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Abstract

We address the difficult open problem of emulating the rich complexity of real pedestrians in urban environments.
Our artificial life approach integrates motor, perceptual, behavioral, and cognitive components within a model
of pedestrians as individuals. Our comprehensive model features innovations in these components, as well as in
their combination, yielding results of unprecedented fidelity and complexity for fully autonomous multi-human
simulation in a large urban environment. We represent the environment using hierarchical data structures, which
efficiently support the perceptual queries of the autonomous pedestrians that drive their behavioral responses and
sustain their ability to plan their actions on local and global scales.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation; I.6.8 [Simulation and Modeling]: Types of Simulation—Animation

1. Introduction

“Forty years ago today at 9 a.m., in a light rain,
jack-hammers began tearing at the granite walls
of the soon-to-be-demolished Pennsylvania Sta-
tion, an event that the editorial page of The New
York Times termed a “monumental act of vandal-
ism” that was “the shame of New York.” ”

(Glenn Collins, The New York Times, 10/28/03)

The demolition of New York City’s original Pennsylvania
Station (Fig. 2), which had opened to the public in 1910, in
order to make way for the Penn Plaza complex and Madison
Square Garden, was “a tragic loss of architectural grandeur”.
Although state-of-the-art computer graphics enables a vir-
tual reconstruction of the train station with impressive ge-
ometric and photometric detail, it does not yet enable the
automated animation of the station’s human occupants with
anywhere near as much fidelity. Our research addresses this
difficult, long-term challenge.

In a departure from the substantial literature on so-called
“crowd simulation”, we develop a decentralized, compre-
hensive model of pedestrians as autonomous individuals ca-
pable of a broad variety of activities in large-scale synthetic

† www.mrl.nyu.edu/∼{weishao,dt}

urban spaces. Our artificial life approach to modeling hu-
mans spans the modeling of pedestrian appearance, locomo-
tion, perception, behavior, and cognition. We deploy a mul-
titude of self-animated virtual pedestrians within a large en-
vironment model, a VR reconstruction of the original Penn
Station (Fig. 1). The environment model includes hierar-
chical data structures that support the efficient interaction
between numerous pedestrians and their complex virtual
world through fast (perceptual) query algorithms and sup-
port pedestrian navigation on local and global scales.

We continue with a review of related work in Section 2.
Section 3 briefly reviews our virtual environment model. In
Section 4, we present our autonomous pedestrian model,
mostly focusing on its (reactive) behavioral and (delibera-
tive) cognitive components. Section 5 presents results com-
prising long term simulations with well over 1000 pedestri-
ans and reports on performance. Finally, Section 6 concludes
the paper and discusses future work.

2. Related Work

Human animation is an important and challenging problem
in computer graphics [BPW93]. Psychologists and sociolo-
gists have been studying the behavior and activities of peo-
ple for many years. Closer to home, pedestrian simulation
has recently begun to capture the attention of CG researchers
[ALA∗01, MT01]. The topic has also been of some interest

c© The Eurographics Association 2005.



Shao, Terzopoulos / Autonomous Pedestrians

Figure 1: A large-scale simulation of a virtual train station populated by self-animated virtual humans. From left to right are
rendered images of the main waiting room, concourses, and arcade.

Figure 2: Original Pennsylvania Station in New York City.

in the field of artificial life [BA00], as well as in architec-
ture and urban planning [Lov93, SE01] where graphics re-
searchers have assisted in visualizing planned construction
projects, including pedestrian animation [FMS∗00, MH03].

In pedestrian animation, the bulk of prior research has fo-
cused on synthesizing natural locomotion (a problem that
we do not consider in this paper) and on path planning
(one that we do). The seminal work of [Rey87] on be-
havioral animation is certainly relevant to our effort, as
is its further development in work by other researchers
[TT94,TDB∗02,LRBW04]. Behavioral animation has given
impetus to an entire industry of applications for distributed
(multiagent) behavioral systems that are capable of syn-
thesizing flocking, schooling, herding, etc., behaviors for
lower animals, or in the case of human characters, crowd
behavior. Low-level crowd interaction models have been
developed in the sciences [GM85, HM95, BJTG98, Sch02]
and by animation researchers [GKM∗01, LMM03, SGC04,
UdHCT04, LD04] and also in the movie industry by Dis-
ney and many other production houses, most notably in
recent years for horde battle scenes in feature films (see
www.massivesoftware.com).

While our work is innovative in the context of behavioral
animation, it is very different from so-called “crowd ani-
mation”. As the aforementioned literature shows, animating
large crowds, where one character algorithmically follows
another in a stolid manner, is relatively easy. We are unin-
terested in crowds per se. Rather, the goal of our work is to
develop a comprehensive, self-animated model of individual
human beings that incorporates nontrivial human-like abili-

ties suited to the purposes of animating virtual pedestrians in
urban environments. Our approach is inspired most heavily
by the work of [TT94] on artificial animals and by [FTT99]
on cognitive modeling for intelligent characters that can rea-
son and plan their actions. We further develop their compre-
hensive artificial life approach and adopt it for the first time
to the case of an autonomous virtual human model that can
populate large-scale urban spaces. In particular, we pay seri-
ous attention to deliberative human activities over and above
the reactive behavior level.

3. Virtual Environment Model

The interaction between a pedestrian and his/her environ-
ment plays a major role in the animation of autonomous vir-
tual humans in synthetic urban spaces. This, in turn, depends
heavily on the representation and (perceptual) interpretation
of the environment. Recently, [LD04] proposed a suitable
structuring of the geometric environment together with reac-
tive navigation algorithms for pedestrian simulation. While
this part of our work is conceptually similar, our methods
differ. We have devoted considerable effort to developing a
large-scale (indoor) urban environment model, which is de-
scribed in detail elsewhere [ST05], and which we summarize
next.

We represent the virtual environment by a hierarchical
collection of maps. As illustrated in Fig. 3, the model com-
prises (i) a topological map which represents the topological
structure between different parts of the virtual world. Linked
within this map are (ii) perception maps, which provide rel-
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evant information to perceptual queries, and (iii) path maps,
which enable online path-planning for navigation.
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A (waiting room) 
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Figure 3: Hierarchical environment model.

In the topological map, nodes correspond to environmen-
tal regions and edges represent accessibility between re-
gions. A region is a bounded volume in 3D-space (such
as a room, a corridor, a flight of stairs or even an entire
floor) together with all the objects inside that volume (e.g.,
ground, walls, benches). The representation assumes that the
walkable surface in a region may be mapped onto a hor-
izontal plane without loss of essential geometric informa-
tion. Consequently, the 3D space may be adequately rep-
resented within the topological map by several 2D, planar
maps, thereby enhancing the simplicity and efficiency of en-
vironmental queries.

The perception maps include grid maps that represent sta-
tionary environmental objects on a local, per region basis,
as well as a global grid map that keeps track of mobile ob-
jects, usually other pedestrians. These uniform grid maps
store information within each of their cells that identifies
all of the objects occupying that cellular area. The typical
cell size of the grid maps for stationary object perception is
0.2 ∼ 0.3 meters. Each cell of the mobile grid map stores
and updates identifiers of all the agents currently within its
cellular area. Since it serves simply to identify the nearby
agents, rather than to determine their exact positions, it em-
ploys cells whose size is commensurate with the pedestrian’s
visual sensing range (currently set to 5 meters). The percep-
tion process will be discussed in more detail in Section 4.2.

The path maps include a quadtree map which supports
global, long-range path planning and a grid map which sup-
ports short-range path planning. Each node of the quadtree
map stores information about its level in the quadtree, the
position of the area covered by the node, the occupancy
type (ground, obstacle, seat, etc.), and pointers to neigh-
boring nodes, as well as information for use in path plan-
ning, such as a distance variable (i.e., how far the node is
from a given start point) and a congestion factor (the por-
tion of the area of the node that is occupied by pedestrians).
The quadtree map supports the execution of several variants
of the A* graph search algorithm, which are employed to

compute quasi-optimal paths to desired goals (cf. [BMS04]).
Our simulations with numerous pedestrians indicate that the
quadtree map is used for planning about 94% of their paths.
The remaining 6% of the paths are planned using the grid
path map, which also supports the execution of A* and pro-
vides detailed, short-range paths to goals in the presence of
obstacles, as necessary. A typical example of its use is when
a pedestrian is behind a chair or bench and must navigate
around it in order to sit down.

Our environment model is efficient enough to support the
real-time (30fps) simulation of about 1400 pedestrians on a
2.8GHz Xeon PC with 1GB memory. For the details about
the construction and update of our environment model and
associated performance statistics regarding its use in percep-
tion and path planning, we refer the reader to [ST05].

4. Autonomous Pedestrian Model

Like real humans, our synthetic pedestrians are fully au-
tonomous. They perceive the virtual environment around
them, analyze environmental situations, make decisions and
behave naturally. Our autonomous human characters are ar-
chitected as a hierarchical artificial life model. Progressing
through levels of abstraction, our model incorporates ap-
pearance, motor, perception, behavior, and cognition sub-
models. The following sections discuss each of these com-
ponents in turn.

4.1. Human Appearance, Movement, & Motor Control

As an implementation of the low-level appearance and mo-
tor levels, we employ a human animation software pack-
age called DI-Guy, which is commercially available from
Boston Dynamics Inc. It provides textured human characters
with basic motor skills, such as standing, strolling, walking,
running, sitting, etc. [KCR98]. DI-Guy characters are by no
means autonomous, but their actions may be scripted manu-
ally using an interactive tool called DI-Guy Scenario, which
we do not use. DI-Guy also includes an SDK that allows
external C/C++ programs to control a character’s basic mo-
tor repertoire. This SDK enables us to interface DI-Guy to
our extensive, high-level perceptual, behavioral, and cogni-
tive control software, which will be described in subsequent
sections, thereby achieving fully autonomous pedestrians.

Emulating the natural appearance and movement of hu-
man beings is a difficult problem and, not surprisingly, DI-
Guy suffers from several limitations. The character appear-
ance models are insufficiently detailed. More importantly,
DI-Guy characters cannot synthesize the full range of mo-
tions needed to cope with a highly dynamic urban environ-
ment. With the help of the DI-Guy Motion Editor, we have
modified and supplemented the motion repertoire, enabling
faster transitions, which in turn enables our pedestrians to
deal with busy urban environments.

Moreover, we have implemented a motor control interface
between the kinematic layer of DI-Guy, and our behavioral
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Figure 4: Perception. (a-b) Sensing stationary objects, (a)
by examining map cells along the rasterized eye ray, while
(b) perceiving the broader situation by shooting out a fan of
eye rays (rasterization not shown). (c) Sensing mobile ob-
jects by examining (color-coded) tiers of the sensing fan.

controllers. The interface accepts motor control commands
from behavior modules, and it verifies and corrects them in
accordance with the pedestrian’s kinematic limits. It then se-
lects an appropriate motion sequence or posture and calls
upon the kinematic layer to apply the update to the charac-
ter. Our seamless interface hides the details of the underlying
kinematic layer from our higher-level behavior routines, en-
abling the latter to be developed more or less independently.
Hence, in principle, any suitable low-level human animation
API can easily replace DI-Guy in our future work.

4.2. Perception

An autonomous and highly mobile virtual human must have
a perceptive regard of its environment. Our environment
model (Section 3) efficiently provides accurate perceptual
data in response to the queries of autonomous pedestrians.

Sensing ground height. In the static object perception
map, each map cell contains the height functions of usually a
single and sometimes a few ground objects, such as the floor,
stairs, etc. The highest object at the desired foot location of
a pedestrian is returned in constant time and it is processed
within the pedestrian’s motor layer, which plants the foot at
the appropriate height.

Sensing static objects. The visual sensing computation
shoots out a fan of line segments, with length determining
the desired perceptual range and density determining the de-
sired perceptual acuity (Fig. 4 (a)-(b)). Grid cells on the per-
ception map along each line are interrogated for their asso-
ciated object information. This perceptual query takes time
that grows linearly with the length of each line times the
number of lines but, most importantly, it does not depend on
the number of objects in the virtual environment.

Sensing mobile objects. To sense mobile objects (mostly
other humans), a pedestrian must first identify nearby pedes-
trians within the sensing range. The range here is defined by
a fan as illustrated in (Fig. 4(c)). On the mobile object per-
ception map, the cells wholly or partly within the fan are
divided into “tiers” based on their distance to the pedestrian.
Closer tiers are examined earlier. Once a predefined number
(currently set to 16) of nearby pedestrians are perceived, the
sensing is terminated. This is motivated by the fact that, at

any given time, people usually pay attention only to a limited
number of other people, usually those that are most prox-
imal. Once the set of nearby pedestrians is sensed, further
information can be obtained by referring to finer maps, es-
timation, or simply querying some pedestrian of particular
interest. Given the sensing fan and the maximum number of
sensed pedestrians, sensing is a constant time operation.

4.3. Behavioral Control

Realistic behavioral modeling, whose purpose is to link per-
ception to appropriate actions in an autonomous virtual hu-
man, is a big challenge. Even for pedestrians, the complexity
of any substantive behavioral repertoire is high. Consider-
able literature in psychology, ethology, artificial intelligence,
robotics, and artificial life is devoted to the subject. Follow-
ing [TT94], we adopt a bottom-up strategy that uses primi-
tive reactive behaviors as building blocks that in turn support
more complex motivational behaviors, all controlled by an
action selection mechanism.

4.3.1. Basic Reactive Behaviors

Reactive behaviors appropriately connect perceptions to im-
mediate actions. We have developed six key reactive behav-
ior routines, each suitable for a different set of situations in a
densely populated and highly dynamic environment (Fig. 5).
Given that a pedestrian possesses a set of motor skills, such
as standing still, moving forward, turning in several direc-
tions, speeding up and slowing down, etc., these routines are
responsible for initiating, terminating, and sequencing the
motor skills on a short-term basis guided by sensory stimuli
and internal percepts. The details of the six routines, denoted
Routines A–F, are provided in the Appendix.

Several remarks regarding the routines are in order: Obvi-
ously, the fail-safe strategy of Routine E suffices in and of it-
self to avoid nearly all collisions between pedestrians. How-
ever, our experiments show that in the absence of Routines
C and D, Routine E makes the dynamic obstacle avoidance
behavior appear very awkward—pedestrians stop and turn
too frequently and they make slow progress. As we enable
Routines C and D, the obstacle avoidance behavior looks
increasingly more natural. Interesting multi-agent behavior
patterns emerge when all the routines are enabled. For ex-
ample, pedestrians will queue to go through a narrow portal.
In a busy area, lanes of opposing pedestrian traffic will tend
to form spontaneously after a short time.

A remaining issue is how best to activate the six reac-
tive behavior routines. Since the situation encountered by a
pedestrian is always some combination of the six key situa-
tions that are covered by the six routines, we have chosen to
activate them in a sequential manner (Fig. 6), giving each the
chance to alter the currently active motor control command,
comprising speed, turning angle, etc. For each routine, the
input is the motor command issued by its predecessor, either
a higher-level behavior module (possibly goal-directed nav-
igation) or another reactive behavior routine. The sequen-
tial flow of control affords later routines the advantage of

c© The Eurographics Association 2005.



Shao, Terzopoulos / Autonomous Pedestrians

N

C 

C 

H 

C 

C 

 

H 

C 

H 

C 

C 

H 

 

H 

C 

H 

w 

d s 

   N 

C 

C 

C 

C H 

(B) Safety in turning (C) Temporary crowd (D1) Cross collision (D2) Head-on coll’n (E) Front safe area (F) Verify direction

Figure 5: Reactive behaviors. (B) Pedestrians choose best turning curves (light gray) to turn southward. (C) Pedestrians within
H’s front parabola traveling in similar directions as H (labeled C) are in H’s temporary crowd. (D1) To avoid cross collision,
(left) H slows down and turns toward C while C does the opposite until collision is cleared (right). (D2) To avoid head-on
collision, both pedestrians turn slightly away from each other. (E) The dotted rectangle defines H’s front safe area; w and d
depend on H’s bounding box size and d is determined by H’s current speed s. (F) Confronted by static and dynamic threats, H
picks obstacle-free direction (light gray arrow) and slows down (black arrow) to let others pass before proceeding.

 
C A B F E D 

Motor control 

Higher-level behavior control 

Motor control 
command flow 

Reactive behavior 
routines 

Figure 6: Sequencing of the reactive behavior routines in
the best permutation order “C-A-B-F-E-D”.

overriding motor commands issued by earlier routines, but
this may cause the pedestrian to ignore some aspect of the
situation, resulting in a collision. The problem can be mit-
igated by finding a “best” permutation ordering for the six
routines. We have run many extensive simulations (longer
than 20 minutes in virtual time) in the Penn Station environ-
ment with different numbers of pedestrians (333, 666, and
1000), exhaustively evaluating the performance of all 720
possible permutation orderings. The best permutation of the
six routines, in the sense that it results in the fewest collisions
while reasonable progress is still maintained in navigation, is
C-A-B-F-E-D.

4.3.2. Navigational and Motivational Behaviors

While the reactive behaviors enable pedestrians to move
around freely, almost always avoiding collisions, naviga-
tional and motivational behaviors enable them to go where
they desire, which is crucial for pedestrians. A pioneer-
ing effort on autonomous navigation is that by Noser et
al. [NRTMT95]. Metoyer and Hodgins [MH03] propose a
model for reactive path planning in which the user can refine
the motion by directing the characters with navigation prim-
itives. We prefer to have our pedestrians navigate entirely on
their own, as normal biological humans are capable of doing.

As we must deal with online simulations of numerous
pedestrians within large, complex environments, we are con-
fronted with many navigational issues, such as the realism
of paths taken, the speed and scale of path planning, and
pedestrian flow control through and around bottlenecks. We

have found it necessary to develop a number of novel navi-
gational behavior routines to address these issues. These be-
haviors rely in turn on a set of conventional navigational be-
havior routines, including moving forward, turning (in place
or while moving), proceeding toward a target, and arriving
at a target (see [Rey99] for details).

In the Penn Station environment, large regions are con-
nected by narrow portals and stairways, some of which al-
low only two or three people to advance comfortably side
by side. These bottlenecks can easily cause extensive queue-
ing, leading to lengthy delays. In our experience, available
techniques, such as queuing in [Rey99], self-organization in
[HM95], and global crowd control in [MT01] cannot tackle
the problem, as it involves highly dynamic two way traf-
fic and requires quick and flexible responses from pedestri-
ans. In our solution, we employ two behavioral heuristics.
First, pedestrians inside a bottleneck should move with traf-
fic while trying not to impede oncoming pedestrians. Sec-
ond, all connecting passageways between two places should
be used in balance. The two behaviors are detailed next.

Passageway navigation. In real life, if all pedestrians are
traveling in the same direction inside a narrow passageway,
they will tend to spread out in order to see further ahead and
maximize their pace. However, once oncoming traffic is en-
countered, people will tend to form opposing lanes to maxi-
mize the two-way throughput. Our virtual pedestrians incor-
porate a similar behavior. First, two imaginary boundaries
are computed parallel to the walls with an offset of about
half the pedestrian H’s bounding box size (Fig. 7(a)). Re-
stricting H’s travel direction within a safety fan defined by
the boundaries, as shown in the figure, guarantees that H
stays clear of the walls. Second, if H detects that its cur-
rent direction is blocked by oncoming pedestrians, it will
search within the safety fan for a safe interval to get through
(Fig. 7(b)). The search starts from H’s current direction and
continues clockwise. If the search succeeds, H will move in
the safe direction found. Otherwise, H will slow down and
proceed in the rightmost direction within the safety fan. This
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Figure 7: Passageway navigation. (a) Two imaginary
boundaries (dashed lines) and the safety fan. (b) Pedestrian
H searches for a safe direction interval when confronted by
oncoming traffic. (c) Spread out when no oncoming traffic is
observed. (d) Typical flow of pedestrians in a passageway—
big flows on the sides with small unblocking streams inter-
mingling in the middle.

strategy allows non-blocking traffic to intermingle without
resistance. However, in a manner that reflects the preference
of real people in many countries, a virtual pedestrian will
tend to squeeze to the right if it is impeding or impeded
by oncoming traffic (Fig. 7(d)). Finally, Routine C (see the
Appendix) is used to maintain a safe separation between
oncoming pedestrians. By altering their crowding factor wi
based on the observation of oncoming traffic, pedestrians can
spread out or draw tightly to adapt to the situation (Fig. 7(c)).

Passageway selection. People are usually motivated
enough to pick the best option from several available ac-
cess routes, depending on both personal preferences and the
real-time situation in and around those routes. Likewise, our
pedestrians will assess the situation around stairways and
portals, pick a preferred one based on proximity and den-
sity of pedestrians near it, and proceed toward it. They will
persist in the choice they make, unless a significantly more
favorable condition is detected elsewhere. This behavior, al-
though executed independently by each individual, has a
global effect of balancing the loads at different passageways.

With the above two passageway behaviors, we are able to
increase the number of pedestrians within the Penn Station
model from under 400 to well over 1000 without any long-
term blockage in bottlenecks.

Visually-guided navigation among static obstacles is an-
other important behavior for pedestrians. The following two
behavioral routines accomplish this task on a local scale.

Perception-guided navigation among static obstacles.
Given a path P (the global planning of paths will be ex-
plained in the next section), a farthest visible point p on
P—i.e., the farthest point along P such that there is no ob-
stacle on the line between p and the pedestrian H’s current
position—is determined and set as an intermediate target
(Fig. 8). As H progresses toward p, it may detect a new far-
thest visible point that is even further along the path. This en-
ables the pedestrian to approach the final target in a natural,
incremental fashion. During navigation, motor control com-
mands for each footstep are verified sequentially by the en-

H 

T 

Start point 

Obstacle 

H 

F 

T 

(a) (b) (c)

Figure 8: . Perception-guided navigation. (a) To reach target
T , (b) pedestrian H will plan a jagged path on a path map
(either grid or quadtree), (c) pick the farthest visible point
(blue circle marked F) along the path and proceed toward it.

tire set of reactive behavior routines in their aforementioned
order so as to keep the pedestrian safe from collisions.

Detailed “arrival at target” navigation. Before a pedes-
trian arrives at a target, a detailed path will be needed if
small obstacles intervene. Such paths can be found on a fine-
scale grid path map. The pedestrian will follow the detailed
path strictly as it approaches the target, because accuracy
becomes increasingly important in the realism of the navi-
gation as the distance to the target diminishes. As some part
of an obstacle may also be a part of the target or be very
close by, indiscriminately employing reactive behaviors for
static obstacle avoidance—Routines A and B (refer to the
Appendix)—will cause the pedestrian to avoid the obsta-
cle as well as the target, thereby hindering or even prevent-
ing the pedestrian from reaching the target. We deal with
this by temporarily disabling the two routines and letting
the pedestrian accurately follow the detailed path, which al-
ready avoids obstacles. Note that the other reactive behav-
iors, Routines C, D, and E, remain active, as does Routine
F, which will continue to play the important role of verify-
ing that modified motor control commands never lead the
pedestrian into obstacles.

4.3.3. Other Interesting Behaviors

The previously described behaviors comprise an essential
aspect of the pedestrian’s behavioral repertoire. To make our
pedestrians more interesting, however, we have augmented
the repertoire with a set of non-navigational behavior rou-
tines including, among others, the following:

• Select an unoccupied seat and sit down
• Approach a performance and watch
• Meet with friends and chat
• Queue at a vending machine and make a purchase
• Queue at ticketing areas and purchase a ticket

In the last behavior, for example, a pedestrian joins the
queue and stands behind its precursor pedestrian until it
comes to the head of the queue. Then, the pedestrian will ap-
proach the first ticket counter associated with this queue that
becomes available. Space limitations preclude the detailed
specification of the above behaviors in this paper. Note, how-
ever, that these non-navigational behaviors depend on the ba-
sic reactive behaviors and navigational behaviors to enable
the pedestrian to reach targets in a collision-free manner.
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Figure 9: Action selection in a pedestrian commuter.

4.3.4. Mental State and Action Selection

Each pedestrian maintains a set of internal mental state vari-
ables, which encodes the pedestrian’s current physiological,
psychological or social needs. These variables include tired-
ness, thirst, curiosity, the propensity to be attracted by per-
formances, the need to acquire a ticket, etc. When the value
of a mental state variable exceeds a specified threshold, an
action selection mechanism chooses the appropriate behav-
ior to fulfill the need. Once a need is fulfilled, the value of the
associated internal state variable begins to decrease asymp-
totically to zero.

We classify pedestrians in the virtual train station envi-
ronment as commuters, tourists, law enforcement officers,
performers, etc. Each pedestrian type has an associated ac-
tion selection mechanism with appropriately set behavior-
triggering thresholds associated with mental state variables.
For instance, law enforcement officers on guard will never
attempt to buy a train ticket and commuters will never act
like performers. As a representative example, Fig. 9 illus-
trates the action selection mechanism of a commuter.

4.4. Cognitive Control

At the highest level of autonomous control, a cognitive
model [FTT99] is responsible for creating and executing
plans, as is necessary for a deliberative human agent. Such
a model must be able to make reasonable global navigation
plans in order for a pedestrian to travel purposefully and with
suitable perseverance between widely separated regions of
the environment. During the actual navigation, however, the
pedestrian must have the freedom to decide whether or not
and to what extent to follow the plan, depending on the real-
time situation, as we discussed when explaining the behav-
iors in Section 4.3.2. On the other hand, in a highly dynamic
environment such as a train station, the pedestrian also needs
the ability to decide whether and when a new plan is needed.
These decisions require a proper coupling between the be-
havioral layer and cognitive layer. Before we describe the
coupling mechanism, we will explain the global path plan-
ning strategy.

Global path planning directs a pedestrian to proceed

through intermediate regions and finally reach the ultimate
destination. To do this, it exploits the topological map at the
top level of the environment model (Fig. 3). Given a pedes-
trian’s current location and a target region, this map pro-
vides a set of optimal neighboring regions where the pedes-
trian can go. By applying path search algorithms within the
path maps associated with each region, the pedestrian can
plan a path from the current location to the boundary or
portal between the current region and the next. The pro-
cess is repeated in the next region, and so on, until it ter-
minates at the target location. In this way, although the ex-
tent of the path is global, the processing is primarily lo-
cal. Our path search algorithms (detailed in [ST05]), which
are based on the well-known A* graph search algorithm,
are very efficient. But they provide rough paths—i.e., paths
that are either jagged (grid path maps) or containing many
spikes (quadtree path maps)—as opposed to smooth, spline-
like paths. Consequently, a pedestrian uses those rough plans
only as a navigational guide and retains the freedom to lo-
comote locally in as natural a manner as possible, as was
described in Section 4.3.2.

Coupling cognitive control to behavioral control in-
creases the realism of our pedestrians. To this end, every
pedestrian maintains a stack of goals, the top one being the
current goal. The goal stack is accessible both to the deliber-
ative, cognitive layer and to the underlying reactive, behav-
ioral layer. If a goal is beyond the scope of the behavioral
controller (for example, some task that needs path planning),
it will be further decomposed into subgoals, allowing the
cognitive controller to handle those subgoals within its abil-
ity (such as planning a path) and the behavioral controller
to handle the others by initiating appropriate behavior mod-
ules (such as navigation on a local scale). The behavioral
controller can also insert directives according to the internal
mental state and environmental situation (e.g., if thirsty &
vending machine nearby, then push “plan to get a drink”).
This usually interrupts the execution of the current task and
typically invalidates it. When it is time for the interrupted
task to resume, a new plan is often needed. Intuitively, the
goal stack remembers “what needs doing”, the mental state
variables dictate “why it should be done”, the cognitive con-
troller decides “how to do it” at a higher, abstract level, and
the behavior controller determines “how to do it” at a lower,
concrete level and ultimately attempts to “get it done”.

5. Results

Our pedestrian animation system, which comprises about
50,000 lines of C++ code, enables us to run long-term sim-
ulations of pedestrians in a large-scale urban environment—
specifically the Penn Station environment—without man-
ual intervention. The entire 3D space of the Penn Station
(200(l)× 150(w)× 20(h)m3), which contains hundreds of
architectural and non-architectural objects, is manually di-
vided into 43 regions. At run time, our environment model
requires approximately 90MB of memory to accommodate
the station and all of its associated objects.
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Figure 10: Pure simulation time vs. number of pedestrians.
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Figure 11: Computational loads of the system’s parts.

In our simulation experiments, we populate the vir-
tual station with five different types of pedestrians: com-
muters, tourists, performers, policemen, and patrolling sol-
diers. With every individual guided by his/her own au-
tonomous control, these autonomous pedestrians imbue the
virtual train station with liveliness, social (dis)order, and a
realistically complex dynamic.

5.1. Performance

We have run various simulation tests on a 2.8GHz Intel Xeon
system with 1GB of main memory. The total length of each
test is 20 minutes in virtual world time. Fig. 10 indicates the
computational load increase with the number of pedestrians
in the simulation. The simulation times reported include only
the requirements of our algorithms—environment model up-
date and motor control, perceptual query, behavioral control,
and cognitive control for each pedestrian. The figure shows
that real-time simulation can be achieved for as many as
1400 autonomous pedestrians (i.e., 20 virtual world minutes
takes 20 minutes to simulate at 30fps). Although the relation
is best fit by a quadratic function, the linear term dominates
by a factor of 2200. The small quadratic term is likely due to
the fact that the number of proximal pedestrians increases as
the total number of pedestrians increases, but with a much
smaller factor. Fig. 11 breaks down the computational load
for various parts of the simulation based on experiments with
different numbers of pedestrians ranging from 100 to 1000
on the aforementioned PC. Fig. 12 tabulates the frame rates
that our system achieves on the aforementioned PC with an
NVIDEA GeForce 6800 GT AGP8X 256MB graphics sys-
tem. Due to the geometric complexity of the Penn Station

# of Pedestrians 0 100 200 300 400 500

Simulation only n/a 64.4 32.2 23.0 16.9 12.3

Rendering only 21.0 12.5 9.2 7.6 6.0 5.4

Simulation+Rendering 21.0 10.5 7.2 5.7 4.4 3.8

Figure 12: Frame rate (in frames/sec) for pedestrian sim-
ulation only (including DI-Guy), rendering only (i.e., static
pedestrians), and both simulation and rendering, with differ-
ent numbers of pedestrians.

Figure 13: Plan view of the Penn Station model with the roof
not rendered, revealing the 2-level concourses and the train
tracks (left), the main waiting room (center), and the long
shopping arcade (right).

model and numerous pedestrians, rendering times dominate
pedestrian simulation times.

5.2. Animation Examples

We will now describe several representative simulations that
demonstrate specific functionalities. To help place the ani-
mation scenarios in context, Fig. 13 shows a plan view of
the Penn station model.

Following an Individual Commuter. As we claimed in
the introduction, an important distinction between our sys-
tem and existing crowd simulation systems is that we have
implemented a comprehensive human model, which makes
every pedestrian a complete individual with a richly broad
behavioral and cognitive repertoire. We can therefore choose
a commuter and, in a typical animation, follow our subject
as he enters the station, proceeds to the ticket booths in the
main waiting room, and waits in a queue to purchase a ticket
at the first open booth. Having obtained a ticket, he then pro-
ceeds to the concourses through a congested portal. Next,
our subject feels thirsty and spots a vending machine in the
concourse. He walks toward it and waits his turn to get a
drink. Feeling a bit tired, our subject finds a bench with an
available seat, proceeds towards it, and sits down. Later, the
clock chimes the hour and it is time for our subject to get
up and proceed to his train platform. He makes his way
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through a somewhat congested area by following, turning,
and stopping as necessary in order to avoid bumping into
other pedestrians. He passes by some dancers that are attract-
ing interest from many other pedestrians, but our subject has
no time to watch the performance and descends the stairs to
his train platform.

Pedestrian Activity in the Train Station. A routine sim-
ulation, which includes over 600 autonomous pedestrians,
demonstrates a variety of pedestrian activities that are typ-
ical for a train station. We can interactively vary our view-
point through the station, directing the virtual camera on the
main waiting room, concourse, and arcade areas in order to
observe the rich variety of pedestrian activities that are si-
multaneously taking place in different parts of the station
(Fig. 1). Some additional activities that were not mentioned
above include pedestrians choosing portals and navigating
through them, congregating in the upper concourse to watch
a dance performance for amusement, and proceeding to the
train platforms using the rather narrow staircases.

6. Conclusion and Future Work

We have developed a sophisticated human animation sys-
tem whose major contribution is a comprehensive model of
pedestrians as highly-capable individuals that combines per-
ceptual, behavioral, and cognitive control components. In-
corporating a hierarchical environmental modeling frame-
work, our novel system efficiently synthesizes numerous
self-animated pedestrians performing a rich variety of ac-
tivities in a large-scale indoor urban environment.

Our results speak to the robustness of our system and its
ability to produce prodigious quantities of intricate anima-
tion of pedestrians carrying out various individual and group
activities. Although motion artifacts are at times conspicu-
ous in our animation results due to the limitations of the low-
level DI-Guy software, our design facilitates the potential
replacement of this software by a better character rendering
and motion synthesis package should one become available.

In future work, we plan systematically to expand the be-
havioral and cognitive repertoires of our autonomous virtual
pedestrians to further narrow the gap between their abilities
and those of real people. It is also our intention to develop a
satisfactory set of reactive and deliberative head motion be-
haviors for our virtual pedestrian model and to model “fam-
ilies” of pedestrians that move together in small groups. We
will also pursue new applications of our simulator to archae-
ology, computer vision, and other fields.

Appendix A: The Basic Reactive Behavior Routines

Routine A: Static obstacle avoidance. If there is a nearby obstacle
in the direction of locomotion, lateral directions to the left and right
are tested until a less cluttered direction is found (Fig. 4(b)). If a
large angle (currently set to 90◦) must be swept before a good di-
rection is found, then the pedestrian will start to slow down, which
mimics the behavior of a real person upon encountering a tough

array of obstacles; i.e., slow down while turning the head to look
around, then proceed.

Routine B: Static obstacle avoidance in a complex turn. When
a pedestrian needs to make a turn that cannot be finished in one step,
it will consider turns with increasing curvatures in both directions,
starting with the side that permits the smaller turning angle, until a
collision-free turn is found (Fig. 5(B)). If the surrounding space is
too cluttered, the curve is likely to degenerate, causing the pedes-
trian to stop and turn on the spot. The turn test is implemented by
checking sample points along a curve with interval equal to the dis-
tance of one step of the pedestrian moving with the anticipated turn
speed.

Routine C: Maintain separation in a moving crowd. For a
pedestrian H, other pedestrians are considered to be in H’s tem-
porary crowd if they are moving in a similar direction to H and
are situated within a parabolic region in front of H defined by
y = −(4/R)x2 + R where R is the sensing range, y is oriented in
H’s forward direction and x is oriented laterally (Fig. 5(C)). To
maintain a comfortable distance from each individual Ci in this
temporary crowd, a directed repulsive force (cf. [HM95]) given
by fi = ri(di/|di|)/(|di| − dmin) is exerted on H, where di is the
vector separation of Ci from H, and dmin is the predefined mini-
mum distance allowed between H and other pedestrians (usually
2.5 times H’s bounding box size). The constant ri is Ci’s perceived
“repulsiveness” to H (currently set to −0.025 for all pedestrians).
The repulsive acceleration due to H’s temporary crowd is given by
a = ∑i fi/m where m is the “inertia” of H. The acceleration vector
is decomposed into a forward component a f and a lateral compo-
nent al . The components a f ∆t and alwi∆t are added to H’s current
desired velocity. The crowding factor wi determines H’s willingness
to “follow the crowd”, with a smaller value of wi giving H a greater
tendency to do so (currently 1.0 ≤ wi ≤ 5.0).

Routine D: Avoid oncoming pedestrians. To avoid pedestrians
not in one’s temporary crowd, a pedestrian H estimates its own ve-
locity v and the velocities vi of nearby pedestrians Ci. Two types of
threats are considered here. By intersecting its own linearly extrap-
olated trajectory T with the trajectories Ti of each of the Ci, pedes-
trian H identifies potential collision threats of the first type: cross-
collision (Fig. 5(D1)). In the case where the trajectories of H and
Ci are almost parallel and will not intersect imminently, a head-on
collision (Fig. 5(D2)) may still occur if their lateral separation is
too small; hence, H measures its lateral separation from oncoming
pedestrians. Among all collision threats, H will pick the most im-
minent one C∗. If C∗ poses a head-on collision threat, H will turn
slightly away from C∗. If C∗ poses a cross collision threat, H will es-
timate who will arrive first at the anticipated intersection point p. If
H determines that it will arrive sooner, it will increase its speed and
turn slightly away from C∗; otherwise, it will decrease its speed and
turn slightly towards C∗ (Fig. 5(D1)). This behavior will continue
for several footsteps, until the potential collision has been averted.

Routine E: Avoid dangerously close pedestrians. This is the
fail-safe behavior routine, reserved for emergencies due to the oc-
casional failure of Routines C and D, since in highly dynamic sit-
uations predictions have a nonzero probability of being incorrect.
Once a pedestrian perceives another pedestrian within its front safe
area (Fig. 5(E)), it will resort to a simple but effective behavior—
brake as soon as possible to a full stop, then try to turn to face away
from the intruder, and proceed when the way ahead clears.

Routine F: Verify new directions relative to obstacles. Since
the reactive behavior routines are executed sequentially (see Sec-
tion 4.3.1), motor control commands issued by Routines C, D or E
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to avoid pedestrians may counteract those issued by Routines A or
B to avoid obstacles, thus steering the pedestrian towards obstacles
again. To avoid this, the pedestrian checks the new direction against
surrounding obstacles once more. If the way is clear, it proceeds.
Otherwise, the original direction issued by either the higher-level
path planning modules or by Routine A, whichever was executed
most recently prior to the execution of Routine F, will be used in-
stead. However, occasionally this could lead the pedestrian toward
future collisions with other pedestrians (Fig. 5(F)) and, if so, it will
simply slow down to a stop, let those threatening pedestrians pass,
and proceed.

Acknowledgements

The research reported herein was supported in part by grants from
the Defense Advanced Research Projects Agency (DARPA) of the
Department of Defense and from the National Science Foundation
(NSF). We thank Dr. Tom Strat of DARPA for his generous sup-
port and encouragement. We also thank Mauricio Plaza-Villegas for
his invaluable contributions to the implementation and visualization
of the Penn Station model (which was distributed to us by Boston
Dynamics Inc.) and its integration with the DI-Guy software API.

References

[ALA∗01] ASHIDA K., LEE S., ALLBECK J., SUN H., BADLER

N., METAXAS D.: Pedestrians: Creating agent behaviors through
statistical analysis of observation data. In Proc. IEEE Conf. on
Computer Animation (Seoul, Korea, 2001), pp. 84–92.

[BA00] BLUE V., ADLER J.: Cellular automata model of emer-
gent collective bi-directional pedestrian dynamics. In Proc. Arti-
ficial Life VII (August 2000), pp. 437–445.

[BJTG98] BATTY M., JIANG B., THURSTAIN-GOODWIN M.:
Local movement: Agent-based models of pedestrian flow. Center
for Advanced Spatial Analysis Working Paper Series 4 (1998).

[BMS04] BOTEA A., MÜLLER M., SCHAEFFER J.: Near optimal
hierarchical path-finding. Journal of Game Development 1, 1
(2004), 7–28.

[BPW93] BADLER N., PHILLIPS C., WEBBER B.: Simulating
Humans: Computer Graphics, Animation, and Control. Oxford
University Press, 1993.

[FMS∗00] FARENC N., MUSSE S., SCHWEISS E., KALLMANN

M., AUNE O., BOULIC R., THALMANN D.: A paradigm for
controlling virtual humans in urban environment simulations.
Applied Artificial Intelligence 14, 1 (2000), 69–91.

[FTT99] FUNGE J., TU X., TERZOPOULOS D.: Cognitive mod-
eling: Knowledge, reasoning and planning for intelligent charac-
ters. In Proc. SIGGRAPH 99 (1999), pp. 29–38.

[GKM∗01] GOLDENSTEIN S., KARAVELAS M., METAXAS D.,
GUIBAS L., AARON E., GOSWAMI A.: Scalable nonlinear dy-
namical systems for agent steering and crowd simulation. Com-
puters & Graphics 25, 6 (2001), 983–998.

[GM85] GIPPS G., MARKSJO B.: A micro-simulation model for
pedestrian flows. Mathematics and Computers in Simulation 27
(1985), 95–105.

[HM95] HELBING D., MOLNAR P.: Social force model for
pedestrian dynamics. Physical Review 51, 5 (1995), 4282–4286.

[KCR98] KOECHLING J., CRANE A., RAIBERT M.: Applica-
tions of realistic human entities using DI-Guy. In Proc. Spring
Simulation Interoperability Workshop (Orlando, FL, 1998).

[LD04] LAMARCHE F., DONIKIAN S.: Crowd of virtual humans:
A new approach for real time navigation in complex and struc-
tured environments. Computer Graphics Forum 23, 3 (2004),
509–518.

[LMM03] LOSCOS C., MARCHAL D., MEYER A.: Intuitive
crowd behaviour in dense urban environments using local laws.
In Theory and Practice of Computer Graphics (2003), IEEE,
pp. 122–129.

[Lov93] LOVAS G. G.: Modeling and simulation of pedestrian
traffic flow. In Proc. European Simulation Multiconference
(1993).

[LRBW04] LOYALL A. B., REILLY W. S. N., BATES J.,
WEYHRAUCH P.: System for authoring highly interactive,
personality-rich interactive characters. In SIGGRAPH/EG Sym-
posium on Computer Animation (2004), pp. 59–68.

[MH03] METOYER R., HODGINS J.: Reactive pedestrian path
following from examples. In Computer Animation and Social
Agents (2003), pp. 149–156.

[MT01] MUSSE S., THALMANN D.: Hierarchical model for real
time simulation of virtual human crowds. IEEE Transactions on
Visualization and Computer Graphics 7, 2 (2001), 152–164.

[NRTMT95] NOSER H., RENAULT O., THALMANN D.,
MAGNENAT-THALMANN N.: Navigation for digital actors
based on synthetic vision, memory and learning. Computers and
Graphics 19, 1 (1995).

[Rey87] REYNOLDS C. W.: Flocks, herds, and schools: A dis-
tributed behavioral model. Proc. SIGGRAPH 87, Computer
Graphics 21, 4 (July 1987), 25–34.

[Rey99] REYNOLDS C. W.: Steering behaviors for autonomous
characters. In Proc. Game Developers Conf. (1999), pp. 763–
782.

[Sch02] SCHADSCHNEIDER A.: Traffic flow: A statistical physics
point of view. Physica A313 (2002), 153–187.

[SE01] SCHRECKENBERG M., (EDS.) S. S.: Pedestrian and
Evacuation Dynamics. Springer-Verlag, 2001.

[SGC04] SUNG M., GLEICHER M., CHENNEY S.: Scalable be-
haviors for crowd simulation. Computer Graphics Forum 23, 3
(2004), 519–528.

[ST05] SHAO W., TERZOPOULOS D.: Environmental modeling
for autonomous virtual pedestrians. In SAE Symposium on Dig-
ital Human Modeling for Design and Engineering. (Iowa City,
IA, 2005).

[TDB∗02] TOMLINSON B., DOWNIE M., BERLIN M., GRAY

J., LYONS D., COCHRAN J., BLUMBERG B.: Leashing the al-
phawolves: Mixing user direction with autonomous emotion in a
pack of semi-autonomous virtual characters. In SIGGRAPH/EG
Symposium on Computer Animation (2002), pp. 7–14.

[TT94] TU X., TERZOPOULOS D.: Artificial fishes: Physics, lo-
comotion, perception, behavior. In Proc. SIGGRAPH 94 (July
1994), pp. 43–50.

[UdHCT04] ULICNY B., DE HERAS CIECHOMSKI P., THAL-
MANN D.: Crowdbrush: Interactive authoring of real-time crowd
scenes. In SIGGRAPH/EG Symposium on Computer Animation
(2004), pp. 243–252.

c© The Eurographics Association 2005.


