blend it with generalized
splines of lower orders. This leads to controlled-conti-
nuity constraints.

We propose the following class of stabilizing functional
for piecewise continuous regularization:

§ W, (X) 2
M Ji

+otjg=m

. m! @\
B g \axd - ekl T

*Minimization of the true surface area leads to the famous Plateau’s
problem.

P

o3, = 2
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The positive integer p is the highest order generalized
spline that occurs in the functional, and this determines
the maximum order of continuity (C? ~') of the admissible
functions v. The weighting functions w (x) = [wg(x), - - -,
w,(x)] are nonnegative, not necessarily continuous, and
not prespecified, in general.

The weighting functions will be allowed over ®“ to
make jump transitions to zero values. This provides the
capability of selectively introducing specific discontinui-
ties into the solution, a crucial property that will be dem-
onstrated shortly with examples. The possibility of exer-
cising such precise spatial control over the regularized
solution suggests the terms controlled-continuity stabiliz-
ers for the above class of functionals and continuity con-
trol functions for the weighting functions.

Euler-Lagrange equations characterizing functions u(x)
which minimize controlled-continuity stabilizers involve
spatially weighted iterated Laplacians of u(x). These non-
linear partial differential equations are described in Ap-
pendix C.

A. Relationship to Tikhonov Stabilizers

Restricting to the 1-D case, and assuming prespecified
and continuously varying weighting functions w,(x), the
controlled-continuity stabilizers reduce to Tikhonov’s sta-

bilizers
y 2 d"v(x)\’
loll = 2 W(X) dx.
m=10 M

dxm

For positive w,,(x), Tikhonov stabilizers are, in fact, pth-
order weighted versions of Sobolev norms; hence, the ad-
missible spaces JC in which standard regularized formu-
lations to visual reconstruction problems are naturally set
are Sobolev spaces of globally smooth functions [38],
[39].

Tikhonov stabilizers are quadratic, and define linear,
spatially invariant regularization methods. In contrast, the
controlled-continuity stabilizers, which are generally
nonquadratic, define a class of nonlinear and spatially
noninvariant regularization methods.

B. Special Cases: Splines and Surfaces Under Tension

Schweikert [37] introduced splines under tension which
can be made to imitate the behavior of cubic interpolating
splines, while suppressing the extraneous inflection points
that sometimes afflict cubic splines (see also [8]). They
may be characterized as interpolatory functions u(x) that
minimize the functional

5 Gl &
i1

where 7 is a prespecified positive constant, called the ten-
sion. The first term influences the ““length’’ of the spline,
while the second term influences its ‘‘curvature.’’ In-
creasing the tension tends to eliminate extraneous loops
and ripples by reducing the length of the spline.
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The spline under tension is a restricted controlled-con-
tinuity stabilizer ford = 1, p = 2, w(x) = [0, 7, 1].
Because the weighting functions are continuous and pre-
specified, the spline under tension is also a quadratic sta-
bilizer, and it results in linear regularization.

A particular instance of a nonquadratic controlled-con-
tinuity stabilizer has been proposed for the regularization
of the visible-surface reconstruction problem (Appendix
A), ad = 2 dimensional problem that requires a C ! con-
tinuous surface spline [40]-[42]. This is provided by the
p = 2 order stabilizer

v = 5,0 = || oty
M2

{1 = 70, V] @2 + vd)
+ 7(x, ) (% + 2v2, + vh)} dx dy

with w(x, y) = [0, p(x, ¥) [1 — 7(x, Y], p(x, ¥) 7(x, Y)].
The range of p(x, ¥) and 7(x, y) is assumed to be [0, 1],
and they need not vary continuously.

This functional, the natural 2-D extension of the spline
under tension functional, will be recognized as a weighted
convex combination of the thin plate and membrane gen-
eralized spline kernels. The thin plate kernel affects sur-
face ‘‘curvature,’’ while the membrane kernel affects sur-
face ‘‘area.’’ The continuity control functions p (x, v) and
[l — 7(x, y)] may be interpreted physically as spatially
varying surface cohesion and surface tension, respec-
tively. In view of the physical interpretation, solutions to
the variational principle involving this functional can be
thought of as thin plate surfaces under tension.

The above controlled-continuity stabilizer provides the
necessary spatial control over its smoothness properties to
explicitly reconstruct both depth and orientation discon-
tinuities. The stabilizer is controlled as follows. In con-
tinuous regions, p(x, ¥) = 7(x, y) = 1 so that the stabi-
lizer reduces to a thin plate spline and generates a C'
surface. Along orientation discontinuities, p(x, y) = 1
and 7(x, y) = 0, i.e., maximum tension is applied so that
the stabilizer reduces locally to a membrane functional,
thus maintaining only C° continuity and allowing the sur-
face to crease freely. Along depth discontinuities, p (x, y)
= 0, thus deactivating all continuity and thereby allowing
the surface to fracture freely. Fig. 1 shows examples of
reconstructed surfaces and discontinuities using the thin
plate surface under tension stabilizer. The details of these
and many more examples are presented in [41] and [42].

Higher order controlled-continuity stabilizers can be
manipulated analogously to reconstruct smoother surfaces
and a wider range of discontinuities. Consider the case d
= 2,p = 3, and wy(x, ¥) = 0. With the w,(x, y) positive
functions, a C” (i.e., continuous curvature) surface re-
sults. However, curvature discontinuities can be recon-
structed in this surface by setting wy(x, y) = 0 along such
discontinuities in the x, y plane. This locally reduces the
functional to a C' thin plate spline which need not have
continuous curvature. Further, it 1s possible to set wi(x,
y¥) = ws(x, ¥) = 0 along orientation discontinuities which
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Fig. 1. Surfaces and discontinuities reconstructed with a controlled-con-
tinuity stabilizer. {a) Reconstruction of planar surfaces from scattered,
synthetic depth data shown as vertical lines. Surface boundaries are re-
constructed depth discontinuities. (b) Reconstruction of a surface from
synthetic orientation data shown as needles on the surface. Recon-
structed orientation discontinuities occur between the faces and depth
discontinuities bound the surface. (c) Reconstruction of a light bulb from
structured light, range data. The occluding contour is a reconstructed
depth discontinuity.
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must be reconstructed. Finally, all three continuity con-
trol functions can be set to 0 along depth discontinuities
that are to be reconstructed.

VI. DISCUSSION

A. Related Geometric Models

The controlled-continuity stabilizers proposed in this
paper are related to certain geometric modeling primitives
developed in approximation theory and, more recently, in
computer graphics.

Schweikert’s splines under tension have already been
mentioned [37], [8]. The tension in these splines is a
global parameter, however, and does not provide local
control over shape. The basis functions for splines under
tension involve exponentials. Nielson [29] developed »
splines, piecewise polynomial alternatives, one of whose
advantages is that the tension can be set selectively at each
interpolation point.

Pilcher [30] suggested that the idea of splines under
tension can be carried over to surfaces. His proposal in-
volved restricting the area of a tensor product of polyno-
mial splines, and he characterized this as a minimization
problem. Using tensor products of lower dimensional
models to obtain a higher dimensional one is a common
approach. This, however, restricts the method’s applica-
bility to regular data,

The idea of locally contrclling the shape of a continu-
ous curve or surface also appears in the context of
piecewise curve and surface models, such as the B-spline
models [16], notably in the work of Barsky, whose Beta-
spline model contains continuously varying bias and ten-
sion parameters [4]. The data must be specified at set of
control vertices defining surface patches. These vertices
are restricted to a regular lattice. The Beta splines are
piecewise models; changes within a surface patch have no
effect on surface patches further than a certain distance
away.

As we have seen, the abstract theory of spline approx-
imation leads to multidimensional generalizations of the
classical univariate splines [34], [1], not as tensor prod-
ucts, but rather through physical interpretations concern-
ing equilibria of elastic bodies. Hence, the controlled-
continuity stabilizers can be viewed as characterizing
global geometric models which place no restrictions on
constraint arrangement and provide local continuity con-
trol, particularly the capability of introducing arbitrary
discontinuities. This is of paramount importance in visual
reconstruction where we must routinely deal with irregu-
larly located data comprising both constraints and discon-
tinuities.

B. Computational Considerations

A potent approach to solving variational principles
founded on controlled-continuity constraints is to com-
pute a solution as a superposition of basis functions. The
choice of basis, particularly whether it comprises local or
global support functions, is an important consideration. It
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depends on the number of constraints and the nature of
the discontinuities (either prespecified or to be determined
as part of the reconstruction). Moreover, the particular
choice dictates the class of algorithm most suited to com-
puting the unknown coefficients of the superposition, a
critical issue in computational vision.

A global method for computing generalized splines pur-
sued by Duchon [11] (see also [18]) and developed further
in [27] and [46] involves a representation of the solution
as a linear combination of N rotationally symmetric,
global support basis functions, one centered at each data
point (see Appendix D). The basis functions of choice are
the fundamental solutions of the iterated Laplacian ap-
pearing in the Euler-Lagrange equations associated with
the generalized splines. They are no more complicated
than logarithms. Computing the solution requires first
solving a system of linear equations for the unknown coef-
ficients of the linear combination, and then constructing
the superposition of basis functions, restricted to a com-
pact region of interest {} in which the solution 1s contin-
uous. The matrix of the linear system, whose size de-
pends on the number of constraints N, is positive definite,
symmetric, and full. It can be solved by Cholesky facto-
rization with back substitution, a procedure whose effi-
ciency compares favorably to other direct methods [26],
[27].

Local support approximation schemes offer an alterna-
tive to computing a global representation. The finite ele-
ment method is a local scheme that is systematically ap-
plicable to the variational principles arising from the
regularization of inverse visual problems [38], [39]. The
finite element approximation is a linear combination of
the local support basis functions (typically low-order
piecewise polynomials) of finite element spaces, which
may be subspaces of the admissible space JC. The number
of basis functions depends on the number of finite ele-
ments employed to tessellate the continuous domain. The
choice of tessellation is very flexible, but a natural tes-
sellation in visual applications follows the image sam-
pling pattern [38], [39]. The finite element representation
of generalized spline stabilizers also leads to a positive
definite, symmetric system of linear equations that must
be solved for the unknown coefficients. While the size of
the linear system is usually greater than N, its matrix is
sparse due to the local support of the basis functions. This
suggests the use of either direct or iterative sparse matrix
techniques to compute the solution.

In principle, the global method can extend to con-
trolled-continuity stabilizers provided the continuity con-
trol functions are prespecified. For instance, it is possible
to construct, in piecewise fashion, solutions restricted to
continuous regions from constraints contained within such
regions. Restricting the global support basis functions to
arbitrary regions is awkward, however, especially when
the regions are not known in advance and are irregular in
shape. Furthermore, local bases are much better suited to
computing continuity control functions containing jump
transitions to zero since discontinuities may readily
emerge between adjacent elements [41], [42].
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To construct the global solution, the Cholesky algo-
rithm computes a sequence of optimal approximations, as
each data point is accessed in sequence. This has the ad-
vantage that the addition or removal of a single data point
requires relatively little computation to determine the new
global solution, given the current approximation. Its dis-
advantage 1s that the serial, recursive nature of the algo-
rithm appears incompatible with the large-scale parallel-
ism that is characteristic of visual processing. On the other
hand, local iterative schemes such as relaxation methods
of the Jacobi type for solving finite element systems are
readily parallelizable.

Although the global method may be attractive for prob-
lems involving a modest number of constraints, it be-
comes expensive to store and solve an N X N linear sys-
tem with full matrix if N exceeds order 10°-10° or so. In
addition, the system tends to become ill conditioned for
large M. Since early visual processing typically generates
a larger number of constraints (on the order of 10°~10° or
more is not uncommon), the computational expense can
become prohibitive in some machine vision applications.
In contrast, sparse matrix techniques for solving finite ele-
ment equations need store only the nonzero matrix entries
and relaxation methods operate on these entries in place.
Recently, highly efficient multigrid relaxation methods
have been developed in applied numerical analysis. They
have been adapted successfully to the solution of finite
element systems arising from visual regularization [38],
[39], [43]. This class of algorithm was used to compute
the examples of Fig. 1,

One final comment. Since the effort required to obtain
solutions increases sharply with growth in dimensionality
d and order p of the stabilizer, it is prudent to use the
smallest possible dimension and order needed to regular-
ize the problem at hand.

C. Discontinuity Detection with Controlled-Continuity
Stabilizers

We explained how discontinuities of order less than p
may be introduced into the reconstructed solution #(x) by
regulating pth-order controlled-continuity stabilizers.*
More interestingly, it is also possible to reconstruct dis-
continuities, which are not known in advance, as an in-
tegral part of controlled-continuity reconstruction. Math-
ematically, this poses a nonlinear, distributed parameter
identification problem. For example, a discontinuity es-
timation coprocess can detect and localize discontinuities
as the regularized solution is being computed [41].

It is possible to augment the energy functional in the
variational principle characterizing the solution u(x) to
optimally reconstruct the continuity control functions w (x)
according to regularization criteria. The augmented func-
tional takes the form

E(, w) = S(v, w) + @) + D(w)

‘Generally speaking, in the context of d-dimensional pth-order con-
trolled-continuily regularization, a visual discontinuity is a piecewise
smooth d — 1 dimensional hypersurface embedded in ®“. On such a hy-
persurface, there occurs a discontinuous transition in d*u(x)/dn* for some
{0 = k < p where n is the direction normal to the hypersurface.
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where 3 (w) imposes criteria for good discontinuity struc-
ture. The necessary condition for the solution {u, w*} to
this discontinuity identification problem expressed by the
system of Euler-Lagrange equations

6,6 (v, w¥) = 0; 8,6, w¥) = 0.

The discontinuity stabilizing functional $ (w) is an im-
portant consideration. At the very least, it should inde-
pendently penalize each detected discontinuity; other-
wise, an incoherent solution will result [5]. A more
sophisticated version can be implemented as a “‘lookup
table’’ ranking local discontinuity configurations accord-
ing to rather crude ‘‘good continuation’’ constraints [48],
[15], [25], [42], [22]. Better yet, functionals that formally
impose controlled-continuity constraints can be con-
structed from controlled-continuity stabilizers.’

The complexity of the discontinuity identification prob-
lem is exacerbated by the nonquadratic nature of & (v, w)
or, equivalently, the nonlinearity of the Euler-Lagrange
system. A direct solution requires the minimization of a
nonconvex energy functional having multiple local min-
ima.

Iterative methods can be adapted to perform the min-
imization. Given a sufficient number of steps, the global
minimum can be computed stochastically by simulated
annealing [21], [15], [25]. This, however, involves a great
deal of computation in practice. A deterministic ‘‘gradu-
ated nonconvexity’’ method for finding near optima is de-
scribed in [3], but the formulation requires dense data.

Alternatively, one can minimize the full, multiargu-
ment energy functional as a chain of simpler energy func-
tionals over a number of stages, a useful strategy for non-
linear optimization. For fixed w(x), the energy functional
becomes quadratic. Hence, treating the continuity control
functions as fixed parameters during each stage results in
a convex minimization problem for v(x), which can be
solved by (multigrid) relaxation [41]. At the start of each
stage, improved parameter values are computed—either
discretely [42] or continuously [22] (see also [19])—from
the minimum obtained in the previous stage. Final solu-
tions near the global minimum {u(x), w*(x)} evolve over
several stages of this relatively efficient, nonlinear dy-
namic process [42].

D. Correspondence with Bayesian Estimation on
Stochastic Processes

The notion of smoothness in visual regularization is in-
timately connected to prior expectations about the physi-
cal world and the underlying processing of low-level vi-
sual information. Such prior expectations are emphasized
by Bayesian estimation theory. Kimeldorf and Wahba [20]
note that there exist stochastic interpretations of spline ap-
proximation in which the smoothness properties of splines

*Visual discontinuities are recursive in nature, so that  — | dimensional
discontinuity hypersurfaces may contain embedded discontinuity subsur-
faces of order less than 4 — L. Controlled-continuity stabilizers of dimen-
sion & — 1 can thus be employed to recursively characterize the structure
of the jump transitions 1o zero in the d-dimensional continuity control func-
tions w{x).
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correspond to the specification of prior probability mea-
sures over suitable function spaces.

Consider the problem of estimating a real random func-
tion v{x) based on prior information and a finite set of
fixed observations comprising constraints {x;, ¢},
having normally distributed errors {e; = v(x;) — ¢;} |,
assumed independent of v(x), with zero means and vari-
ances Ao;. One can assume for simplicity and without
loss of generality that the observations have zero mean.
The prior information is represented by a prior distribu-
tion on v(x) that is Gaussian with zero mean and co-
variance function K(s, f).

Following [20], it can be shown that, for fixed x, the
estimate u(x) = E[v(x)|c,, -+ , cy], the mean of the
marginal conditional distribution of the unknown v(x),
given the observations, may be written as

u(x) = [Clg = T CNI (K 4 }‘Ez}']
© [K(xy, x), c 0 -, K(xy, 0)

where the N X N matrix K = [K(x;, x;)] and the N X N
diagonal matrix £ = [g/].

However, the Bayesian estimate u(x) corresponds with
the solution to the variational principle resulting from re-
gularization using generalized spline functionals, i.e., the
minimizer of

N
&) = [v|3 + 2 w'—z [v(x) — ]
i=1 )\U;‘

The covariance function K(s, f) corresponds to the repro-
ducing kernel associated with the reproducing kernel Hil-
bert space in which the variational principle is set (see
Appendix D).

Roughly speaking, the above correspondence extends
to the case of controlled-continuity stabilizers. However,
an improper prior distribution is implied in which v (x),
for fixed x, has infinite prior variance. Moreover, the prior
distribution will not be wide-sense stationary, particularly
when the continuity control functions contain jump tran-
sitions to zero, leading to discontinuities in u(x).

E. Correspondence with Filtering

The Bayesian estimation correspondence suggests that
u(x) can also be viewed as a solution to a filtering predic-
tion problem. Indeed, for the case of continuous data ¢ (x)
on R, the generalized spline functionals correspond to
linear convolution filters. To see this, consider the Euler-
Lagrange equation associated with the variational princi-
ple (Appendix B) for the special case a(x) = «, a con-
stant, and ¥ = 0 (note that D% = u):

(—D"A"w(x) + aulx) = ac(x).

A Fourier transformation of the Euler—Lagrange equa-
tion leads to the expression

1, o\
Uw) = (1 = |w|“"’) C(w)
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where W = [w, * * * , w,] is the d-dimensional frequency
domain variable and where U(w) and C(w) denote the
Fourier transforms of u(x) and c¢(x), respectively,

The transfer function in brackets will be recognized as
having the characteristic of a doubly cascaded, d-dimen-
sional, mth-order Butterworth low-pass filter. Letting f =

|ewl Y «, the frequency radius of the filter’s half-amplifi-
cation band is given by f = 1, while the attenuation in
gain for f >> 1 is —40m log,, f dB. Therefore, the effec-
tive half-amplification radius is determined (reciprocally)
by the regularization parameter A where & = A™*", while
the effective rolloff is determined by the order m of the
generalized spline.

An analogous convolution filter interpretation is possi-
ble for the controlled-continuity stabilizers under similar
restrictive conditions. For instance, in the above special
case and with constant w,(x) = w,,, one readily obtains

p

Uw) = (1 it 70

o m=1Q

-1
wmbw!z"‘> Clw).

Although the correspondence with linear convolution
filters may readily be shown to extend to the case of reg-
ularly sampled data over ® ¢ (or over a compact region Q“
with periodic continuation on the exterior), it is important
to realize that the convolution property does not hold for
irregularly scattered data {x;, ¢, };-,. Moreover, all spa-
tial invariance is destroyed when the continuity control
functions w (x) make jump transitions, so that the simple
linear convolution filter interpretation breaks down in the
presence of discontinuities, as one would expect. In the
most general case then, the controlled-continuity stabi-
lizer can be thought of as defining a complex nonlinear
filter whose characteristics vary spatially in accordance
with the stabilizer order p, the regularization parameter
A, the structure of the constraints, and the continuity con-
trol functions w(x).

Intriguing possibilities come to mind for applying con-
trolled-continuity stabilizers to signal processing prob-
lems where standard filtering has been used in the past
(such as for edge detection), as well as in situations where
standard smoothing filters (e.g., Gaussians) would not ap-
ply. An example of the latter is discontinuity preserving
smoothing of noisy, piecewise continuous signals [41].
Another is *‘scale space filtering’’ [47], but on irregularly
sampled signals, with the regularization parameter contin-
uously sweeping the ‘‘bandwidth’’ of the regularizer.

VII. CoNCLUSION

Global smoothness constraints intrinsic to standard
(Tikhonov) stabilizers are inadequate near discontinu-
ities. Since discontinuities play a principal role in inverse
visual problems, less restrictive constraints are necessary
for visual regularization. This paper proposed controlled-
continuity constraints whose smoothness properties may
be regulated spatially to preserve visual discontinuities.
They unify the treatment of regions and boundaries for
the purposes of visual reconstruction or segmentation.
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These generic constraints were formulated as multidimen-
sional controlled-continuity stabilizers. The stabilizers
comprise generalized spline kernels combined with non-
continuous continuity control functions, The latter need
not be prespecified, but can be determined as part of the
variational solution to the inverse problem.

APPENDIX A
THE VISIBLE-SURFACE RECONSTRUCTION PROBLEM

An important reconstruction problem in computer vi-
sion arises in the computation of visible-surface represen-
tations. The task is to reconstruct dense 3-D representa-
tions of the shapes of visible surfaces from initial
measurements provided by multiple specialized low-level
visual processes. These include estimates of surface depth
and orientation, as well as their discontinuities [40]-[42].

Assuming parallel projection onto the image plane for
simplicity, let the true distance from the viewer to visible
surfaces be given by the function Z(x, y) where x and y
are the image coordinates. Over much of the visual field
Z(x, y} is continuous and has continuously varying surface
orientation. In addition, it generally exhibits orientation
discontinuities at surface corners and creases and depth
discontinuities along occluding contours.

Low-level visual processes generate a set of noise cor-
rupted surface shape estimates (i.e., constraints) which
can be expressed in the abstract notation

c; = £;(Zx, ¥) + ¢

where £; denotes measurement functionals of Z(x, y) and
e, denotes associated measurement errors. The visible-
surface reconstruction problem is to reconstruct as faith-
fully as possible from the available constraints {£;,
¢;}Y | the depth function Z(x, y) with an explicit repre-
sentation of its discontinuities.

Measurement functionals for surface reconstruction may
be represented by point evaluation of generalized kth-or-
der derivatives:

akZ(x, ¥)

Li(Zlx, y)) = Aoyt

F=0,1,+ -,k

(i, wi}

The simplest measurement functionals, evaluation func-
tionals of order k = 0, represent local depth constraints

{:EI = Z(II! yl') + Ef . d{.l’j.}‘.*)*

For orientation constraints, the components of the surface
normal n(x, y) = [Z(x, y), Z,(x, ¥), —1] are represented
by order X = 1 derivatives:

CEI = Z_r(-rfs y;) + EI = p(lr\_}"f'}

G = Z}'(xh y) + ¢ = G,y

Visible-surface reconstruction is a fundamentally ill-
posed problem due to the nature of the constraints. First,
the initial measurements are contributed not by one, but
by multiple specialized low-level visual processes. Since
coincident measurements that are even slightly inconsis-
tent will locally overdetermine surface shape, a solution
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need not exist. Second, the measurements are not dense,
but scattered sparsely over the visual field. While they
constrain surface shape locally, they generally do not de-
termine a unique solution. Third, the measurements are
inexact, subject to errors and noise. Because additive
noise of high enough frequency, regardless how small its
rms amplitude, can radically perturb local surface orien-
tation, the solution is unstable with respect to perturba-
tions of the measurements.

APPENDIX B
MATHEMATICS OF (GENERALIZED SPLINE
APPROXIMATION

A. Euler-Lagrange Equations
Consider the variational principle VP with

E(ux) = lv@)|n + Ldrx(x) (D*v(x) — c(x)™

This is the case of continuous data ¢(x) and Lv = D*v
= @*vidx{ - -« x4 forj, + - -+ + j; = k. The vanish-
ing of the first variation 6& (#) = 0 can be shown to yield
the following linear Euler-Lagrange equation:

(— D"A"u(x) + (— Da(x) (D%ux) — Dcx) = 0
where D *u = D*D*u and
a?m
(ax%f' a axff*’)

Z m!
htessrja=m il gyl
denotes the mth-order iterated Laplacian operator [36], a
linear operator. Note that m = 1 yields the simple Lapla-
cian operator

A

A= 2

K=1 9x}
N

For discrete data {D %, ¢;}~,, the second term of the
Euler-Lagrange equation will involve Dirac distributions

(delta functions) and their derivatives, e.g., fork = 0, it
becomes L, o, (u(x) — ¢) 6(x — x;).

B. Hilbert Space Characterization

Variational principles involving generalized splines are
naturally set in Beppo—Levi spaces [11], [27]. The Beppo-
Levi space of order m over ®? is defined as the vector
space of all the functions (i.e., Schwartz distributions) in
®R ? whose partial derivatives (in the distributional sense)
of total order m are square integrable; symbolically,

B"(RY = {v(x)|(@™v/dx] -+ &xI) e L,

forj, + -~ - + j; = m}.

Generalized spline functionals constitute the natural
semi-norms of Beppo-Levi spaces. Equipped with these
semi-norms, B"(®?) is a semi-Hilbert space of continu-
ous functions when 2m > d. The null spaces IU of the

semi-norms are simply the M = (¢*7-') dimensional

spaces of all polynomials { p;} L, over ® ¢ of total degree

less than m [36, p. 60].
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With 8$(v) = ]u]f:I a generalized spline functional, & (v)
in the variational principle VP can, under certain condi-
tions, become a norm in 3¢ = B™(®RY). This guarantees
existence, uniqueness, and stability of the solution u(x)
to VP. A possible set of conditions is that the {£;} ¥,
include evaluation functionals at an 9 -unisolvent set of
points, i.e., a set of M points in ® ¢ which define a unique
polynomial in the null space of the smoothness func-
tional.

Given such a set of M points, an inner product of
B™(RY) is defined by

3] m!

mdj1+....+jﬂ,:mj|! ala .jff!

_ a "u(x) ad"v(x) d
axi .- dx axy - - - Bx;’}’ *

i
+ L[ u(x) v(x,).

(u, v}, = S

Equipped with this inner product, B™(® ) becomes a Hil-
bert space. The corresponding norm |lv||,, is given by

M
lollZ, = v, v),, = |v]Z + E‘. v(x;).

AprPeENDIX C
EUuLER-LAGRANGE EQUATION FOR THE CONTROLLED-
CONTINUITY STABILIZER

Consider for the case of continuous data, as in Appen-
dix B, the variational principle VP with

B = 0@ + | al) ®0@ — o)
where |v(x)|> ,, is the controlled-continuity stabilizer. As-
suming that the continuity control functions w(x) are dif-

ferentiable to order p, the vanishing of the first variation
6& (1) = 0 yields the following Euler-Lagrange equation:

P
2 (= D"AL®) u® + (=1 a@)

(D *ux) — Diex) =0

where
m! am
AT = % | |
" K| 4-“'+-j,,;:mj|! b ..jd! ax-il i & om ax;fid
( ) aﬂ‘l
Wm X B_IJ:I R a.xf;}f

is a spatially weighted mth-order iterated Laplacian op-
erator.

Generally, the continuity control functions will not be
differentiable, which implies that the general operator is
nonlinear and includes additional components involving
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Dirac distributions and their derivatives. Once again, for
discrete data {D %, ¢;} |, the second term of the Euler-
Lagrange equation will also involve these distributions.

APPENDIX D
REPRESENTATION IN REPRODUCING KERNEL HILBERT
SPACE

Consider the variational principle VP with

1
Ao}

set in the space B™(R“). Assume that {£,;}? | are N lin-
early independent functionals. For the case £,(v) =
DL (v) with 2(m — k) > d, and for £;(v) = fqs K (x)
v(x) dx with, e.g., Q¢ a bounded region and fg | K, (x)|
dx < oo, the £; will be bounded (continuous) linear func-
tionals.

When 2m > d, the evaluation functional £, (#) = u(x;)
is a bounded linear functional in B™(® ). This property
makes B"’((Rd) a reproducing kernel Hilbert space. It fol-
lows that a unique (bounded) solution i(x) will exist pro-
vided N = M, and £,(Z}L a,;p) =0,fori =1,2, - -,

N where {p;} * | are a basis for the M = (“+7~') dimen-

N
E) = @I + 24— (&) — o

sional space of polynomials of total degree less than m
implies that all the a; are 0 [26].
The solution has a representation

N M
ux) = 2 @i + 2 bp)

where

‘Ee'(x) = ‘E'iis} Em(r{x T 5))3

and the subscript (s) indicates that the functional is ap-
plied to what follows considered as a function of s [46].

E,(x) is the fundamental solution of the iterated Lapla-
cian A in RY, i.e., it satisfies the equation A"E,(x) =
o(x) where 6 is the Dirac delta distribution. It turns out to
be the rotation invariant function defined on ®¢ — {0}
given by

i=1,2,---,N

(_l)df2+i
2T @0 — ) (m — di2)!

n—d g g
L

if 2m = d and d even

E,(x) =
(—l}’"I“(de — m) m—d
22" 2 (m — 1)) '
otherwise
where r(x) = |x| = (£, xH"? denotes the Euclidean

norm of x [36, p. 288]. -
The coefficients @ = [a;, * - - cay] and b = [by, - - -,
by  are determined by the linear systems

K+ NeHa+Th=c
T'a = 0
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where ¢ = [¢|, * * * , cy]”, the N X N symmetric matrix
K = [‘-'E‘i{.r] £j(s}Em{d(r — 3))], the N X M matrix T =
[£,;p;], and the N X N diagonal matrix £ = [g;] [46].

Incidentally, the reproducing kernel in B™(® ) with the
inner product given in Appendix B may be regarded as a
continuous function on ®¢ X ® “ defined by

M
K(s, &) = E,(s, ) — 2. m(s) E, (4, 8)

=1
M

- Z () E,(s;,

j=1

M
s) + --Z; m; () m(f)

i.j=
M
RACHORIPIE AORAC

where E, (s, ) = E,(r(s — ) and {m;} | are the poly-
nomials of total degree less than m satisfying ;(s;) = 1
if u = v and equal to zero otherwise [11], [26], [46].
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