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Abstract

The goals of this paper are two-fold: (i) to present our ini-
tial efforts towards the realization of a fully autonomous
sensor network of dynamic video cameras capable of pro-
viding perceptive coverage of a large public space, and (ii)
to further the cause of exploiting visually and behaviorally
realistic virtual environments in the development and test-
ing of machine vision systems. In particular, our proposed
sensor network employs techniques that enable a collection
of active (pan-tilt-zoom) cameras to collaborate in perform-
ing various visual surveillance tasks, such as keeping one
or more pedestrians within view, with minimal reliance on
a human operator. The network features local and global
autonomy and lacks any central controller, which entails ro-
bustness and scalability. Its functionality is the result of lo-
cal decision-making capabilities at each camera node and
communication between the nodes. We demonstrate our
surveillance system in a virtual train station environment
populated by autonomous, lifelike virtual pedestrians. Our
readily reconfigurable virtual cameras generate synthetic
video feeds that emulate those generated by real surveil-
lance cameras monitoring public spaces. This type of re-
search would be difficult in the real world given the costs
of deploying and experimenting with an appropriately com-
plex camera network in a large public space the size of a
train station.

1. Introduction
Recent advances in camera and video technologies have
made it possible to network numerous video cameras to-
gether in order to provide visual coverage of large public
spaces such as airports or train stations. As the size of the
camera network grows and the level of activity in the public
space increases, it becomes infeasible for human operators
to monitor the multiple video streams and identify all events
of possible interest, or even to control individual cameras
in performing advanced surveillance tasks, such as zoom-
ing in on a particular subject of interest to acquire one or
more facial snapshots. Consequently, a timely challenge for
computer vision researchers is to design camera sensor net-
works capable of performing visual surveillance tasks au-

tonomously, or at least with minimal human intervention.
Even if there were no legal obstacles to monitoring peo-

ple in public spaces for experimental purposes, the cost of
deploying a large-scale camera network in the real world
and experimenting with it can easily be prohibitive for
computer vision researchers. As was argued in [1], how-
ever, computer graphics and virtual reality technologies
are rapidly presenting viable alternatives to the real world
for developing vision systems. Legal impediments and
cost considerations aside, the use of a virtual environment
can also offer greater flexibility during the system design
and evaluation process. Terzopoulos [2] proposed aVir-
tual Visionapproach to designing surveillance systems us-
ing a virtual train station environment populated by fully
autonomous, lifelike virtual pedestrians that perform vari-
ous activities (Figure 1). Within this environment, virtual
cameras generate synthetic video feeds (Figure 2). The
video streams emulate those generated by real surveillance
cameras, and low-level image processing mimics the per-
formance characteristics of a state-of-the-art surveillance
video system.

Within the virtual vision paradigm, we propose a sen-
sor network architecture capable of performing common
visual surveillance tasks with minimal operator assistance.
Once an operator monitoring surveillance video feeds spots
a pedestrian involved in some suspicious activity, or a visual
behavior analysis routine selects such a pedestrian automat-
ically, the cameras decide amongst themselves how best to
observe the subject. For example, a subset of cameras can
collaboratively track the pedestrian as he weaves through
the crowd. The problem of assigning cameras to follow
pedestrians becomes challenging when multiple pedestri-
ans are involved. To deal with the myriad of possibilities,
the cameras must be able toreasonabout the dynamic sit-
uation. To this end, we propose a sensor network commu-
nication model whose nodes are capable of task dependent
self-organization through local and global decision making.
Each node is aware of its neighbors.1

Our proposed sensor network is novel insofar as it does

1The neighborhood of a node A can be defined automatically as the set
of nodes that are, e.g., within nominal radio communications distance of A
[4]. References [5, 6] present schemes to learn sensor network topologies.
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Waiting room Concourses and platforms Arcade

Figure 1:A large-scale virtual train station populated by self-animating virtual humans (from [3]).

Figure 2: Virtual Vision. Synthetic video feeds from mul-
tiple virtual surveillance cameras situated in the (empty)
Penn Station environment.

not require camera calibration, a detailed world model, or a
central controller. The overall behavior of the network is the
result of local decision making at each node and internode
communication. Visual surveillance tasks are performed by
groups of one or more camera nodes. These groups, which
are created on the fly, define the information sharing pa-
rameters and the extent of collaboration between nodes. A
group keeps evolving—i.e., old nodes leave and new nodes
join the group—during the lifetime of the surveillance task.
One node in each group acts as the group supervisor and is
responsible for group level decision making.

Our sensor network is deployed and tested within the vir-
tual train station simulator that was developed in [3]. The
simulator incorporates a large-scale environmental model
(of the original Pennsylvania Station in New York City)
with a sophisticated pedestrian animation system that com-
bines behavioral, perceptual, and cognitive human simula-
tion algorithms. The simulator can efficiently synthesize

well over 1000 self-animating pedestrians performing a rich
variety of activities in the large-scale indoor urban environ-
ment. Like real humans, the synthetic pedestrians are fully
autonomous. They perceive the virtual environment around
them, analyze environmental situations, make decisions and
behave naturally within the train station. They can enter the
station, avoiding collisions when proceeding though portals
and congested areas, queue in lines as necessary, purchase
train tickets at the ticket booths in the main waiting room,
sit on benches when they are tired, purchase food/drinks
from vending machines when they are hungry/thirsty, etc.,
and eventually proceed downstairs in the concourse area to
the train tracks. Standard computer graphics techniques en-
able a photorealistic rendering of the busy urban scene with
considerable geometric and photometric detail (Figure 1).

In this paper, we first develop new image-basedfixate
andzoomalgorithms for active cameras. Next, we propose a
sensor network framework particularly suitable for design-
ing camera networks for surveillance applications. Finally,
we demonstrate the advantages of developing and evaluat-
ing this sensor network framework within our virtual world
environment. The remainder of the paper is organized as
follows: Section 2 covers relevant prior work on camera
networks. We explain the low-level vision emulation in
Section 3. In Section 4, we develop the behavior models
for camera nodes. Section 5 introduces the sensor network
communication model. In Section 6, we demonstrate the
application of this model in the context of visual surveil-
lance. We present our initial results in Section 7 and our
conclusions and future research directions in Section 8.

2. Related Work
Previous work on camera networks has dealt with issues
related to low and medium-level computer vision, namely
identification, recognition, and tracking of moving objects
[7]. The emphasis has been on model transference from
one camera to another, which is required for object iden-
tification across multiple cameras [8]. Many researchers
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Figure 3: Pedestrian segmentation and tracking. (1) Multiple
pedestrians are grouped together due to poor segmentation. (2)
Noisy pedestrian segmentation results in a tracking failure. (3)
Pedestrian segmentation and tracking failure due to occlusion.

have proposed camera network calibration to achieve robust
object identification and classification from multiple view-
points, and automatic camera network calibration strategies
have been proposed for both stationary and actively con-
trolled camera nodes [9, 10]. Our scheme does not re-
quire calibration; however, we assume that the cameras can
uniquely identify a pedestrian with reasonable accuracy.
To this end we employ color-based pedestrian appearance
models.

Multiple cameras have also been employed either to in-
crease the reliability of the tracking algorithm [11] (by over-
coming the effects of occlusion or by using 3D information
for tracking) or to track an object as it meanders through
the fields of view (FOVs) of different cameras. In most
cases, object tracking is accomplished by combining some
sort of background subtraction strategy and an object ap-
pearance/motion model [12].

Little attention has been paid to the problem of control-
ling/scheduling active cameras to provide visual coverage
of a large public area, such as a train station or an airport.
[13] use a stationary wide-FOV camera to control an ac-
tive tilt-zoom camera. The cameras are assumed to be cali-
brated and the total coverage of the cameras is restricted to
the FOV of the stationary camera. [14] presents a scheme
for scheduling available cameras in a task-dependent fash-
ion. Here, the tasks are defined within a world model
that consists of the ground plane, traffic pathways, and de-
tailed building layouts. The scheduling problem is cast as
a temporal logic problem that requires access to a central
database consisting of current camera schedules and view-
ing parameters. This scheme is not scalable due to the cen-
tral decision-making bottleneck.

3. Local Vision Routines
Each camera has its own suite of visual routines for pedes-
trian recognition, identification, and tracking, which we dub

“Local Vision Routines” (LVRs). The LVRs are computer
vision algorithms that directly operate upon the synthetic
video generated by virtual cameras and the information
readily available from the 3D virtual world. They mimic
the performance of a state-of-the-art pedestrian recognition
and tracking module. The virtual world affords us the ben-
efit of fine tuning the performance of the recognition and
tracking modules by taking into consideration the readily
available ground truth. Our imaging model emulates cam-
era jitter and imperfect color response; however, it does not
yet account for such imaging artifacts as depth-of-field and
image vignetting. More sophisticated rendering schemes
would address this limitation.

We employ appearance-based models to track pedestri-
ans. Pedestrians are segmented to construct unique and
robust color-based pedestrian signatures (appearance mod-
els), which are then matched across the subsequent frames.
Pedestrian segmentation is carried out using 3D geomet-
ric information and background modeling/subtraction. The
quality of segmentation depends upon the amount of noise
introduced into the process, and the noise is drawn from
Gaussian distributions with appropriate means and vari-
ances. Color-based signatures, in particular, have found
widespread use in tracking applications [12]. Color-based
signatures are sensitive to illumination changes; however,
this shortcoming can be mitigated by operating in HSV
space instead of RGB space.

Zooming can drastically change the appearance of a
pedestrian, thereby confounding conventional appearance-
based schemes, such as color histogram signatures. We
tackle this problem by maintaining HSV color histograms
for several camera zoom settings for each pedestrian. Thus,
a distinctive characteristic of our pedestrian tracking routine
is its ability to operate over a range of camera zoom settings.
Appendix A provides additional algorithmic details regard-
ing our pedestrian tracking approach.

The tracking module mimics the performance of a state-
of-the-art tracking system (Figure 3). For example, it loses
track due to occlusions, poor segmentation, or bad light-
ing. Tracking sometimes locks on the wrong pedestrian,
especially if the the scene contains multiple pedestrians
with similar visual appearance; i.e., wearing similar clothes.
Tracking also fails in group settings when the pedestrian
cannot be segmented properly.

4. Camera Behaviors
We treat each camera as a behavior-based autonomous
agent. The overall behavior of the camera is determined by
the LVR (bottom-up) and the current task (top-down). The
camera controller is modeled as an augmented finite state
machine. At the highest level, the camera can be in one
of the following states:free, tracking, searching, and lost
(Figure 4).
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Figure 5:Dual-state controller for fixation and zooming.

Each camera canfixateandzoomin on an object of in-
terest. Fixation and zooming routines are image driven and
do not require any 3D information, such as camera calibra-
tion or a global frame of reference. We discovered that tra-
ditional Proportional Derivative (PD) controllers generate
unsteady control signals resulting in jittery camera motion.
The noisy nature of tracking forces the PD controller to try
continuously to minimize the error metric without ever suc-
ceeding, so the camera keeps servoing. Hence, we model
the fixation and zooming routines as dual-state controllers.
The states are used to activate/deactivate the PD controllers.
In the act state the PD controller tries to minimize the er-
ror signal; whereas, in themaintainstate the PD controller
ignores the error signal altogether and does nothing (Fig-
ure 5).

Thefixateroutine brings the region of interest—e.g., the
bounding box of a pedestrian—into the center of the image
by tilting the camera about its localx andy axes (Figure 6,
Row 1). Thezoomroutine controls the FOV of the cam-
era such that the region of interest occupies the desired per-
centage of the image. This is useful in situations where, for
example, the operator desires a closer look at a suspicious
pedestrian (Figure 6, Row 2). The details of thefixateand
zoomroutines are given in Appendix A.

Figure 6:Row 1: A fixate sequence. Row 2: A zoom sequence.
Row 3: Camera returns to its default settings upon losing the
pedestrian; it is now ready for another task.

5. Sensor Network Model
We now explain the sensor network communication scheme
that allows task-specific node organization. The idea is as
follows: A human operator presents a particular sensing re-
quest to one of the nodes. In response to this request, rel-
evant nodes self-organize into a group with the aim of ful-
filling the sensing task. The group, which formalizes the
collaboration between member nodes, is a dynamic arrange-
ment that keeps evolving throughout the lifetime of the task.
At any given time, multiple groups might be active, each
performing its respective task.

The following procedure sets up the task-specific node
groups.

Task-specific group formation & evolution (Figure 7)

1: Let N be the sets of all nodes
2: Nodeni receives a query
3: Nodeni sets up anamedtask and broadcasts it to other nodes

N ′ = N − {ni}2

4: A subsetR of nodesN ′ respond by sending their relevance
for the task{Local decision making}

5: Nodeni ranks the nodesR using the information returned by
these nodes, chooses a subsetG of R, and forms the group
G ∪ {ni}, which is responsible for this task

6: Nodeni is the designated supervisor of the group
7: while The task is activedo

2In the context of computer vision, it is sufficient to broadcast the task
to the neighboring nodes.
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Figure 7:(a) Group 1: A and B; possible candidate: C (b) Group
1: A, B, and C; possible candidate: E, F, and D. Group 2: J and K;
possible candidate: I. (c) Group 1: E and C; possible candidate: H,
F, D, and B. Group 2: J and I; possible candidate: F. (d) Group 1: E
and E; possible candidate C. Group 2: C and F; possible candidate:
B, D, G, I, and E. (e) Group 1 and 2 require the same resources, so
Group 1 vanished; task failure. (f) A unique situation where both
groups successfully use the same nodes, e.g., imagine two groups
tracking two pedestrians that started walking together.

8: ni monitors the group and decides when to add/remove a
node and when to designate another node to act as the su-
pervisor{Group level or global decision making}

9: end while

Group formation is determined by the local computation
at each node and the communication between the nodes.
We require each node to compute its relevance to a task
in the same currency. Our approach draws inspiration
from behavior-based autonomous agents where the popu-
larly held belief is that, rather than being the result of some
powerful central processing facility, the overall intelligent
behavior is a consequence of the interaction between many
simple processes, called behaviors. We leverage the inter-
action between the individual nodes to generate global task-
directed behavior.

Node failures are handled by simply dropping the nodes
that have not communicated with the group in the previ-
ous x seconds. We have not yet implemented a supervi-
sor node failure recovery strategy; however, we propose to
replicate the supervisor’smental statein every other node
of the group, which is straightforward when the nodes are
identical. That would allow another node to take over when
the supervisor fails to communicate with the group in the
previousx seconds.

6. Video Surveillance
We now consider how a sensor network of dynamic video
cameras might be used in the context of surveillance. A hu-
man operator spots a suspicious pedestrian(s) in one of the
video feeds and, for example, requests the network to “track
this pedestrian,” “zoom in on this pedestrian,” or “track the
entire group.” The successful execution and completion of
these tasks requires intelligent allocation and scheduling of
the available cameras; in particular, the network must de-
cide which cameras should track the pedestrian and for how
long.

A detailed world model that includes the location of
cameras, their FOVs, pedestrian motion prediction mod-
els, occlusion models, and pedestrian movement pathways
might allow (in some sense)optimalallocation and schedul-
ing of cameras; however, it is cumbersome and in most
cases infeasible to acquire such a world model. Our ap-
proach does not require such a knowledge base. We only as-
sume that a pedestrian can be identified by different cameras
with reasonable accuracy and that camera network topology
is knowna priori. A direct consequence of this approach is
that the network can be easily modified through removal,
addition, or replacement of camera nodes.

6.1. Computing Camera Node Relevance
The accuracy with which individual camera nodes are able
to compute their relevance to the task at hand determines
the overall performance of the network. Our scheme for
computing the relevance of a camera to a video surveillance
task encodes the intuitive observations that 1) a camera that
is currently free should be chosen for the task, 2) a camera
with better tracking performance with respect to the task
should be chosen, 3) the turn and zoom limits of cameras
should be taken into account when assigning a camera to a
task; i.e., a camera that has more leeway in terms of turn-
ing and zooming might be able to follow a pedestrian for
a longer time, and 4) it is better to avoid unnecessary reas-
signments of cameras to different tasks, as that might de-
grade the performance of the underlying computer vision
routines.

Upon receiving a task request, a camera node returns
a relevance metric—a list of attribute-value pairs describ-
ing relevance to the current task across multiple dimensions
(Table 1)—to the supervisor node, which converts this met-
ric into a scalar relevance valuer using the following equa-
tion:

r =


exp

(
− (c−1)2

2σc
2 − (θ−θ̂)2

2σθ
2 − (α−α̂)2

2σα
2 − (β−β̂)2

2σβ
2

)
whens = free

t whens = busy
(1)

where θ̂ = (θmin + θmax)/2, α̂ = (αmin + αmax)/2, and
β̂ = (βmin + βmax)/2, and whereθmin andθmax are extremal
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status = s ⊂ {busy, free}
quality = c ∈ [0, 1]
fov = θ ∈ [θmin, θmax] degrees
x turn = α ∈ [αmin, αmax] degrees
y turn = β ∈ [βmin, βmax] degrees
time = t ∈ [0,∞) seconds
task = a ⊂ {ai|i = 1, 2, · · ·}

Table 1:The relevance metric returned by a camera node relative
to a new task request. The supervisor node converts the metric
into a scalar value representing the relevance of the node for the
particular surveillance task.

field of view settings,αmin andαmax are extremal rotation
angles around thex-axis (up-down), andβmin andβmax are
extremal rotation angles around they-axis (left-right). The
values of the variancesσc, σθ, σα, andσβ associated with
each attribute are chosen empirically (for our experiments,
we assignedσθ = σα = σβ = 5.0 andσc = 0.2).

The computed relevance values are used by a greedy al-
gorithm to assign cameras to various tasks. The supervisor
node gives preference to the nodes that are currently free,
so the nodes that are part of another group are selected only
when the required number of free nodes are unavailable for
the current task. We are investigating more formal schemes
for reasoning about camera assignment. Also, we have not
yet fully resolved the implications of group-group interac-
tions (Figure 7).

6.2. Surveillance Tasks
We have implemented an interface that presents the operator
a display of the synthetic video feeds from multiple virtual
surveillance cameras (c.f., Figure 2). The operator can se-
lect a person in any video feed and instruct the camera net-
work to perform one of the following tasks: 1) follow the
person, 2) capture a high-resolution snapshot, or 3) zoom-
in and follow the person. The network then automatically
assigns cameras to fulfill the task requirements. The op-
erator can also initiate multiple tasks, in which case either
cameras that are not currently occupied are chosen for the
new task or some cameras are reassigned to the new task.
The task outline is as follows:

Task Outline

1: Operator selects a pedestrian in camerac and specifies one
of the following tasks: follow, capture snapshot, follow and
zoom.

2: c computes color-based pedestrian signature
3: c creates an appropriate task and broadcasts it to the adjacent

camerasNc

4: Each node inNc computes its relevance to the task proposed
by c

5: c ranks nodes inNc according to their relevance

6: c utilizes the ranking to assign a subsetGc of Nc to the task
at hand.Gt = Gc ∪ {c} is the task-specific group

7: c sends the pedestrian signature to every camera inGc along
with any information that might be helpful in positively iden-
tifying the pedestrian in question

8: Each node inGc uses its visual and behavior routines to lo-
cate and track the pedestrian{Each node has a suite of search
routines to help re-acquire a pedestrian after short-duration
tracking losses.}

9: Each node inGt also polls its neighborhood for possible ad-
dition to the group

10: Each node inGt continuously updates its relevance for the
purpose of supervisor selection and node removal

7. Results
To date, we have tested our visual sensor network system
with up to 4 pan-tilt-zoom cameras, one at each corner of
the main waiting room of the virtual train station. Our ini-
tial results are promising. The sensor network correctly as-
signed cameras in most cases. Some of the problems that
we encountered are related to pedestrian identification and
tracking. As we increase the number of virtual pedestri-
ans in the train station, the identification and tracking mod-
ule has difficulty following the correct pedestrian, so the
surveillance task fails (and the cameras just return to their
default settings).

Figure 8 illustrates a “follow” task sequence. An oper-
ator selects the pedestrian with the green shirt in Camera
1 (top row). Camera 1 forms a group with Camera 2 (bot-
tom row) to follow and zoom in on the pedestrian. At some
point, Camera 2 loses the pedestrian (due to occlusion), and
it invokes a search routine, but it fails to reacquire the pedes-
trian. Camera 1, however, is still tracking the pedestrian.
Camera 2 leaves the group and returns to its default settings.

8. Conclusions and Future Work
We envision future surveillance systems to be networks of
stationary and active cameras capable of providing percep-
tive coverage of extended environments with minimal re-
liance on a human operator. Such systems will require not
only robust, low-level vision routines, but also novel sensor
network methodologies. The work presented in this paper
is a step toward the realization of new sensor networks.

The overall behavior of our network is governed by local
decision making at each node and communication between
the nodes. Our approach is new insofar as it does not require
camera calibration, a detailed world model, or a central con-
troller. We have intentionally avoided multi-camera track-
ing schemes that assume prior camera network calibration
which, we believe, is an unrealistic goal for a large-scale
camera network consisting of heterogeneous cameras. Sim-
ilarly, our approach does not expect a detailed world model
which, in general, is hard to acquire. Since it lacks any cen-
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(a) (b) (c) (d) (e)

Figure 8:“Follow” sequence. (a) The operator selects a pedestrian in Camera 1 (upper row). (b) and (c) Camera 1 and Camera 2 (lower
row) are tracking the pedestrian. (d) Camera 2 loses track. (e) Camera 1 is still tracking; Camera 2 has returned to its default settings.

tral controller, we expect the proposed approach to be robust
and scalable.

We have developed and demonstrated our surveillance
system in a virtual train station environment populated by
autonomous, lifelike pedestrians, and our initial results ap-
pear promising. Our simulator should continue to facilitate
our ability to design such large-scale networks and experi-
ment with them on commodity personal computers.

We are currently pursuing aCognitive Modeling[15, 16]
approach to node organization and camera scheduling [17].
We are also investigating scalability and node failure is-
sues. Moreover, we are constructing more elaborate sce-
narios involving multiple cameras situated in different lo-
cations within the train station, with which we would like
to study the performance of the network when it is required
to follow multiple pedestrians during their entire stay in the
train station.

A. Algorithmic Details

Pedestrian Tracking

Require: A color-based signatureh (histogram) of the pedestrian
to be tracked

1: Render: imageI
2: Perform pedestrian segmentation on this frame and compute

2D bounding boxes for all visible pedestrians
3: for all bounding boxesdo
4: Compute pedestrian’s color histogramhi usingI masked

with the respective bounding box
5: Comparehi with h and store the result
6: end for
7: Pick the pedestrian with the highest match score

8: Update stored signatureh when the conditions differ suffi-
ciently from those whenh was last computed and stored.3

Fixate Algorithm

1: Let m andn be the dimensions of the video image in pixels
2: Let (l, b) and(r, t) be the left-bottom and right-top corners of

the rectangle defining the ROI
3: Let fx andfy be the camera’s FOV settings (indegrees) along

the image’sx andy axes, respectively
4: Center of the image,cI =

(
m
2

, n
2

)
5: Center of the ROI,cROI =

(
l+r
2

, b+t
2

)
6: Define rectangler1 with cornerscI ∓ 0.025 ∗ (m, n)
7: Define rectangler2 with cornerscI ∓ 0.225 ∗ (m, n)
8: if ROI is enclosed withinr1 then
9: Set state =Maintain

10: end if
11: if ROI is not enclosed withinr2 then
12: Set state =Turn
13: end if
14: Error,(ex, ey) = cI − cROI

15: if state isMaintain then
16: Control-signal =(0, 0) {rotation about localx andy axes}
17: else
18: Control-signal =k

(
〈ex〉 fx

m
, 〈ex〉 fy

n

)
19: end if

Zoom Algorithm

1: Let m andn be the dimensions of the video image in pixels
2: Let (l, b) and(r, t) be the left-bottom and right-top corners of

the rectangle defining the ROI

3E.g.,zoomingcan drastically change the appearance of a pedestrian,
thereby confounding traditional appearance-based schemes such as color
histogram signatures.
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3: Let fx andfy be the camera’s FOV settings (indegrees) along
the image’sx andy axes, respectively

4: Desired coverage,dr ∈ [0, 1], where 1 means that ROI should
cover the entire image.

5: Let r is the smallest rectangle that encloses the ROI and whose

aspect ratio isn
m

, and let arear = area ofr
mn

6: Error,e = arear − dr

7: if 〈e〉 < 0.01 then
8: Set state =Maintain
9: end if

10: if 〈e〉 > 0.03 then
11: Set state =Act
12: end if
13: if state isMaintain then
14: Control-signal =0
15: else
16: if e > 0 then
17: Control-signal =min(1.0, k〈e〉)
18: else
19: Define rectanglervalid with corners(m

2
, n

2
) ∓ 0.45 ∗

(m, n)
20: if r is not enclosed withinrvalid then
21: Control-signal =0
22: end ifrvalid and
23: Let (vx, vy) be the corner ofr that is farthest from the

point
(

m
2

, n
2

)
24: Let s =

{
2 vx

m
if vx ≥ vy

2
vy

n
if vx < vy

25: Let s′ = 1− s2

0.4+s2

26: Control-signal =−min
(
1.0, k

(
1− s2

0.4+s2

)
〈e〉

)
27: end if
28: end if
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