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Dynamic 3D Models with Local and Global
Deformations: Deformable Superquadrics

Demetri Terzopoulos, Member, IEEE, and Dimitri Metaxas

Abstract—This paper presents a physically based approach
to fitting complex 3-D shapes using a new class of dynamic
models that can deform both locally and globally. We formulate
deformable superquadrics which incorporate the global shape
parameters of a conventional superellipsoid with the local degrees
of freedom of a spline. The local/global representational power of
a deformable superquadric simultaneously satisfies the conflicting
requirements of shape reconstruction and shape recognition. The
model’s (six) global deformational degrees of freedom capture
gross shape features from visual data and provide salient part
descriptors for efficient indexing into a database of stored models.
The local deformation parameters reconstruct the details of com-
plex shapes that the global abstraction misses. The equations of
motion which govern the behavior of deformable superquadrics
make them responsive to externally applied forces. We fit models
to visual data by transforming the data into forces and simulating
the equations of motion through time to adjust the translational,
rotational, and deformational degrees of freedom of the models.
We present model fitting experiments involving 2D monocular
image data and 3D range data.

Index Terms— Computer vision, physically based modeling,
object representation, deformable models, local and global de-
formations, superquadrics, splines, simulated forces, 3D model
fitting, finite element analysis.

I. INTRODUCTION

HE RECONSTRUCTION of shape and the recognition
of objects have preoccupied computational vision re-
searchers for several decades. Despite the large body of work
on 3D modeling, most models of shape lack the descriptive
power to bridge the gap between reconstruction and recogni-
tion. The difficulty is one of conflicting requirements.
General-purpose shape reconstruction in low-level visual
processing requires models with broad geometric coverage.
Reconstruction models must extract meaningful information
from noisy sensor data while making the weakest possible
assumptions about observed shapes. Generalized spline models
that can deform locally subject to generic continuity con-
straints appear to be well suited to shape reconstruction. By
contrast, object recognition is a higher level process that ne-
cessitates drastic information reduction and shape abstraction
in order to support efficient matching in object databases
of manageable size. Volumetric primitives such as spheres,
cylinders, and prisms seem appropriate for object recognition
since they can decompose composite shapes into natural
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parts that are compactly expressible using a small set of
parameters.

In this paper, we propose an approach to shape modeling
that simultaneously satisfies the requirements of reconstruction
and recognition and promises a fluent transition between these
two aspects of vision. We develop a new family of modeling
primitives that have the following features.

Free-Form and Parameterized Geometry: Geometric design
makes extensive use of both the free-form and parameter-
ized modeling paradigms. The canonical primitives of these
complementary approaches are, respectively, splines with lo-
cal shape variables and volumetric forms with global shape
parameters. One of the goals of our work is to develop a class
of hybrid models whose underlying geometric structure inti-
mately combines free-form and parameterized representations.
In particular, the present paper combines membrane splines
with parameterized superquadric ellipsoids to create a new
family of models we dub deformable superquadrics.

Local and Global Deformations: Much of the expressive
power of modeling primitives stems from their ability to
deform into desired shapes. Spline models are free-form be-
cause their local shape control variables provide many local
degrees of freedom. Consequently, splines have the flexibility
to assume diverse shapes, i.e., they have broad geometric
coverage. The allowable shapes of parameterized models, on
the other hand, are relatively tightly constrained according to
a few global parameters such as lengths, radii, and aspect
ratios. Our modeling method interprets such parameters as a
set of global deformational degrees of freedom. Moreover, we
augment our models with the local deformational capabilities
of splines. In particular, deformable superquadrics are able to
deform both globally like superquadric ellipsoids and locally
like membrane splines.

Physics and Dynamics: Concepts from analytic, differential,
and computational geometry have fueled much of the shape
representation research in vision. Recently, however, some
vision researchers have begun to realize that geometry, while
adequate for describing the shapes of static objects, is often
insufficient when it comes to analyzing the motions and
interactions of complex objects. Following our prior work,
we remedy the situation by turning to computational physics.
In addition to geometry, the formulation of our models in-
cludes simulated forces, masses, strain energies, and other
physical quantities. Physically based models are fundamentally
dynamic, and the behavior of deformable superquadrics is
governed by the laws of rigid and nonrigid dynamics expressed
through a set of Lagrangian equations of motion.
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Forces and Interaction: The numerical simulation of the
equations of motion determines the evolution of the degrees
of freedom of our models under the action of simulated
forces and constraints. Forces provide a general and highly
intuitive means for coupling the degrees of freedom of a
model to various data sets, such as intensity and range data.
In response to forces originating at datapoints, the models
position and orient themselves properly in space and deform
away from their rest shapes to conform to the dataset. In
applications where user control over models is desirable,
physically based control offers much more than the option
of manually adjusting geometric parameters. The machinery
supporting dynamics provides a facile interface to the models
through the use of force interaction tools. Hence, another
objective of our approach to modeling is to support interactive
dynamics through the use of efficient numerical simulation
methods.

Detail and Abstraction: The local and global deformation
parameters along with rigid transformations comprise the
degrees of freedom of our dynamic models. The equations
of motion permit external forces to position and orient de-
formable superquadrics freely in space and shape them through
the global degrees of freedom—a translation vector, a quater-
nion (rotation), a scale, three radial aspects, and two squareness
parameters—but the forces can also deform the models like
splines via the local degrees of freedom. The local degrees of
freedom of deformable superquadrics allow the reconstruction
of fine scale structure and the natural irregularities of real
world data, whereas the global degrees of freedom capture the
salient features of shape that are innate to natural parts and
appropriate for matching against object prototypes. Our models
are therefore suitable for use in both visual reconstruction and
recognition tasks.

As an illustration of some of the above ideas, Fig. 1 shows
a snapshot of an interactive 3D world inhabited by deformable
superquadrics. Through mouse control, the user can initialize
models, change their global deformation parameters, apply
forces to them, and move the viewpoint. The figure illustrates
four deformable superquadrics with different settings for the
global deformation parameters. The model at the left is being
pulled by a stretchy spring (displayed as a line) activated and
dragged by the mouse (arrow). The spring force causes local
and global deformations in the model.

A. Overview

Section Il provides a background for our work in the
context of related research. Section Il formulates a general
set of dynamic equations governing the motion of deformable
superquadrics under the action of externally applied forces.
Section IV describes a simplified version of these equations
that are suitable for vision applications along with their numer-
ical simulation. Section V discusses techniques for converting
visual data into forces that can be applied to deformable
superquadrics in data fitting scenarios. Section VI presents
experimental results demonstrating the fitting of models to 2D
monocular image data and 3D range data. Section VII draws
conclusions from our work.

Fig. 1.

Interactions with deformable superquadrics.

II. BACKGROUND

After more than a decade of research, the notion of early vi-
sual reconstruction as a data fitting problem using generalized
spline models is now in a highly evolved state of development,
most evidently so in the context of the surface reconstruction
problem [4], {18], [20]. Generalized spline techniques underly
the notion of regularization and its application to a variety
of reconstruction problems in early vision [14], [19]. The
many degrees of freedom and local deformation propertics of
generalized splines allow them to conform to low-level visual
data with ease.

On another front, much effort has gone into the search
for suitable models for the purposes of object recognition.
Biederman {3] reports the results of psychophysical experi-
ments, suggesting that the recovery of arrangements of two
or three major primitive components or parts results in fast
recognition of objects, even when the objects are observed
from different viewpoints, are occluded, or are unfamiliar.
Parameterized part models capture the structure of the world
by describing meaningful chunks of data in terms of a few
parameters. Such models are beneficial for object representa-
tion since dealing with a manageable number of parameters
simplifies the problem of indexing into a database of stored
models and verifying match hypotheses.

Throughout the 1970’s, the research of Binford and his
coworkers on generalized cylinders focused on the problem
of recovering parameterized models of objects and led to
vision systems such as ACRONYM, which use reasoning
to recover parameterized parts [5]. Marr and Nishihara [10]
were among the first to propose a hierarchical representation
of objects in terms of parts. Their work uses generalized
cylinders to describe each part, thereby limiting the scope
of the representation to objects adequately describable as
collections of generalized cylinders.

Motivated by the generalized cylinder idea and the need
to go beyond geometry to exploit computational physics
in the modeling process, Terzopoulos et al. [22] propose
a deformable cylinder constructed from generalized splines.
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They develop force field techniques for fitting their model to
monocular, binocular, and dynamic image data. The distributed
nature of this deformable model enhances its descriptive
power and allows the representation of natural objects with
asymmetries and fine detail. However, the generalized spline
components of the model do not explicitly provide an abstract
representation of object shape in terms of a few parameters.

The generalized cylinder representation requires the specifi-
cation of an axis, generally a space curve, and the cross-section
function. Pentland [11], {12] proposes the use of a simpler
part model with scalar parameters: the superquadric ellipsoid
with parameterized deformations [1] (the superquadrics were
discovered by Hein; see [6]). Pentland’s proposal has spawned
a flurry of efforts to reconstruct superquadric ellipsoids with
global geometric deformations from 3D data, and these have
met with some success [7], [8], [17].

Pentland [13], following the physically based approach of
[22], proposes an alternative method for fitting deformable part
models based on superquadric ellipsoids. Inspired by modal
analysis (a technique for analyzing the vibrations of linear
mechanical systems under periodic forcing conditions [2]),
he applies polynomial deformation “modes” to superquadrics.
Pentland’s modeling primitives are not fully dynamic in that
the underlying superquadric parameters do not respond to
forces and are not fitted to data through force interactions.
The deformation modes may make the method efficient for
the recovery of smooth, symmetrically deformed parts. On the
down side, global deformation modes lack an obvious physical
meaning, and they make it difficult to deal with nonlinearities
and boundary conditions. Moreover, the representation of
complex shapes requires many modes, rendering Pentland’s
scheme no more efficient than a nodal finite element solution
[2].

The present paper develops a new family of primitives with
fully dynamic global and local deformations. Our formulation
is similar to that of Terzopoulos and Witkin [21] with regard
to the dynamics of free rigid-body motions and local deforma-
tions, but it includes additional global deformational degrees
of freedom that may be inherited from any parameterized
family of geometric primitives (in this paper, superquadrics).
Our treatment of global deformation dynamics shares similar
features with Witkin and Welch’s [23] formulation of linearly
deformable primitives, but we must deal with the nonlinear
deformations of superquadrics. Our treatment of local defor-
mation dynamics is general in that it permits the use of local
or global support basis functions (it reduces to modal analysis
[2] if we choose a sinusoidal eigenfunction basis). In this
paper, we employ local finite element basis functions since
they provide greater shape flexibility and are better suited to
the purpose of local deformations, i.e., the representation of
‘local detail.

I1l. FORMULATION OF DEFORMABLE SUPERQUADRICS

In this section, we provide a general formulation of de-
formable superquadrics. To arrive at the equations of motion
that govern these models, we extend some results from [16]
and [21].

Superquadric

Inertial frame @

Deformable
Superquadric

Fig. 2. Geometry of deformable superquadric.

A. Geometry

Geometrically, the models developed in this paper are closed
surfaces in space whose intrinsic (material) coordinates are
u = (u,v), defined on a domain €. The positions of points on
the model relative to an inertial frame of reference ® in space
are given by a vector-valued, time-varying function of u:

x(uvt) = (xl(u,t),arg(u,t),zg(u,t))T (1)

where T is the transpose operator. We set up a noninertial,
model-centered reference frame ¢ and express these positions
as

Tz =c+ Rp 2

where ¢(t) is the origin of ¢ at the center of the model, and
the orientation of ¢ is given by the rotation matrix R(t). Thus,
p(u,t) denotes the canonical positions of points on the model
relative to the model frame. We further express p as the sum of
a reference shape s(u, t) and a displacement function d(u, t):

p=s+d. 3)

Fig. 2 illustrates the model geometry.

The ensuing formulation can be carried out for any reference
shape given as a parameterized function of u. For concreteness,
however, we consider the case of superquadric ellipsoids [1],
which yield the reference shape

a,CC
GQC;l SSZ

a;;Sle

)

where —7/2 < u < 7/2 and -7 < v < 7, and where
S& = sgn(sinw)|sinw|® and C¢ = sgn(cosw)|cosw|®, re-
spectively. Here, a > 0 is a scale parameter, 0 < a1, a3,a3 <
1 are aspect ratio parameters, and €;, € > O are “squareness”
parameters. We collect the superquadric parameters into the
parameter vector

®

_ T
q; = (ar ay,a2,as3, 61762)
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In general, we can express the displacement d as a linear
combination of basis functions b;(u)

d = diag(bi)g, ©6)

where diag(b;) is a diagonal matrix formed from the basis
functions and where g; depend only on time and are known
as degrees of freedom or generalized coordinates. The basis
functions must be admissible, i.e., they must satisfy the
kinematic boundary conditions of the model. We will give
specific basis functions shortly; however, if we approximate
the displacement field using a finite number of basis functions
and collect the generalized coordinates into a vector of degrees
of freedom g4 = (---,q;,---)7, we can write

d=5q, M
where § is the shape matrix whose entries are the basis
functions.

B. Kinematics

The velocity of points on the model is given by

&=¢+ Rp+ Rp

=¢+BO+ Rs+ RSq, 8)
where 8 = (---,8;,---)" is the vector of rotational coordinates
of the model, and B = [--- (Rp)/d¥; - - -]. Furthermore

. ds ] . .
8= q,=Jgq, 9
[343 ®

where Jis the Jacobian of the superquadric ellipsoid function
(see (10) at the bottome of thé page). We can therefore write

@&=[IBRJRS)q=Lg (11)

T .
where ¢ = (q7,q%,q7,9%)", with g, = c and q4 = 6.

C. Dynamics

When fitting the model to visual data, our goal is to recover
q, which is the vector of degrees of freedom of the model. The
components q. and g, are the global rigid motion coordinates,
q, are the global deformation coordinates, and g, are the
local deformation coordinates of the model. Our approach
carries out the coordinate fitting procedure in a physically
based way. We make our model dynamic in g by introducing
mass, damping, and a deformation strain energy. This allows
us, through the apparatus of Lagrangian dynamics, to arrive
at a set of equations of motion governing the behavior of our
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The derivation in Appendix A shows that the equations of
motion take the form

Mg+Cqg+Kq=g,+f, 12)

where M, C, and K are the mass, damping, and stiffness
matrices, respectively, where g, are inertial (centrifugal and
Coriolis) forces arising from the dynamic coupling between
the local and global degrees of freedom, and where f,(u,t)
are the generalized external forces associated with the degrees
of freedom of the model. The appendix provides formulas for
the above matrices and vectors.

D. Elasticity

The stiffness matrix K given by (30) determines the elastic
properties of the model. We derive K from a deformation
energy.

For the applications in this paper, we want the global
deformation parameters g, that stem from the superquadric
to freely account for as much of the data as possible. Conse-
quently, we impose no deformation energy on qs, i.e., we set
K, = K4 = 0in (30). The local deformation parameters g,
however, must be constrained to yield a small and continuous
deformation function.

We impose on g, a special case of the generalized spline
deformation energy proposed in [21], which is a membrane
energy given in continuous form by

- [ ()

where the function wo(u) controls the local magnitude, and
wi(u) controls the local variation of the deformation. In our
implementation, we reduce these functions to scalar stiffness
parameters wo and w;.

od
ou

od

2
) ) +wod?du  (13)
v

IV. SIMPLIFIED NUMERICAL SIMULATION

Equations (12) along with the expressions in Appendix A
give the general equations of motion for a dynamic model
with local and global deformations. A full implementation and
simulation of the general equations would be appropriate for
physically based animation where realistic motion is important
[21]. However, in computer vision and geometric design
applications involving the fitting of models to data, models
governed by simplified equations of motion suffice, as the
experiments in Section VI will demonstrate.

We can simplify the equations while preserving useful
dynamics by setting the mass density u(u) (see (24)) to zero
to obtain

model under the action of externally applied forces. Cqi+Kq=f, (14)
ale} Cf)z aCf} Cff 0 0 040161051 _1Cf]2 aay EzC‘Z1 Cf)?_l
J = | apC8 82 0 aCe 82 0 aae1C71Se2  qagerCorSe! (10)
a3SY 0 0 aSg aaze; SS9 1 0
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These equations yield a model that has no inertia and comes
to rest as soon as all the applied forces vanish or equilibrate.

Equation (14) is discretized in material coordinates u using
nodal finite element basis functions. We carry out the dis-
cretization by tessellating the surface of the model into bilinear
quadrilateral elements, except at the polar caps, where we use
linear triangular elements (see Appendix B). The local (nodal)
basis functions associated with these elements lead to a sparse
K44 [2]. ,

The formulation of our model yields numerically stable
equations of motion that may be integrated forward through
time using explicit procedures. For fast interactive response,
we employ a first-order Euler method to integrate (14). The
Euler procedure updates the degrees of freedom ¢ of the model
at time ¢ + At according to the formula

gt = ¢ 4 At(c(”)_l (fcft) -K q(”) (15)
where At is the time step size. Note that we need never
assemble the large K 44 submatrix of K. Instead, we compute
Yj(kda);;q4; for each node ¢ in an “element-by-element”
fashion.

Taking time steps in q is straightforward, but the rotation
component g, is a little delicate. We present g, using quater-
nions. Updating quaternions at each time step is easier than
directly updating a rotation matrix and ensuring that it remains
orthogonal. Quaternions also avoid problems with “gimbal
lock” that may arise when Euler angles are used to represent
rotations.

A quaternion [s,v] with unit magnitude || [s,v] || = s% +
vTv = 1 specifies a rotation of the model from its reference
position through an angle § = 2cos™!s around an axis
aligned with vector v = [vl,vg,vg]T. The rotation matrix
corresponding to [s,v] is

1—2(v3 +v3)
2(v1ve + su3)
2(’[}1’03 - SU2)

2(vivs + sv2)

2(’()21}3 - svl)

1--2(vi+v3)
(16)

2(1}1112 — S’U3)
1—2(v} +v3)
2(vyvs + svy)

R =

To obtain g, from (15), we use the generalized torque at time
t given by fi = [ fTBdu (see (33)), with B

B(u)=-Rp(n)G )

[16], where R represents the rotation matrix at time ¢, where
p(u) is the dual 3 x 3 matrix of the position vector p(u) =
(pl,pz,pg)T (see (3)) defined as

0 -ps p2
p(u) = | p3 0 -;m (18)
P2 P 0

and where G is a 3 X 4 matrix whose definition is based on the
value of the quaternion g4 = [s,v] representing the rotation
at time t:

—U1 S V3 —vV2
G=2|-vy -—vs 8§ vy (19)
—v3 v -1 S
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V. APPLIED FORCES

In the dynamic model fitting process, the data are trans-
formed to an externally applied force distribution f(u,¢).
Using (33), we convert the external forces to generalized forces
fq» which act on the degrees of freedom of the model. We
employ two types of forces based on the structure of the
input data—short-range forces obtained through gradients of
potential functions and long-range forces based on distances
between data points and the model’s surface.

Techniques for generating suitable potential functions from
monocular, binocular, and dynamic image sequences are de-
scribed in [22]. For example, to attract a 3D model towards
significant intensity gradients in a continuous image I(z,y),
we construct the potential function

P(z,y) = |V(Go = D

where G, denotes a Gaussian smoothing filter of characteristic
width o, which determines the extent of the region of attrac-
tion of the intensity gradient. Typically, the attraction has a
relatively short range. The potential function applies a force

f = AVP(lle) @1)

to the model, where (3 controls the strength of the force, and II
is a suitable projection of points on the model into the image
plane.

To compute the potential function in practice, we begin with
a digital image I(z, j), convolve it with a discrete filter G,
and compute at each pixel (4, j) the magnitude of the discrete
gradient operator calculated from central finite differences of
neighboring pixel values. To evaluate (21) at the location
of a projected model point Ilx = (z,y), we first calculate
using central finite differences the discrete gradients VP at
the four pixels k = 1,---,4 that surround (z,y). We then
consider these pixels as the nodes of the quadrilateral finite
element of Fig. 10, with ¢ = b = 1, in order to define
a bilinear interpolant in the region between the pixels, i.e.,
using (48) and (49), the interpolant is given by VP(z,y) =
2} Ne(2(z - z.), 2(x — y.))V Py, where (z.,y.) denotes
the centroid of the four pixels.

Alternatively, we may define long-range forces

flu) =B r —a(u)]

based on the separation between a datapoint r in space
and the force’s point of influence u, on the model’s sur-
face. In general, u, = (u,,v,) will fall somewhere within
an element on the surface of the model. We can
compute z(u,) in the domain of a quadrilateral element,
for instance, according to its bilinear local interpolant
z(u,) = S5 Ni(2(ur — uc)/a, 2(vy — vc)/b)m;, where the
x; are the nodal positions (see (48) and (49)). The
equivalent forces on each of the four nodes is f;, =
Ni(2(ur — uc)/a, 2(vr — ve)/b) f(ur). When u, falls within
the domain of a triangular element at the polar caps of the
model, the computations proceed in an analogous fashion using
the corresponding formulas given in Appendix B-2.

Usually, we want u, to minimize the distance d(u) =
|lr = z(u)]]. A closed-form analytic formula for u, is un-
available for a discrete deformable superquadric. A brute-force

(20)

22
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Tangent line

|
Deformable Superquadric

X

Fig. 3. Migration of data force point of influence over model surface.

approach that works well in our experiments is to place u, at
a node of the model, which minimizes d. The complexity of
this operation is high—O(mn), where m is the number of
datapoints and n is the number of nodes—but it need not be
carried out at every time step. A more efficient approach (not
used in the experiments) is to use a nonlinear optimization
procedure. With a good starting point (from the previous
time step), conjugate gradient or quasi-Newton methods will
converge to a solution in a few steps, making such an approach
linear in m. The minimization method must be applied within
element domains using the nodal shape functions as an analytic
representation of the model’s surface. The bookkeeping in the
minimization is complicated by the need to optimize across
element boundaries.

We have experimented with an alternative approach that
involves a dynamic procedure for migrating points of influence
over the model’s surface until they arrive at locations of
minimal distance from the given datapoints. Starting from
initial points of influence not necessarily at minimal distance
(Fig. 3), we project the force at each time step onto the unit
tangent vectors (Oxz/Ou)/||0x/Ou|| and (dz/Ov)/ || Oz /v ||
to the surface at the current point of influence Py = up, and
we migrate the point in the u plane by taking an Euler step
in u and v proportional to the magnitude of the respective
projections. Thus, the point of influence migrates to a point
P, of minimal distance, where the tangential components of
the force vanish. The scheme works well, unless the surface
is highly convoluted.

V1. EXPERIMENTS

We have evaluated our approach in simulations involving
image and range data. Our experiments run at interactive
rates on a Silicon Graphics Personal Iris 4D-25TG workstation
including the real-time graphics.

A. 2D Image Data

Fig. 4 shows the various steps of fitting a deformable
superquadric to a 120 x 128, 256-intensity monocular image
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©
Fig. 4. Fitting deformable superquadric to pestle image (see text for (a)«(f)).

®

Fig. 4(a) of a 3D object—a pestle. The size of the image
is rescaled to fit within the unit square on the z — y plane.
Fig. 4(b) shows the potential function P(z,y) generated from
the image by computing the magnitude of the intensity gra-
dient.

Fig. 4(c) shows the initial state of the deformable su-
perquadric displayed in wireframe projected onto the image.
The surface of the model is discretized into 5043 nodes. The
initialization consists of specifying the center of the model
¢, along with the major and minor axes, @ - a; and a - ag, by
picking four points with the mouse. This initializes the transla-
tion g, and rotation g, of the model. We also fix ; = e = 1.0.
In this and subsequent experiments, the local deformation g4
is initially set to zero. Note that the initialization step produces
a very crude first approximation to the pestle.

Fig. 4(d) shows an intermediate step in the fitting process
that simulates the equations of motion using stiffness parame-
ters wp = 1.0 x 107 and w; = 4.0 x 10~2. Using an
orthogonal projection I1, nodes of the model whose positions
x in space lie near the image plane (]z3| < 0.2) are subject to
a force directed parallel to the image plane:

T
f=ﬁ<8P oP 0)

oz’ Oy’
where the force strength factor is 3 = 4.0 x 1076. The forces
deform the model, and Figs. 4(e) and (f) show the final state
of the model at equilibrium, superimposed on the image and
the potential, respectively.

In the second experiment, we use the image of a doll
shown in Fig. 5(a), whose potential is shown in Fig. 5(b).
The specifics of this experiment are identical to those of the
previous one, except that the discrete models consisted of
963 nodes, and their stiffness parameters were wo = 0.001 and
w; = 0.1. Fig. 6(a) illustrates the results of the initialization
phase for the doll image, which was carried out as described
above, showing 11 crude approximations to the major body
parts of the figure. The image forces deform the part models
into the final shapes shown in Fig. 6(b).

(23)
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(b)
Fig. 5. (a) Doll image and (b) potential.

The above simulations did not require user intervention
beyond the initialization phase. It is important to realize that
initialization requires only a rough segmentation of the image
into blobs corresponding to parts. We therefore expect that the
initialization can be automated using available image segmen-
tation techniques. The reaction-diffusion space segmentation
process of Kimia et al. [9] appears promising for this purpose.

709

(b)
Fig. 6. Fitting deformable superquadrics to doll image (see text for (a)~(b)).

B. 3D Range Data

3D data generally provide greater constraint in the model
fitting process than do 2D image projections. The following
experiments utilize range data from the NRCC 3D image
database [15]. We have experimented with the two force
techniques for fitting the model to 3D data described in the
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previous section. In the following simulations, we have applied
forces to the model using the brute-force nearest-node search
method, updating the nodes of attachment for each datapoint
every 200 iterations.

In the third experiment, we fit a deformable superquadric
model with 2603 nodes to 3D data sparsely sampled from
the upper “hemisphere” of an egg (from range map
EGG 1 CAT # 233). Fig. 7(a) shows the 499 range datapoints.
The stiffness parameters of the model were wg = 1.0 x 10~
and w; = 0.1. We initialized the model to a sphere located at
the center of gravity of the data (a = 1.2,a; = ay = a3 = 0.5,
€1 = €2 = 1.0). Fig. 7(b) shows the fitted deformable super-
quadric at equilibrium, and Fig. 7(c) shows a top view of the
fitted model. Evidently, the fit is accurate over the portions of
the surface covered by datapoints, but it begins to deteriorate
at the boundary of the data near the “equator” because of the
influence of the underside of the model, which remains too
spherical due to the lack of datapoints.

In the fourth experiment, we fit a model with 1683 nodes to
3D data sparsely sampled from the upper part of a mug with a
pitted surface (from range map MUG 1 CAT # 251). Fig. 8(a)
shows the 651 range datapoints. The stiffness parameters of
the model were wo = 0.01 and w; = 0.1. We initialized
the model to a “tubular” shape (a = 1.5,a; = as = 0.3,
a3 = 08,e; = 0.7,eo = 1.0). Fig. 8(b) shows the fitted
deformable superquadric at equilibrium. The underside of the
model is smooth due to the lack of data, but the pitted texture
of the top surface has been accurately reconstructed by the
local deformational degrees of freedom of the deformable
superquadric.

VII. CONCLUDING REMARKS

We have developed deformable superquadrics, which are
dynamic models with global and local deformation properties
inherited from superquadric ellipsoids and membrane splines.
These physically based models are governed by equations of
motion. We are able to simulate and render simplified versions
of the equations at interactive rates on a graphics workstation.
The dynamic equations make deformable superquadrics re-
sponsive to forces derived from image or range data, which
compels the model to conform to the data. The model is useful
for reconstructing 3D objects or parts of objects with irregular,
local shape features from such data. It also promises to be
useful for abstracting global shape features of objects for the
purposes of recognition.

" In addition to specifying the stiffness parameters (wo and
wi) of the model along with a few parameters in the numerical
simulation procedures, we must currently provide reasonable
initial estimates for the translation, rotation, and global defor-
mation variables of our model, especially when fitting them to
2D image data. Initial values may be estimated by rough seg-
mentation and calculation of central moments of the data [17].

We are currently implementing the full, second-order equa-
tions of motion (12) and extending our formulation to accom-
modate other global deformations such as bends, shears, and
tapers. Additional deformations of this sort may provide useful
degrees of freedom to deformable superquadrics or to related

(@

(b)

©
Fig. 7. Fitting deformable superquadric ((b),(c)) to egg range data (d).
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Fig. 8. Fitting deformable superquadric (b) to mug range data (a).

models based on other parameterized volumetric primitives.
Additionally, the formulation of constraints among dynamic
models with local and global deformations is an important
topic currently under investigation.

APPENDIX A
DERIVATION OF THE EQUATIONS OF MOTION

1. Kinetic Energy: Mass Matrix
The kinetic energy of the model is given by

1 1 1
T= 5 /ud:T:‘udu = EqT [/NLTLdu]q = ?';TMq
(24
where M = [ pLT L du is the symmetric mass matrix of the

object, and p(u) is the mass density of the object. Using the
expression for L from (11), we can rewrite M as follows:

Mcc M09 Mcs Mcd
Mgy My, Myg
M = 25
Mss Msd ( )
symmetric M 44

where

Mgy, = [ uBTRJ du
Mg = [ ptBTRS du
M, = [uJTJdu
M, = [pJTSdu
Mg = [ nSTS du.

M = [pldu
M = [pBdu
M. =R/[uJdu
M. =RfuSdu
Mgy = [ BTBdu

(26)

2. Energy Dissipation: Damping Matrix

We assume velocity dependent kinetic energy dissipation,
which can be expressed in terms of the (Raleigh) dissipation
functional:

F= %/m% du 27

where y(u) is a damping density. Since it has the same form
as (24), we can rewrite (27) as follows:

F=4i"Cq (28)

where the damping matrix C has the same form as M, except
that « replaces p.

3. Strain Energy: Stiffness Matrix

We define the deformation characteristics of the model in
terms of a deformation strain energy. We impose a strain
energy of the general form

1
£(z) = 54" Kq (29)
where
0 0 0 0
0 0 0
K= K. K 30)
symmetric’ K

is the stiffness matrix. The zero submatrices indicate that only
the global g, and local gq; deformational degrees of freedom
can contribute to the strain energy.

4. External Forces and Virtual Work

The external forces f(u,t) applied to the model do virtual
work, which can be written as

Wp = / fTLéqdu = / f,8qdu (31)
where
fq:fTLz(fcvf97fs7fd) (32)
with
ff=1fTdy, fT=/fTRJdu )
fT=1fTBdu, f5=/fTRSdu

is the vector of generalized external forces associated with the
degrees of freedom of the model.
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5. Lagrange Equations of Motion

The Lagrange equations of motion for the model take the
form

d (a7T\T o7 \T [or\T
) () () et o

The first two terms of (34) express inertial forces and can be

written as
d (0T\T [oT\T .
d_t(a_q) —<55) =Mqg-g, (35)
where
- Mg+ i('TM') ’ (36
9, = I+ 5 |54\9 Ma )

gives the centrifugal and Coriolis forces [16]. The third term
expresses the friction forces and takes the form

(37

The fourth term, the variational derivative of £ with respect
to x, expresses the elastic forces

5.£ = Kq. (38)

Substituting the above expressions into (34) yields the equa-
tions of motion (12).

APPENDIX B
DERIVATION OF K44

We discretize the model in material coordinates u using
finite elements. We can derive K 4, as an assembly of the local
stiffness matrices K- fi 4 associated with each element domain
E; C u. Since d(u,t) = [dl(u,t),dg(u, t), d3(u,t)]T, we can
rewrite the membrane spline deformation energy (13) on E;
as the sum of component energies

E(d) = £7(dy) + €7 (dy) + €7(d3)
where for £ = 1,2,3

2 2
£f(dk)=/w{((%%> + (%) >+wgdzdu. (40)
E;

In accordance to the theory of elasticity, (40) can be written

(39)

in the form
E9(dy) = / ol el du (41)
E;
where

. [0di ady 1"
) = | ——,=—,d 42
€ |: ou’ Ov’ k] ( )

- is the strain vector and

) wy 0 0
o, =Die,=| 0 w 0 e, (43)

0 0 wl

South pole Locus of possible placements

of south pole

North pole

Locus of possible placements
of north pole
u

Fig. 9. Model tesselation in material coordinates.

is the stress vector associated with component k of d. There-

fore, the element stress vector is

D 0 0\ /€
J J

0 D, Oj 63

0 0 Dj/\éq

ol =D = (44)

where D{ = Dé = Dg.

We denote the finite element nodal shape functions by Nij ,
i =1,---,n, where n is the number of nodes associated with
element ;. Hence, we can write (42) as

n
=Y ~(s,) =rid, (45)
i=1
j ani oni 1T w ,
where v = [ﬁva_uz’l] , I = (7{7%--»7%), and

) ) ) ) T
q, = [(qflk)l, (qfik>2, RN (qék>n] . We can write the
element strain vector €’ as

(€ ri o o\ /a, o
=l |=|0 I} 0 q, | =T"q; (46)
e o o rj/\g,

where I‘{ = rg’ = r{;. Thus, the element stiffness matrix is

Ki, = / ri" Dirs du = diag( / ri'pirs du). 47

i E;

Fig. 9 illustrates the tessellation of the material coordinate
system u = (u,v) into finite element domains. The need
for quadrilateral and triangular elements is evident. Equation
(4) implies that the v material coordinate of both north
(u = m/2) and south (u = —=/2) poles may be arbitrary. This
is illustrated in the figure by the dotted lines. The next two
sections describe the bilinear quadrilateral and linear triangular
elements that we employ in our implementation.

1. Bilinear Quadrilateral Elements

The nodal shape functions of the bilinear quadrilateral
element (Fig. 10) are

Ni(Em) = £(1+€6)(+ mm) @)
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Fig. 10. Bilinear quadrilateral element. The four nodes are numbered.

where (&;,7;) are the reference coordinates of node 4 shown in
the figure. The relationship between the reference coordinates
and material coordinates u = (u,v) is given by
2 2
= —(u — uc), = (V-7 49
E==(u-u),  n=p(v-v) (49)
where (u.,v.) are the coordinates of the element center. The
required derivatives of the shape functions may be computed
as follows:

ON; ON; 0¢  ON; on 1
du ~ 0F 9u " oy Bu - zauttmm) G0
ON; ON; 0§ ON; on _ 1 -

and we may integrate a function f(u,v) over E; by trans-
forming to the reference coordinate system:

/}Zf(“’”)d“d”:/_ll /_11f(£,n)%bd£dn. (52)

We approximate such integrals using Gauss-Legendre quadra-
ture rules.

Using the above formulas, we can compute the matrix

e Tt
[ I'Y, D;I7 du and, hence, the element stiffness matrix K T
for the bilinear quadrilateral element.

2. Linear Triangular Elements

As we stated above, the v coordinates of the poles are
arbitrary. Hence, we can use right triangular elements in which
the v coordinate of the pole is set equal to the v coordinate of
one of the other nodes in each triangle.

a) North Pole Linear Triangular Elements: The nodal shape
functions for the north pole linear triangular element (Fig. 11)
are

Ni(§m=1-€-n (33)

Na(&,m) =¢ (54)

N3(&m) = . (55)

The relationship between the uv and &7 coordinates is

1

§=—(u—m) (56)
1

n= =) (57)

DR
3:(0,1)
1-5n=0
§=0
NN b
1:(0,0) 2:(1,0)
n=0
North pole

Fig. 11. North pole linear triangular element. The three nodes are numbered.

where (uj,v;) are the coordinates of node 1 at which
(&1,m) = (0,0). Computing the derivatives of the shape
functions as in (50) and (51) yields

8Ny, 1 8Ny 1 ON3 _
Fu-a oua w0 Y
ONi 1 9Ny . 9Nz _ 1
%= w " wos ™

and we may integrate a function f(u,v) over the E; using

//f(u,v)dudv=-/()1 /0(1_”) f(&,mabdEdn.  (60)
E,

We approximate such integrals using Radau quadrature rules.
Using the above formulas, we can compute the matrix
/ I‘f:chI“{; du and, hence, K{i , for the north pole linear
triangular element.
b) South Pole Linear Triangular Elements: The nodal shape
functions for the south pole linear triangular element (Fig. 12)
are

Ni(§m) =1-¢ (61)
Na(§,m)=€~-n (62)
N3(&n) = - (63)
The relationship between the uv and &7 coordinates is
£= = (u—w) (64
1
n=5@-u) (65)

where (u1,v;) are the coordinates of node 1 at which
(61,m) = (0,0). Computing the derivatives of the shape
functions as in (50) and (51) yields

N, 1 0N, 1 ONs

— I — = — — 66
Ou a’ Ou a’ Ou 0 (66)
0N, IONy 1 ON3 1

o) = === 6
v 1) b’ v b (©7)

and we may integrate a function f(u,v) over the E; using

/ [ #w)dud = /0 1 /0 “ pemabdnde. 9)
E;

We approximate such integrals using Radau quadrature rules.
Using the above formulas, we can compute the matrix
o ; )
[ I}, D}I'{ du and, hence, K7, for the south pole linear
triangular element.
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South pole

Fig. 12.  South pole linear triangular element. The three nodes are numbered.
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