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ABSTRACT

Future generations of advanced, autonomous virtual humans will
likely require artificial vision systems that more accurately model
the human biological vision system. With this in mind, we propose
a strongly biomimetic model of visual perception within a novel
framework for human sensorimotor control. Our framework fea-
tures a biomechanically simulated, musculoskeletal human model
actuated by numerous skeletal muscles, with two human-like eyes
whose retinas have spatially nonuniform distributions of photore-
ceptors not unlike biological retinas. The retinal photoreceptors
capture the scene irradiance that reaches them, which is computed
using ray tracing. Within the sensory subsystem of our model,
which continuously operates on the photoreceptor outputs, are
10 automatically-trained, deep neural networks (DNNs). A pair of
DNNs drive eye and head movements, while the other 8 DNNs
extract the sensory information needed to control the arms and
legs. Thus, exclusively by means of its egocentric, active visual
perception, our biomechanical virtual human learns, by synthesiz-
ing its own training data, efficient, online visuomotor control of
its eyes, head, and limbs to perform tasks involving the foveation
and visual pursuit of target objects coupled with visually-guided
reaching actions to intercept the moving targets.

CCS CONCEPTS

- Computing methodologies — Computer vision; Computer
graphics; Animation; Bio-inspired approaches; Neural net-
works; Artificial life; Physical simulation;

KEYWORDS

Biomimetic visual perception; Computer vision; Sensorimotor con-
trol; Deep neural network learning; Biomechanical human anima-
tion.

ACM Reference format:

Masaki Nakada, Honglin Chen, and Demetri Terzopoulos. 2018. Deep Learn-
ing of Biomimetic Visual Perception for Virtual Humans. In Proceedings of
SAP ’18: ACM Symposium on Applied Perception 2018, Vancouver, BC, Canada,
August 10-11, 2018 (SAP ’18), 8 pages.
https://doi.org/10.1145/3225153.3225161

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SAP ’18, August 10-11, 2018, Vancouver, BC, Canada

© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.

ACM ISBN 978-1-4503-5894-1/18/08...$15.00
https://doi.org/10.1145/3225153.3225161

Honglin Chen

University of California, Los Angeles

Demetri Terzopoulos
University of California, Los Angeles

1 INTRODUCTION

A provocative and challenging research problem in computer ani-
mation is to enable virtual humans to perceive their photorealistic
3D virtual environments in a way similar to how we biological
humans perceive our physical surroundings. Tackling this problem
promises to yield autonomous virtual humans that behave more
like real people. In the context of visual perception, our approach
is to develop general-purpose artificial vision systems that more
accurately model the human biological vision system. In this paper,
we develop a strongly biomimetic model of visual perception within
a novel framework for human sensorimotor control.

Biological vision has inspired computational approaches that
mimic what is known about neural mechanisms underlying visual
perception. Recent breakthroughs in machine learning with arti-
ficial (convolutional) neural networks have proven to be effective
in computer vision; however, the application of Deep Neural Net-
works (DNNs5) to sensorimotor systems has received little attention
in either vision or graphics. Sensorimotor functionality in biological
organisms refers to the continuous acquisition and interpretation
of sensory information necessary to produce appropriate motor
responses in order to perform actions that achieve desired goals.

Our sensorimotor framework (see Fig. 1) is unique in that it
features a biomechanical human musculoskeletal model actuated
by numerous skeletal muscles, with two human-like eyes whose
retinas have spatially nonuniform distributions of photoreceptors.
The retinal photoreceptors respond proportionally to the scene
irradiance reaching them, which is computed using ray tracing.
Within the sensory subsystem of our model, which continuously
processes the photoreceptor outputs, are 10 automatically-trained
vision DNNs that operate synergistically. A pair of DNNs, part of
the oculomotor system, control eye movements, as well as head
movements via the cervical muscles, while the other 8 DNNs extract
the sensory information needed to control the muscles of the arms
and legs.1 Thus, driven by its egocentric, active visual perception,
our biomechanical virtual human learns efficient, online visuomotor
control of its eyes, head, and four limbs to perform tasks involving
the foveation and visual pursuit of target objects coupled with
visually-guided reaching actions to intercept the moving targets.

To our knowledge, our visuomotor control system is unprece-
dented not only in its ability to subserve a sophisticated biomechan-
ical human model, but also in its use of modern machine learning
methodologies to control a realistic musculoskeletal system and
perform online visual processing that supports active, foveated
perception, all of which is accomplished by a modular set of DNNs

! In the motor subsystem (bottom half of Fig. 1), two DNNs control the 216 neck
muscles that balance the head atop the cervical column against the downward pull of
gravity and actuate the cervicocephalic musculoskeletal complex, thereby producing
controlled head movements, and 8 DNNs control the limbs; in particular, the 29 muscles
in each of the two arms and the 39 muscles in each of the two legs. See our companion
paper [Nakada et al. 2018] for the details.


https://doi.org/10.1145/3225153.3225161
https://doi.org/10.1145/3225153.3225161

SAP ’18, August 10-11, 2018, Vancouver, BC, Canada

Sensory (R (a) (b)L
Subsystem
Right Retina i Left Retina
ONV ONV

(dRDNNs 2345 (JRDNN I (LDNN6  (d)L DNNs 7,8,9,10

&0
&R0
&0
&R0

%

Average
(f) DNNs | 11,12
] (2RDNNs 13,14 .»\(4. (g)L DNNs 15,16
@ @ ;
ST R
O=0Of 9 P>
: " !
.»\ 4. K/é"”
@ @ z /

| (h)R DNNs 17,18

v
okde
ISy
Motor I_.

Subsystem

Figure 1: The sensorimotor system architecture, whose con-
trollers include a total of 20 DNNs, numbered 1-20.

e SENSORY SUBSYSTEM (top): (a) Each retinal photoreceptor
casts a ray into the virtual world to compute the irradiance
captured by the photoreceptor. (b) The arrangement of the
photoreceptors (black dots) on the left (b)L and right (b)R
foveated retinas. Each retina outputs an Optic Nerve Vector
(ONV). There are 10 vision DNNs. The two (yellow) foveation
DNNss (c) (1,6) input the ONV and produce eye movements
to foveate visual targets. (d) The other eight (green) vision
DNNs—(d)L (7,8,9,10) for the left eye (e)L and (d)R (2,3,4,5)
for the right eye (e)R—also input the ONV and output limb-
to-target visual discrepancy estimates.

e MOTOR SUBSYSTEM (bottom): There are 10 motor DNN .
The (orange) cervicocephalic neuromuscular motor con-
troller (f) (DNNs 11,12) inputs the average of the foveation
DNN responses and outputs activations to the neck mus-
cle group. The four (blue) limb neuromuscular motor con-
trollers (g),(h) (DNNs 13-20) of the limb musculoskeletal
complexes input the average of the left (d)L and right (d)R
limb vision DNN responses and output activations to the re-
spective arm and leg muscle groups.
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that are automatically trained from data synthesized by the human
model itself.

2 RELATED WORK

A number of papers in the literature have explored the topic of
visual perception for autonomous graphical characters. The sem-
inal “Boids” behavioral animation model of Reynolds [1987] for
animating flocks, schools, and herds, maintained group formations
through perceptual awareness of the positions and velocities of
nearby agents. The artificial fishes of Tu and Terzopoulos [1994]
sensed their world through simulated visual perception within a
limited field of view and subject to natural occlusion conditions, as
did the autonomous pedestrians of Shao and Terzopoulos [2005].

Renault et al. [1990] proposed a more elaborate form of “syn-
thetic vision” for behavioral actors, including the automatic com-
putation of internal spatial maps of the world, and they extended
their approach in subsequent efforts [Noser et al. 1995; Thalmann
et al. 1997]. Among others, Kuffner and Latombe [1999], Peters and
O’Sullivan [2002], Courty et al. [2003], Lozano et al. [2003], and
Ondfej et al. [2010] adopted and further developed the synthetic
vision approach.

More relevant to our work is the “animat vision” approach of
Terzopoulos and Rabie [1995], which employed foveated perception,
eye movements, and computer vision algorithms. It was applied
within a kinematic virtual human capable of bipedal locomotion,
demonstrating active, vision-guided tracking and pursuit [Rabie
and Terzopoulos 2000]. A similar kinematic virtual human model,
named “Walter”, was proposed by Sprague et al. [2007] to study
visuomotor control in the context of a sidewalk navigation task.

Closely related to the work reported in the present paper, Yeo
et al. [2012] developed a visuomotor system for another kinematic,
anthropomorphic virtual character, which was capable of visual
target estimation tasks and demonstrated realistic ball catching
actions; however, the character predicts the trajectories of thrown
balls from their known positions and velocities in 3D space, without
performing any biologically-inspired visual processing.

By contrast, our work is the first to employ a fully dynamic (as
opposed to purely kinematic), biomechanically-simulated, human
musculoskeletal model. This presents a much more biomimetic and
difficult visuomotor control problem, especially so for human-like
eyes, capable of eye movements, that are part of a cervicocephalic
complex actuated by 216 muscles. Moreover, we are the first to
attempt a deep learning approach to tackling this problem.

Unlike the uniform Cartesian grid visual sampling of synthetic
vision techniques and artificial imaging sensors, visual sampling in
the primate retina is known to be strongly space-variant [Schwartz
1977]. The density of cone photoreceptors decreases radially from
the fovea toward the periphery. Log-polar photoreceptor distribu-
tions are a common model of space-variant image sampling [Grady
2004; Koenderink and Van Doorn 1978; Wilson 1983].

The virtual humans demonstrated by Rabie and Terzopoulos
[2000] were equipped with eyes implemented as coaxial virtual
cameras that rendered polygon-shaded images via the GPU pipeline,
thus yielding multiresolution pyramids supporting foveal/peripheral
vision. Our retinal model is significantly more biomimetic. Given
their fundamentally nonuniform distributions of photoreceptors,
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(b) Dorsal view

(a) Frontal view

Figure 2: The biomechanical model, showing the muscu-
loskeletal system with its 193 bones and 823 Hill-type mus-
cle actuators.

specifically noisy log-polar distributions, the retinas in our eye mod-
els sample the 3D scene using ray tracing, which better emulates
how the human retina samples scene radiance from the incidence
of light on its photoreceptors. Ray tracing has also been applied in
ophthalmology as a methodology for synthesizing retinal images
in order to predict changes in visual performance due to changes
in the eyes [Greivenkamp et al. 1995; Wei et al. 2014].

3 BIOMECHANICAL MUSCULOSKELETAL
HUMAN MODEL

Fig. 2 shows the anatomically accurate musculoskeletal system of
our human model. It includes all of the relevant articular bones
and muscles—193 bones connected by joints comprising 163 ar-
ticular degrees of freedom, plus a total of 823 muscle actuators.
Each skeletal muscle is modeled as a Hill-type uniaxial contractile
actuator that applies forces to the bones at its points of insertion
and attachment.? The human model is numerically simulated as
a force-driven articulated multi-body system (refer to [Lee et al.
2009] for the details).

Each muscle actuator is activated by an independent, time-varying,
efferent activation signal a(t). Given our human model, the overall
challenge in neuromuscular motor control is to determine the ac-
tivation signals for each of its 823 muscles necessary to carry out
various motor tasks. For now, we mitigate complexity by placing
our virtual human in a seated position, immobilizing the pelvis
as well as the lumbar and thoracic spinal column vertebra and
other bones of the torso, leaving the cervicocephalic, arm, and leg
neuromuscular complexes free to articulate.

Additional details about our biomechanical human musculoskele-
tal model and the 5 neuromuscular motor controllers comprising
its motor subsystem (see Footnote 1 and the lower half of Fig. 1)
are presented in our companion paper [Nakada et al. 2018]. The re-
mainder of the present paper develops in greater detail the sensory

2The muscle actuators are embedded in a finite element model of the musculotendinous
soft tissues of the body that produces realistic flesh deformations. For the purposes
of the research reported in the present paper, however, the finite element soft-tissue
simulation is unnecessary and it is excluded in order to reduce the computational cost.
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Figure 3: (a) Rays cast from the positions of photoreceptors
on the retina through the pinhole aperture and out into the
scene by the ray tracing procedure that computes the irra-
diance responses of the photoreceptors. (b) Rays cast from
both eyes as the seated virtual human looks forward.

subsystem, which is illustrated in the top half of Fig. 1. Currently,
the sensory subsystem is purely visual.

4 EYE AND RETINA MODELS

Eye model: We modeled the eyes in accordance with human
physiological data.® As shown in Fig. 1le, we model the virtual eye
as a sphere of 12mm radius that can be rotated with respect to
its center around its vertical y axis by a horizontal angle of 8 and
around its horizontal x axis by a vertical angle of ¢. The eyes are
in their neutral positions, looking straight ahead, when 6 = ¢ = 0°.
We currently model the eye as an ideal pinhole camera with aperture
(optical center) at the center of the pupil and with horizontal and
vertical fields of view of 167.5°.

We compute the irradiance at any point on the spherical reti-
nal surface at the back of the eye using conventional ray tracing.
Sample rays from the positions of photoreceptors on the retinal
surface are cast through the pinhole and out into the 3D virtual
world, where they recursively intersect with the visible surfaces of
virtual objects and, in accordance with the Phong local illumination
model, combine with shadow rays to light sources. The RGB values
returned by these rays determine the irradiance impinging upon
the retinal photoreceptors. Fig. 3 illustrates the retinal “imaging”
process.

Placement of the Photoreceptors: To emulate biomimetic foveated
vision, we procedurally position the photoreceptors on the hemi-
spherical retina according to a noisy log-polar distribution, which
has greater biological fidelity compared to earlier foveated vision
models [Rabie and Terzopoulos 2000]. On each retina, we include
3,600 photoreceptors situated at

N, 0%)
" [N(y, o?)

where 0 < p; < 40, incremented in steps of 1,and 0 < ¢; < 360°,
incremented in 4° steps, and where A denotes additive IID Gaussian
noise. We set mean y = 0 and variance o = 0.0025, which places
the photoreceptors in slightly different positions on the two retinas.

cos a;
sin a;

d; =epf[

] , for1 <k <3,600, (1)

3The transverse size of an average eye is 24.2 mm and its sagittal size is 23.7 mm. The
approximate field of view of an individual eye is 100 degrees to temporal, 45 degrees
to nasal, 30 degrees to superior, and 70 degrees to inferior. The combined field of view
of the two eyes is approximately 200 degrees horizontally and 135 degrees vertically.
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(b) Right retina

(a) Left retina

Figure 4: Positions of the photoreceptors (black dots) on the
retinas according to the noisy log-polar model.

10,800-D ONV/

(b) Limb vision DNN

Figure 5: The vision DNN architecture.

Fig. 4 illustrates the placement of the photoreceptors on the left and
right retinas. Other placement patterns are readily implementable,
including more elaborate procedural models [Deering 2005] or
photoreceptor distributions empirically measured from biological
eyes, all of which differ dramatically from the uniformly-sampled
rectangular images common in computer graphics and vision.

Optic nerve vectors: The foveated retinal RGB “image” captured
by each eye is output for further processing down the visual path-
way, not as a 2D array of pixels, but as a 1D vector of length
3,600 X 3 = 10,800, which we call the Optic Nerve Vector (ONV).
The raw sensory information encoded in the ONV feeds the vision
DNN s that directly control eye movements and feed the neuromus-
cular motor controller networks that orchestrate neck-actuated
head motions and the actions of the limbs.
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Figure 6: Time sequence (a)-(d) of photoreceptor responses
in the left retina during a saccadic eye movement that
foveates and tracks a moving white sphere. At time t; the
sphere becomes visible in the periphery, at ¢; the eye move-
ment is bringing the sphere toward the fovea, and the mov-
ing sphere is being fixated in the fovea at times ¢, and t3.

5 VISION DNNs (1-10)*

Fig. 1 overviews the sensorimotor system, which comprises sensory
and motor subsystems, and its caption describes the information
flow and the functions of the system’s 20 DNN controllers (num-
bered 1-20 in the figure). The previous section presented the details
of the eyes (Fig. 1e) and their retinas (Fig. 1b). Next, we will discuss
in greater detail the 10 vision DNNs (numbered 1-10 in Fig. 1).

The sensory subsystem includes two types of vision DNNs. Both
input the visual information provided by the 10,800-dimensional
ONV. Through a systematic set of experiments (see Section 7), we
identified a common DNN architecture (Fig. 5) that works well for all
10 vision DNNs—tapered, feedforward, fully-connected networks
with six hidden layers of rectified linear units (ReLUs).

The first type of vision DNNs are foveation DNNs that control
eye movements, as well as head movements via the cervicocephalic
neuromuscular motor controller. The second type are limb vision
DNNs, which produce arm-to-target 3D discrepancies, Ax, Ay, and
Az, that drive limb actions via the limb neuromuscular motor con-
trollers. Both types are described in the next two sections.

5.1 Foveation DNNs (1,6)

Along with the eyes, the left and right foveation DNNs constitute
the oculomotor subsystem. The first role of these DNNs is to pro-
duce voluntary changes in gaze direction by driving saccadic eye
movements to foveate visible objects of interest, thereby observing
them with maximum visual acuity. This is illustrated in Fig. 6 for a
white sphere in motion that enters the field of view from the lower
right, stimulating some peripheral photoreceptors at the upper left
of the retina. The eye almost instantly performs a saccadic rota-
tion to foveate the visual target. Fine adjustments comparable to
microsaccades are observed during fixation.

To aid foveation, fixation, and visual tracking, eye movements
induce compensatory head movements, albeit much more sluggish
ones due to the considerable mass of the head. Hence, the second
role of the foveation DNNs is to control head movements, by driv-
ing the cervicocephalic neuromuscular voluntary motor DNN (11)
(Fig. 1f) with the average of their two outputs.

As shown in Fig. 5a, the input layer to this DNN has 10,800 units
in accordance with the dimensionality of the ONV, the output layer
has 2 units representing eye rotation adjustments, A9 and A¢, and
there are 6 hidden layers with unit counts as indicated in the figure.

4The numbers in parentheses here and elsewhere refer to numbered DNNs in Fig. 1.
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Figure 7: Photoreceptor responses during an arm-reaching
motion toward a moving target sphere. The photoreceptors
are simultaneously stimulated by the fixated red sphere and
by the green arm entering the eye’s field of view from the
lower right (upper left on the retina).

We chose this network architecture as a result of a systematic set
of experiments reported in Section 7.

We use our human model to train the network, as follows: We
present a white sphere within the visual field. The responses of
the photoreceptors in the retinas of each eye are computed by ray
tracing the 3D scene, and they are output as the RGB components of
the respective ONV. Given its ONV input, the desired output of the
network is the angular discrepancies, Af and A¢, between the actual
gaze directions of the eyes and the known gaze directions that would
foveate the sphere. Repeatedly positioning the sphere at random
locations in the visual field, we generated a large training dataset of
1M input-output pairs. The backpropagation DNN training process
(see Footnote 5) converged to a small error after 80 epochs before
triggering the early stopping condition to avoid overfitting.

5.2 Limb Vision DNNs (2,3,4,5 & 7,8,9,10)

The role of the left and right limb (arm and leg) vision DNNs is
to estimate the separation in 3D space between the position of
the end effector (hand or foot) and the position of a visual target,
thus driving the associated limb neuromuscular motor controller to
extend the limb to touch the target. This is illustrated in Fig. 7 for
a fixated red sphere and a green arm that enters the eye’s field of
view from the lower right, stimulating peripheral photoreceptors
at the upper left of the retina.

The architecture of the limb vision DNNs, shown in Fig. 5b, is
identical to the foveation DNNs, except for the size of the output
layer, which has 3 units, Ax, Ay, and Az, the estimated discrepancies
between the 3D positions of the end effector and visual target.

Again, we use our biomechanical human musculoskeletal model
to train the four limb vision DNNs, as follows: A red sphere is
presented in the visual field and the trained foveation DNNs are
allowed to foveate the sphere. Then, a limb (arm or leg) is extended
toward the sphere. Again, the responses of the photoreceptors in
the retinas of the eyes are computed by ray tracing the 3D scene,
and they are output as the RGB components of the respective ONV.
Given the ONV input, the desired output of the network is the
discrepancies, Ax, Ay, and Az, between the known 3D positions of
the end effector and visual target. Repeatedly placing the sphere
at random positions in the visual field and randomly articulating
the limb to reach for it in space, we generated a training dataset of
1M input-output pairs. The backpropagation DNN training process
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(d) (e) ®

Figure 8: Sequences of frames rendered from a simulation of
the biomechanical virtual human sitting on a stool, demon-
strating active visual sensory and motor responses—a left-
arm reaching action (a)—(c) and a left-leg kicking action
(d)—(f) to intercept balls shot at it by a cannon. The balls
are observed by the eyes via the vision DNNs, foveated
and tracked through eye movements in conjunction with
muscle-actuated head movements controlled by the cervic-
ocephalic neuromuscular motor controller, while visually
guided, muscle-actuated limb movements are controlled by
the left arm and left leg neuromuscular motor controllers.
The muscles are color coded to distinguish the different mus-
cle groups, with brightness proportional to each contractile
muscle’s efferent neural activation.

converged to a small error after 388 epochs, which triggered the
early stopping condition to avoid overfitting. As expected, due
to the higher complexity of this task, the training is significantly
slower than for the foveation DNN.

6 RESULTS

Fig. 8 shows a sequence of frames from a simulation demonstrating
the functionality of the sensorimotor system. A cannon shoots balls
at the virtual human, which it actively perceives with its eyes and
reaches out with its arms and legs to intercept. Its 20 DNNs operate
continuously and synergistically. The ONVs from the retinas are
processed by the pair of foveation DNNS, driving the foveation
and visual pursuit of the incoming balls through eye movements
coupled with cooperative head movements that pursue the gaze di-
rection. The head movements are controlled by the cervicocephalic
neuromuscular motor controller, which is fed by the average of
the foveation DNN outputs. Naturally, the head movements are
much more sluggish than the eye movements due to the consider-
able mass of the head. Simultaneously, guided by the outputs of
the four pairs of limb vision DNNS, the neuromuscular limb motor
controllers actuate the arms and legs such that they extend to inter-
cept the incoming balls, deflecting them out of the way. Thus, the
biomechanical human musculoskeletal model continuously con-
trols itself, in gravity, to carry out this nontrivial sensorimotor task
in an online, (virtual) real-time manner, and no balls shot at it are
missed.

Additional experiments and demonstrations are presented in our
companion paper [Nakada et al. 2018].
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Figure 9: Training progress of the foveation DNN in exper-
iments with various network shapes (a),(b); depths (c),(d);
widths (e),(f); learning rates (g),(h); weight initializations
(i),(j); and activation functions (k),(1). Graphs on the right
magnify the bottom 10% of the graphs on the left.
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Figure 10: Average time per epoch (a) for networks of vari-
ous shapes and (b) for networks of various depths.

7 VISION DNN EXPERIMENTS

We conducted a systematic set of experiments to compare the per-
formance of various possible vision DNN architectures and training
techniques. The networks were implemented and trained using the
Theano library [Bergstra et al. 2010] running on an NVIDIA Titan
X GPU installed in a Ubuntu 16.04 system.>

This section presents our experiments with the foveation DNNs.
For each experiment, we randomly selected a 0.1M input-output-
pair validation subset from the 1M input-output-pair synthesized
training dataset. The smaller datasets that we employed reduced
the computational load, thus enabling more rapid experimentation.

Network shape: We conducted training experiments with the
Foveation DNN controller using 11 different network architectures
of various shapes. The network shapes are as follows, where the
leftmost number, rightmost number, and intermediate numbers
indicate the number of units in the input layer, output layer, and
hidden layers, respectively:

(1) 10,800 | 100 | 200 | 2

(2) 10,800 | 200 | 100 | 2

(3) 10,800 | 300 | 200 | 100 | 2
(4) 10,800 | 100 | 200 | 300 | 2
(
(
(
(

5) 10,800 | 500 | 250 | 100 | 50 | 25 | 2
6) 10,800 | 25 | 50 | 100 | 250 | 500 | 2
7) 10,800 | 100 | 250 | 500 | 250 | 100 | 2
250 | 500 | 2
2

2

2

8) 10,800
(9) 10,800
(10) 10,800
(11) 10,800

500 | 250 | 100
10,000 | 10,000
20,000 | 10,000
10,000 | 20,000

The list encompasses deep and shallow as well as narrow and wide
network architectures with straight, regular, inverse triangle, and
diamond shapes. Fig. 9a graphs the mean squared error as a func-
tion of the number of epochs during the training process on the
validation datasets for each of the above listed network architec-
tures, by number. All the training processes converged; however,
the convergence speed and stability varied across the architectures.
The shallow-narrow neural networks (1,2,3,4) required the largest
number of epochs to converge. The progress of learning was sta-
ble but slow. The shallow-wide neural networks (9,10,11) where
5 The DNNs employ rectified linear units (i.e., the ReLU activation function). The total

number of weights in the vision DNNs is 11,458,227 for the foveation DNNs (Fig. 5a)
and 11,458,253 for the limb vision DNNs (Fig. 5b). The initial weights are sampled from
the zero-mean normal distribution with standard deviation /2/fan_in, where fan_in
is the number of input units in the weight tensor [He et al. 2015]. To train the DNNs,
we apply the mean-squared-error loss function and the Adaptive Moment Estimation
(Adam) stochastic optimizer [Kingma and Ba 2014] with learning rate 7 = 107, step
size @ = 1073, forgetting factors B = 0.9 for the gradients and B, = 0.999 for their
second moments, and avoid overfitting using the early stopping condition of negligible
improvement for 10 successive epochs. Each epoch requires less than 10 seconds of
computation time.
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more efficient but less stable, in the sense that they required fewer
epochs, but the error did not decrease monotonically, as we see
in Fig. 9b. The deep architectures (5,6,7,8) converged quickly and
stably. The deep tapered network (5) converged with the best speed
and stability. The average time spent for each epoch is shown in
Fig. 10a. As expected, it increases with the number of weights,
wide networks requiring 10 to 20 times more computation time per
epoch than narrow ones. However, using a trained wide network
for online control allows parallelization, since the outputs of units
in the same layer can be computed independently, although the
layers must be computed sequentially, rendering deeper networks
less parallelizable. Overall, the training times for the more elaborate
architectures were similar to those for the simpler ones, since the
former required fewer epochs, albeit more time per epoch, whereas
the latter required more epochs, but less time per epoch.

Network depth: The next set of experiments evaluated networks
of the same tapered shape, but different depths, as follows:
(1) 10,800 | 200 | 100 | 2

(2) 10,800 | 300 | 200 | 100 | 2

(3) 10,800 | 400 | 300 | 200 | 100 | 2

(4) 10,800 | 500 | 250 | 100 | 50 | 25 | 2

(5) 10,800 | 1,000 | 500 | 250 | 100 | 50 | 25 | 2

(6) 10,800 | 1,800 | 1,000 | 500 | 250 | 100 | 50 | 25 | 2

(7) 10,800 | 3,000 | 1,800 | 1,000 | 500 | 250 | 100 | 50 | 25 |2

(8) 10,800 | 4,500 | 3,000 | 1,800 | 1,000 | 500 | 250 | 100 | 50 | 25 | 2
)

10,800 | 680 | 550 | 430 [ 320 | 230 | 150 ||805| > 20102
As necessary, we included larger layers after the input layer so as to
increase the number of layers while maintaining the tapered shape.
Fig. 9c graphs the mean squared error as a function of the number
of epochs during the training process. Interestingly, fewer epochs
were necessary with increasing network depth. In Experiment 9,
we decreased the number of units in each layer by an order of mag-
nitude and observed that the number of epochs required increased
significantly. These results show that both the number of layers and
the number of units per layer—that is, the total number of weights—
contribute to the regression abilities of the vision network. The
average compute time spent on each epoch is shown in Fig. 10b.
This was less than 3.7 seconds for each epoch, until the number of
hidden layers is increased to 7. Networks with more than 7 hidden
layers required significantly more time per epoch. This is due to the
complexity of the architecture and the larger number of weights to
train. For Experiment 9, with the tenfold decrease in the number of
units, the training time for each epoch again decreases to around 4
seconds.

Hence, to strike a good compromise between accuracy, efficiency,
and stability, we decided to use a 6-hidden-layer network architec-
ture.

Network width: The next set of experiments evaluated networks
of the same depth, but different widths, as follows:

(1) 10,800 | 100 | 100 | 2
) 10,800 | 1,000 | 1,000 | 2
) 10,800 | 10,000 | 10,000 | 2
) 10,800 | 200 | 100 | 2
(5) 10,800 | 2,000 | 1,000 | 2
) 10,800 | 20,000 | 10,000 | 2
) 10,800 | 100 | 200 | 2
) 10,800 | 1,000 | 2,000 | 2
(9) 10,800 | 10,000 | 20,000 | 2

Fig. 9e graphs the network training convergences. We see that the
wider the architectures, the fewer epochs are required. This is as
expected, because the network’s representation capability should
increase as the number of nodes in each layer increases. The results
show that the shape of wide neural networks (straight, tapered,
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or inverse tapered) has only a minor influence. Although most of
these networks converged well, the training progress was not as
efficient and stable as for the deeper architectures.

Learning rate: We conducted experimental trainings with the
foveation DNN using 11 different architectures to determine the best
learning rate with Adam optimization. The number of hidden layers
was fixed to 6 with the tapered DNN used in the network depth
experiment. Only the learning rates for the stochastic optimization
differ. We choose 11 different learning rates decreasing by factors
of 10, such that, for 1 < n < 11, Experiment n employs a learning
rate of 10™". Fig. 9g graphs the network training convergences. It
can be seen that the training is most efficient and stable when the
learning rate is 107°. For learning rates less than 1078, the trainings
do not converge. For learning rates greater than 1074, the trainings
converged very quickly; however, they appear unstable and may
not work robustly for other datasets.

Hence, to achieve a good balance between stability and efficiency,
we chose 107° as the Adam learning rate in our offline training
process.

Weight initialization: The next set of experiments evaluated the
following different weight initialization methods using networks
with the tapered-shape, 6-hidden-layer architecture used in the
network depth experiment:

1) Uniform
2) LeCun uniform
3) Normal

4) Orthogonal
5) Zeros

6) Ones

(
(
(
(
E
(7) He Uniform
(

8) He Normal
(9) Glorot uniform

(10) Glorot normal
Fig. 9i graphs the network training convergences. Although most
of the training processes worked well, those with Uniform and
Normal weight initialization were slower to converge. The Zeros
initialization method does not converge until near the end.

Hence, we decided to employ He Normal initialization, because
it yields fast and stable convergence and, indeed, it is one of the
most popular weight initialization methods.

Activation function: The next set of experiments evaluated the
following different activation functions using networks with the
tapered-shape, 6-hidden-layer architecture used in the network
depth experiments:

(1) Linear

(2) Soft Plus

(3) Soft Sign

(4) Hard Sigmoid
(5) Sigmoid

(6) Tanh

(7) RelLU

Fig. 9k graphs the training convergences. Networks using ReLU,
Soft Sign, and Tanh activation functions show fast convergence.
Those using Linear, Sigmoid, and Hard Sigmoid do not converge.
The network using Soft Plus converged, but slowly.

Although Tanh and Soft Sign required fewer epochs in this exper-
iment, we decided to use ReLU activation for its known advantages
of sparsity of the representation, absence of vanishing gradients,
greater biological plausibility, and computational simplicity, which

leads to superior stability and robustness.
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8 CONCLUSION

We have presented a simulation framework for investigating bio-
mimetic human sensory and sensorimotor control. Our framework
is unique in that it features an anatomically accurate, biomechani-
cally simulated, human musculoskeletal model that is actuated by
numerous contractile skeletal muscles. Our contributions in this
paper include the following primary ones:

e The development of a biomimetic, foveated retina model,
which is deployed in a pair of human-like eyes capable of
realistic eye movements, that employs ray tracing to com-
pute the irradiance captured by a multitude of nonuniformly
arranged photoreceptors.

e Demonstration of the performance of our sensorimotor sys-
tem in tasks that simultaneously involve eye movement con-
trol for saccadic foveation and pursuit of visual targets in
conjunction with cooperative, dynamic head motion control,
plus visually-guided dynamic limb control to produce nat-
ural arm and leg extension actions that enable the virtual
human to intercept moving target objects.

8.1 Future Work

Our current eye model is an ideal pinhole camera. We plan to
create a more realistic eye model that not only has a finite-aperture
pupil that dilates and constricts to accommodate to the incoming
light intensity, but also includes cornea and lens components to
refract light rays and is capable of adjusting the optical depth of
field through active, ciliary muscle control of the lens deformation.
Furthermore, our current eye model is a purely kinematic rotating
sphere. We plan to implement a biomechanical eye model with the
typical 7.5 gram mass of a human eyeball, actuated by extraocular
muscles, not just the 4 rectus muscles to induce most of the 6, ¢
movement of our current kinematic eyeball, but also the 2 oblique
muscles to induce torsion movements around the gaze direction.

Our biomimetic vision system generates saccadic eye movements
to foveate objects of interest in a variety of different scenarios.
Hence, our model can be valuable in human visual attention re-
search, a topic that we wish to explore in future work. In this con-
text, of most relevance to our approach would be models of visual
attention that are based on deep learning, ideally through irregu-
lar convolutional neural networks that conform to nonuniformly
distributed retinal photoreceptors.

The tasks of the DNNs, which must estimate from their ONV
inputs the discrepancy between the 3D positions of the end effector
and visual target, are made difficult by the fact that 3D depth infor-
mation is naturally lost with projection onto the 2D retina and, in
fact, the estimation of depth discrepancy is currently rather poor.
This limitation provides an opportunity to explore binocular stere-
opsis with an enhanced version of our foveated perception model.
For this, as well as for other types of subsequent visual processing,
we will likely want to increase the number of photoreceptors, ex-
periment with different nonuniform photoreceptor organizations,
and automatically construct 2D retinotopic maps from the 1D ONV
inputs.
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