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Abstract The “Dynamic Chest Image Analysis” project aims to show focal and
general abnormalities of lung ventilation and perfusion based on a sequence of dig-
ital chest fluoroscopy frames. An indispensable source of information recorded in
the image sequence is the shapes and motions of the lungs and heart. This chapter
employs this shape and motion information of lung and heart to detect abnormalities
in both lung ventilation and perfusion. To extract the shape and motion information
of lung and heart, we utilize a technique, called United Snakes, in which both the
shape and motion of the lung and heart can be modeled using a single consistent
theoretical and implementational framework. Along with case studies, we demon-
strate the capability of United Snakes through four applications: lung registration,
diaphragm motion analysis, cardiac motion analysis, and cardiac shape analysis, in
revealing both lung ventilation and perfusion abnormalities.

1 Introduction

The respiratory system facilitates the exchange of gases (O2 and C O2) between
the blood and ambient air; therefore, adequate pulmonary ventilation (air flow) and
perfusion (blood flow) are essential for the lungs to function properly. Inadequate
pulmonary function may be due to failure in ventilation and perfusion, among other
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factors. To detect abnormalities of lung ventilation and perfusion, ventilation and
perfusion isotope scans are conventionally used, but they can only provide a static,
coarse 2D distribution of air and blood in the lungs, and also have a disadvantage of
using radioactive isotopes. The primary imaging modality for diagnosing pulmonary
disorders is chest X-ray, but the information about pulmonary function (ventilation
and perfusion) that may be gleaned from a single chest X-ray is rather limited. To
overcome this limitation, this chapter utilizes sequences of digital chest fluoroscopy
frames to reveal focal and general pulmonary functional abnormalities by analyzing
shape and motion of the lungs and heart.

2 Dynamic Pulmonary Imaging

2.1 Patient Examination

With Dynamic Pulmonary Imaging [1], we can collect a sequence of chest X-ray
images of up to 512 × 512 pixels at a sampling frequency of 25 Hz with a copper
filter of 3 mm. The reason of using a copper filter is to reduce the radiation dose to
patients. Two separate examination procedures are used for ventilation and perfu-
sion studies. In the ventilation study, the patient is asked to breathe naturally and
normally in a supine position with posteroanterior projection. An image sequence
of 55 frames with 192 × 144 pixels is collected in 4.32 s with a sampling frequency
of 12.5 Hz, because in most cases the lungs can complete a full ventilation cycle
in 4 s. Based on our experiments, a spatial resolution of 192 × 144 is sufficient for
ventilation analysis. In the perfusion study, the patient is also in a supine position
with posteroanterior projection, but with breath held to effectively remove the ven-
tilation effects. An intravenous bolus of X-ray contrast medium may be further used
to enhance the perfusion signal strength. Comparing with ventilation, perfusion has
a higher frequency, thus requiring a higher temporal sampling rate but a shorter
examination time. Furthermore, pulmonary perfusion is asynchronous,1 demanding
a higher spatial resolution. As a result, for perfusion analysis we acquire an image
sequence of 52 frames with 384 × 288 pixels at a sampling frequency of 25 Hz in
2.04 s. The imaging parameters are summarized in Table 1.

The acquired image sequences may be represented with intensity function
I (x, y, t), where 0 ≤ I ≤ 255, 1 ≤ x ≤ width (192 for ventilation and 384 for
perfusion), 1 ≤ y ≤ height (144 for ventilation and 288 for perfusion), and t is
a discrete time point in 0 ≤ t ≤ examtime (4.32 s for ventilation and 2.04 s for
perfusion). We may also represent it as I (x, y, i), with i the frame index, such that
t = (i − 1)/ f , where f is the sampling frequency of 12.5 Hz for ventilation analysis
and 25 Hz for perfusion analysis.

1 The speed of blood flow is roughly 10 cm/s. When the blood flows in the lungs, the phase ( i.e.,
timeshifts) of a pulse signal at one location may be different from that at another location, although
they have the same pulse frequency.
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Table 1 Dynamic pulmonary imaging parameters used for ventilation and perfusion examinations

Examination Image size Temporal sampling
frequency (Hz)

Number of frames Examination
time (s)

Ventilation ≥ 192 × 144 12.5 55 4.32
Perfusion ≥ 384 × 288 25 52 2.04

Because of the very short examination time and the use of a copper filter, the
radiation dose to the patient is low. The entrance skin dose of a patient is about 0.1 to
0.2 mGy [1]. For comparison, the radiation dose of a normal chest X-ray image varies
between 0.1 and 0.2 mGy, and the radiation dose of fluoroscopy is about 2 mGy per
minute [1].

2.2 Ventilation and Perfusion Analysis

The 2D image sequence obtained from the patient examination carries valuable
information for ventilation and perfusion studies thanks to the physical properties of
X-rays: The attenuation of X-rays in air is much lower than in blood and soft tissue.
As a result, the average pixel intensity of an area in the lung field varies over time due
to the respiratory and cardiac cycles; this variation, called a lung functional signal,
reflects the air and blood volume change in the corresponding 2D projectional area of
the lung when the patient breathes naturally. When the patient is asked to hold their
breath, we observe the perfusion signal disturbed by noise. The ventilation intensity
variation depends on the depth of the tidal volume ventilation and on lung area. It is
usually between 5 and 15 units in the 8-bit grey scale. The image intensity variation
for perfusion is about 3 to 4 units without contrast media. The ventilation signal to
noise ratio is about 10:1 and the perfusion signal to noise ratio is about 3:1. This
phenomenon is illustrated in Figs. 1, 2 and 3.

We detect ventilation and perfusion abnormalities by extracting meaningful ven-
tilation and perfusion parameters from the lung functional signals. To do so, it is
necessary to accurately locate the “turning points” from the signal, but it is challeng-
ing due to the existence of both ventilation and perfusion components, in addition to
noise. Furthermore, a phase (exhalation, inhalation, diastole, or systole) might not
be complete in a signal. For instance, the signal in Fig. 1b does not have a complete
exhaling phase. To this end, we introduce a mathematical function (Fig. 4):

M(A, D,U, S, L , t) =
{

A cos(πt ′/D) + L if 0 ≤ t ′ < D
A cos(π(t ′ − D)/U + π) + L if D ≤ t ′ < (D + U )

(1)

where
t ′ = (t − S) mod (D + U ), (2)
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Fig. 1 A case in quiet breath. a A region of interest (ROI) in the right lung field and b its cor-
responding lung functional signal (observation), which reflects the air and blood change in the
corresponding lung area over time during the examination due to the physical properties of X-rays.
c A set of ventilation parameters can be extracted from the observation b with a ventilation model
(see Fig. 4) via optimization, where the observation is indicated with an “o”, the initial guess is
plotted as a dashed curve and the final solution as a solid curve. The image gets whiter (higher
intensity) during inhalation (more air in the lungs). The ROI shown here is a rectangle, but it may
be of arbitrary shape. The ROI may be as large as a whole lung or may be as small as a single pixel
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Fig. 2 A case with the breath held and an intravenous bolus of X-ray contrast media. a An ROI
(region of interest) in the right lung field and b its corresponding observation—an enhanced lung
perfusion signal which (due to the physical properties of X-rays) reflects the blood flow in the
corresponding lung area with contrast media. The image gets darker (lower intensity) during the
systolic phase (more blood in the lungs). Comparing to ventilation in Fig. 1, the perfusion signal is
very noisy and weak (only about 3 intensity-unit variation)

with t for t ime, and t ′ ∈ [0, D + U ), so that ventilation and perfusion parameters
can be extracted automatically from lung functional signals via optimization [2–4].
From these five extracted parameters, more parameters can be derived. In case of
ventilation, we can compute:

• Ventilation Frequency (F̂v) (expressed as the number of breaths per minute):

F̂v = 60/(D̂v + Ûv), (3)
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Fig. 3 A case with the breath held but using no X-ray contrast media. a An ROI (region of interest)
in the right lung and b its corresponding observation—a perfusion signal reflecting the blood flow
in the lung area due to the physical properties of X-rays. It is plotted in the same scale as in Fig. 2
for comparison

TimeShift DownTime UpTime

Level

A
m

pl
itu

de

Examination Time (seconds)

In
te

ns
ity

Fig. 4 A mathematical function can be used for both ventolation and perfusion analysis. In case of
ventilation, it models the volume change of air during lung ventilation (increasing during inhalation
and decreasing during exhalation) with five primitive parameters: amplitude A (ventilation strength),
downtime D (time for exhalation), uptime U (time for inhalation), timeshift S (time from the starting
of examination to the completion of the first inhalation) and level L (mean intensity; its value
depending on various factors, medical meaning un-defined). In case of perfusion, it models the
blood volume change, increasing during the diastolic phase and decreasing during the systolic
phase, but its five free primitive parameters have completely different medical meanings: amplitude
A (perfusion strength in the lung area), downtime D (time for the systolic phase in the lung area),
uptime U (time for the diastolic phase in the lung area), timeshift S (time from the first image to
the completion of the first diastolic phase) and level L (the mean intensity but with no well-defined
medical meaning)

• Inhaling Rate ( Îv):

Îv = Âv/Ûv, (4)

• Exhaling Rate (Êv):
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Êv = Âv/D̂v, (5)

• Normalized timeshift (Ĥv):

Ĥv = Ŝv/(Ûv + D̂v), (6)

• Updown Ratio (R̂v):

R̂v = log10(Ûv/D̂v). (7)

We take the logarithm of the “updown ratio” to make it symmetric. All these
parameters may be used as ventilation abnormality indicators, but our experiments
show that in most cases three parameters, Âv (amplitude), Ĥv (normalized timeshift)
and R̂v (updown ratio) are sufficient in revealing ventilation abnormalities.

2.3 Shape and Motion Analysis

An additional, indispensable source of information recorded in the image sequence
is the shape and motion of the lungs and heart. This chapter employs this shape and
motion information to detect abnormalities of the lungs and heart with the United
Snakes technique, which is to be reviewed in Sect. 3. It should be noted that the
tasks of lung registration and cardiac motion analysis are challenging, because of the
reduced image contrast by the copper filter used in image acquisition to reduce the
radiation dose to patients.

3 United Snakes

A snake [5] is a flexible, elastic contour whose behavior is governed by an energy
functional, where an internal energy controls the degree of stretchiness and flexibility
of the contour while an external energy couples the contour to an image, attracting
the snake to features of interest (e.g., intensity edges). The active research in Snakes
has resulted in a large family of Snakes algorithms [6–8], including finite element
Snakes, B-Snakes, and Fourier Snakes, and related algorithms, such as “live-wire”
(also known as “intelligent scissors”) [9–15]. Each of these variants has its strengths
and weaknesses.

To extract and model the shape and motion of both the lung and the heart in
an accurate and robust manner, the differences between these two organs must be
taken into consideration and the most appropriate Snake algorithm selected. For
example, the lung boundary is smooth with readily identifiable curved corner regions.
Consequently, a Hermite finite-element Snake, which can be constructed directly
from user-defined lung boundary points and which can easily control the relative
position of its nodal points, is most suitable for lung registration and motion analysis.
On the other hand, much of the heart boundary is not visible in the image sequence
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and there are no readily identifiable landmark points directly on the boundary. In
this case, the reduced number of degrees of freedom, high degree of smoothness
and control polygon of a B-spline Snake make it an ideal choice. Furthermore, the
live-wire algorithm is effective for providing a quick delineation of the lungs and
heart and this delineation can then be used by a Snakes algorithm for subsequent
segmentation and motion tracking of an image sequence. As a result, a common
framework combining the best features of the various Snakes algorithms and the
live-wire algorithm is highly desirable.

To this end, United Snakes unifies various Snakes algorithms in a finite element
framework, where a particular type of Snake can be derived simply by changing
the shape functions at the user level. This unification expands the range of object
modeling capabilities within a uniform Snake construction process and provides
a uniform Snakes motion tracking mechanism. Consequently, both the shape and
motion of the lung and heart can be modeled using a single consistent theoretical
and implementational framework. United Snakes is also advantageously combined
with live-wire by introducing an effective hard constraint mechanism. The United
Snakes framework amplifies the efficiency and reproducibility of the component
techniques, and it offers more flexible interactive control while further minimizing
user interactions. The reader is referred to [16] for the mathematical details.

In the following sections, along with case studies, we present four applications of
United Snakes: lung registration, diaphragm motion analysis, cardiac motion analy-
sis, and cardiac shape analysis.

4 Lung Registration

Through our clinical studies, our expert radiologists have found it convenient and
effective to use four rectangles (regions of interests, ROIs) covering the apex, upper,
middle and lower lung field in each lung for a quick ventilation examination by
inspecting the behaviors of the four corresponding lung functional signals. To facil-
itate this inspection, we propose an ROI-based analysis with lung registration and
division.

4.1 Quick ROI-Based Analysis with Lung Registration
and Division

The rapid ROI-based analysis is performed by first interactively delineating the lungs
in the first frame with United Snakes (see Fig. 5), and then using the tracking capa-
bilities of Snakes to automatically follow the motion throughout the entire image
sequence (Fig. 6). The result is a lung delineation in each frame of the sequence.
This step is followed by an automatic division of each lung field into four rectangu-
lar regions in each frame (Fig. 7) and an automatic calculation of the average intensity
for each region. This process forms four lung functional signals in each lung field,
from which ventilation parameters can be automatically extracted as shown in Fig. 8.
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Fig. 5 Lung delineation with United Snakes. Once the first seed (point 1 in (a)) is placed on the
lung boundary, an interactive snake is automatically constructed from the first seed to the current
mouse position (position 2 in (a)). With three seeds, the left lung can be delineated (b), and similarly
for the right lung (c)

4.2 Clinical Case Studies

(a) Frame 5 (b) Frame 15 (c) Frame 25

(d) Frame 35 (e) Frame 45 (f) Frame 55

Fig. 6 The tracking result (every tenth image shown). The edge information at the lung apex is
rather weak. Furthermore, there is no observable lung motion during quiet breathing. In order to
make the snake firmly stick to the apex, it is desirable to maintain a hard constraint point there.
Therefore, in the lung delineation as illustrated in Fig. 5, the first seed is usually placed at the lung
apex so that it can be utilized as a hard constraint in the tracking process

Here we present two representative cases—one normal and one abnormal—to
illustrate typical abnormalities:
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Fig. 7 Each lung field is divided into four regions with equal heights in each frame so that four
lung functional signals in each lung field can be formed. Ventilation parameters are automatically
extracted from these signals (see Fig. 8 and Table 2)
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Fig. 8 Extracting the ventilation parameters from the eight lung functional signals resulting from
the lung division (the observations are indicated with “o”, the initial guesses with dashed curves
and the final results with solid curves). The numerical results are given in Table 2

• Case 1: This case has been clinically classified as normal, but we have found some
slightly asynchronous ventilation and non-symmetrical ventilation at both apices
(see Table 2).
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Table 2 Clinical case I: Extracted ventilation parameters

Signal A H R

1 2.43 0.72 −0.325
2 5.61 0.79 −0.186
3 5.87 0.79 −0.160
4 7.23 0.83 −0.099
5 2.32 0.70 −0.421
6 4.54 0.80 −0.174
7 4.95 0.81 −0.181
8 9.79 0.81 −0.169

Clinically normal but slightly asynchronous ventilation (ASV) and non-symmetrical ventilation
(NSV) seen in regions 1 and 5

Fig. 9 Clinical case II with
lung division
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Table 3 Clinical case II: Parameter extraction. Reduced ventilation (RV) in regions 2, 3 and 7, and
compensatory ventilation (CV) in regions 4 and 8

Signal A H R

1 2.44 0.81 −0.129
2 2.98 0.74 −0.098
3 2.63 0.75 −0.133
4 15.94 0.76 −0.082
5 3.18 0.86 0.013
6 10.58 0.76 0.037
7 8.81 0.77 0.034
8 22.76 0.75 −0.023

It is abnormal that the updown ratios of the right lung are negative, while those of the left lung are
almost all positive

• Case 2: A pathological case (see Fig. 9 and Table 3). By comparing this case with
the previous normal case, it is clear that ventilation in regions 2 and 3 is poor.
Ventilation amplitudes are expected to increase from region 1 to region 4 and from
region 5 to region 8. Therefore, it is abnormal to observe an amplitude in region 7
smaller than region 6. It is also abnormal to observe negative updown ratios in the
right lung and predominantly positive ratios in the left lung. Furthermore, regions
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Table 4 Statistics of ventilation abnormalities with ROI-based analysis

Right/Left NV RV ASV NSV CV

Apex(1/5) 0/0 4/5 25/19 23/17 0/1
Upper(2/6) 0/1 3/1 1/1 3/4 1/2
Mid(3/7) 2/0 9/4 5/3 11/3 0/1

Lower(4/8) 0/0 7/7 2/3 3/3 0/0

Table 5 Number of user interactions required to guarantee segmentation accuracy and robustness

Seeds in first frame User interactions in other frames

Max 5 2
Min 3 0
Average 3.3 0.3

4 and 8 are “hard” at work to compensate for the abnormal areas—the phenom-
ena of “compensatory ventilation”: an area with excessive ventilation in order to
compensate for the abnormal areas in other parts of the lungs. This generally goes
along with non-ventilation and reduced ventilation. The area itself should be con-
sidered as normal, but it is suggestive for abnormalities in other parts of the lungs.
The HRCT report confirmed our findings in the right lung: bronchiectatic changes
in the right middle and lower lobes, and scar changes in the right middle lobe
medially. However, the report provided no explanation for the smaller amplitude
of region 7 with respect to region 6.

The statistics of abnormal findings with our 53 ventilation patients are summa-
rized in Tabel 4. Through the clinical cases studies, we have found that ROI-based
ventilation analysis is efficient and effective with respect to the size of lung divisions.
As the lung field is divided into finer regions, smaller ventilation irregularities are
detected.

In the clinical studies, we also have found that United Snakes are not only efficient,
providing real-time performance, but also accurate and require little user intervention.
This performance is due, in part, to the use of the hard constraint mechanism offered
by the United Snakes technique. The hard constraint at the lung apex plays a critical
role by pinning the Snake—without it the snake would slide away from the lung
apex. Furthermore, due to the interaction mechanisms provided by United Snakes,
the segmentation and motion tracking can be made as accurate as desired by the user.
The number of user interactions are given in Table 5, showing little user intervention
is required.
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5 Diaphragm Motion Analysis

The diaphragm is a dome-shaped sheet of muscle that separates the chest from the
abdomen. As the diaphragm contracts and flattens, the volume of the chest increases
and air is drawn into the lungs. As it relaxes, the dome pushes upward, forcing air out
of the lungs. The diaphragm contracts without any voluntary control. During quiet
breathing, there is no contraction of intercostal muscles. Therefore, analyzing the
diaphragm motion gives first-hand information concerning pulmonary ventilation.

5.1 Quantifying Diaphragm Motion

Although we can extract diaphragm motion from the lung delineation result in Sect. 4,
a more efficient quantitative analysis can be obtained using United Snakes. In the
current patient orientation, the diaphragm is restricted to an up-and-down motion.
Consequently, we use an open Snake and restrict its motion along the y-axis, leading
to efficient tracking as only a few Snake nodes are required and only one deformation
direction is needed for each node. The diaphragm motion can be characterized using
the average position of the Snake over time.

5.2 Clinical Case Studies

Three clinical cases are presented:

• Case 1 (Fig. 10): A clinically normal case. The diaphragm moves freely and con-
tinuously.

• Case 2 (Fig. 11): Local abnormal diaphragm motion. The right diaphragm is
expected to contract even further during inhalation, but it exhibits no observable
motion for about half a second. Air is not effectively drawn into the right lung.

• Case 3 (Fig. 12): Global diaphragm motion abnormality. The left diaphragm cannot
move freely and exhibits further irregularities during exhalation.

The number of user interactions needed for diaphragm motion analysis is
minimal—only two seeds are required in the first frame to initialize a Snake, and
no further user intervention is needed for any other frames due to the strong image
contrast at the diaphragm. The abnormal diaphragm motion findings are summarized
in Table 6.
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Frame 5 (t=0.32) (b) Frame 15 (t=1.12) (c) Frame 25 (t=1.92)

(d) Frame 35 (t=2.72) (e) Frame 45 (t=3.52) (f) Frame 55 (t=4.32)
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(g) Diaphragm Motion: Average -positions of the two open snakes

(a)

Fig. 10 Clinical case I: Normal diaphragm motion. The diaphragm moves freely and continuously
on both sides

6 Cardiac Motion Analysis

For effective perfusion analysis, it is essential to understand the cardiac function.
Analyzing the cardiac motion gives the first-hand information concerning its func-
tion.
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(a) Frame 1 (t=0) (b) Frame 39 (t=3.04) (c) Frame 40 (t=3.12)

(d) Frame 41 (t=3.20) (e) Frame 42 (t=3.28) (f) Frame 43 (t=3.36)

(g) Frame 44 (t=3.44) (h) Frame 45 (t=3.52) (i) Frame 46 (t=3.60)
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(j) Diaphragm Motion: Average -positions of the two open snakes

Fig. 11 Clinical case II: Local abnormal diaphragm motion. a The two open snakes on the first
frame. (b)–(i) From Frame 39 (t = 3.04) to Frame 46 (t = 3.60), the right diaphragm is expected to
contract even further during inhalation, but it exhibits no observable motion (in term of pixels) for
about half a second. j The average positions of the two open snakes. The local motion abnormality
is indicated with a rectangle. The right diaphragm motion amplitude is also small
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(a) Frame 1 (t=0) (b) Frame 5 (t=0.32) (c) Frame 10 (t=0.72)

(d) Frame 15 (t=1.12) (e) Frame 20 (t=1.52) (f) Frame 25 (t=1.92)

(g) Frame 30 (t=2.32) (h) Frame 35 (t=2.72) (i) Frame 40 (t=3.12)

(j) Frame 45 (t=3.52) (k) Frame 50 (t=3.92) (l) Frame 55 (t=4.32)
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(m)Diaphragm Motion: Average -positions of the two open snakes

Fig. 12 Clinical case III: Global abnormal diaphragm motion. The left diaphragm cannot move
freely and exhibits irregularities during exhalation
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Table 6 Statistics of diaphragm motion abnormalities

Global Local

Right 4 11
Left 3 7

(a)

0 1 2 3 4
75

80

85

90

95
(b)

0 1 2 3 4
0.74

0.76

0.78

0.8

0.82

0.84

0.86

(c)

Fig. 13 a An ROI on the heart and b its corresponding observation. The observation is dominated by
ventilation when the patient breathes. Our simple approach cannot extract the systolic and diastolic
phases from such a signal. c However, with cardiac motion tracking (Fig. 15), the heart signal
(indicated with “o”) can be obtained with Eq. 8, and cardiac systolic and diastolic phases from the
heart signal can be extracted with our perfusion model even when the patient breathes (the dashed
curve indicates the initial guess and the final optimized result is shown with the solid curve)—the
uptime corresponds to the diastolic phase (the heart proportion increases) and the downtime to the
systolic phase of the heart (the heart proportion decreases). The extracted parameters for this patient
are included in Table 7 as clinical case I, indicating that the heart is working properly

6.1 Characterizing Cardiac Motion

In order to use cardiac information to accelerate the pulmonary perfusion analysis,
we proposed a simple approach to extract the cardiac systolic and diastolic phases
from the heart [17]. We justify in Sect. 6.2 that this simple approach is sufficiently
accurate for this purpose. However, it cannot be used to characterize complete cardiac
motion for the following reasons:

• Its amplitude cannot be fully trusted in measuring the effectiveness of cardiac
function. During perfusion examination, the patient is asked to hold their breath.
The amount of air held in the lungs may differ from patient to patient and may
differ from examination to examination, even for the same patient. As a result,
when there is more air kept in the right lung, even if the heart doesn’t pump
effectively we may still have a higher amplitude due to the higher contrast along
the cardiac boundary.

• This simple approach does not work when ventilation is present. When the patient
breathes, the signal will be dominated by ventilation as shown in Fig. 13. Therefore,
it cannot extract the systolic and diastolic phases from such a signal.

United Snakes offers a general solution for characterizing cardiac motion. By
tracking cardiac motion (see Fig. 14), the heart proportion in an ROI can be computed
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Fig. 14 Clinical case IV: Extracting cardiac motion parameters (with the same notation as in Fig. 16)

Table 7 Cardiac motion parameters given by our general approach for the four clinical cases

Clinical cases Our new approach
A (amplitude %) D (systolic) U (diastolic) S (timeshift) F (frequency)

I 5.10 0.2398 0.3698 0.6106 98
II 2.40 0.3869 0.7931 0.9252 51
III 2.93 0.2065 0.9277 0.2144 53
IV 0.86 0.2106 0.3869 0.1105 100

The downtime (D) corresponds to the systolic phase, while the uptime (U) corresponds to the
diastolic phase. The amplitude parameters show that the heart of Case I (a clinically normal case)
is pumping effectively, while the heart pumping of Case IV (with advanced pulmonary embolism)
is extremely weak. Cases II and III (both athletes) represent the typical “ineffective” phenomena of
athletic hearts during rest: Low amplitude and low frequency

over time throughout the entire sequence resulting in a heart signal:

sh = |intersection of heart and ROI|
|ROI| . (8)

Analyzing the heart signal reveals the condition of cardiac function.

6.2 Clinical Case Studies

Clinical studies show that the new approach is effective in detecting abnormal cardiac
function. We have applied this new approach to all of our clinical cases (53 ventilation
patients and the 52 perfusion cases). We found weak cardiac function in 16 patients.
Included here are three representative cases. Their results are listed in Table 7 and
shown in Figs. 15, 16 and 17 as clinical cases II, III and IV. The amplitude parameters
show the effectiveness of heart pumping action. According to our experiments, we
expect that the amplitude of a healthy person is greater than 5.0 % (with the exception
of athletes). Case I is a clinically normal case and the heart is pumping effectively. The
heart pumping action of Case IV (with advanced pulmonary embolism) is extremely
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Fig. 15 A united snake with B-spline shape functions (noise insensitive) is used to track cardiac
motion (every tenth image shown). The dashed polygon is the B-spline control polygon. To effec-
tively bridge the gap along the heart boundary, a hard constraint is further imposed on control
polygon node 3. The robust tracking performance is largely due to the hard constraint
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Fig. 16 Clinical case II: Extracting cardiac motion parameters with our previous, simple approach
used for perfusion analysis in [17] (a, b) and the more general approach (c,d). The observations are
indicated with “o”, the initial guesses with the dashed curves and the final optimized results with
the solid curves. The numerical results are given in Tables 8 and 7, respectively

ineffective. Cases II and III are both athletes representing the typical “ineffective”
phenomena of athletic hearts during rest (low amplitude and slow cardiac rate).

The cardiac motion tracking approach can be used to justify the accuracy of our
previous approach in [17]. By comparing the results given by our previous approach
(see Table 8) and by the motion tracking approach (see Table 7), the absolute dif-
ferences of the systolic/diastolic phases are less than 0.08 s. This means that our
previous approach is a simple, fast, and accurate technique for extracting the systolic
and diastolic phases from the heart.
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Fig. 17 Clinical case III: Extracting cardiac motion parameters (with the same notation as in
Fig. 16)

Table 8 Cardiac motion parameters given by our previous approach

Clinical cases Our previous approach
D (diastolic) U (systolic) S (timeshift) F (frequency)

I N/A N/A N/A N/A
II 0.8361 0.3366 0.1067 51
III 0.8473 0.2658 0.4301 53
IV 0.4250 0.1770 0.3112 100

The method does not work when ventilation is present (Case I). The amplitude is not included,
since it does not have a well-defined medical meaning. The uptime (U) for the systolic phase and
the downtime (D) for the diastolic phase. The uptime and downtime in this table have completely
different medical meanings from those in Table 7. Comparing with Table 7, the maximal absolute
difference in systolic/diastolic phases is 0.08 s. Therefore, the simple approach is sufficiently accu-
rate for extracting the systolic and diastolic phases and safe for perfusion analysis in [17]

7 Cardiac Shape Analysis

7.1 Revised Cardiothoracic Ratio (RCTR)

Cardiac size is an important and useful diagnostic parameter in chest radiographs. The
conventional measurement for assessing cardiac enlargement is the cardiothoracic
ratio (CTR) [18, 19]. Referring to Fig. 18, the CTR is defined as the ratio of the
transverse diameter of the cardiac shadow to the greatest transverse diameter of
the thorax [20] or the transverse diameter of the thorax at the highest level of the
diaphragm [21]. Many researchers have reported the relationship between cardiac
disease and heart size, and demonstrated the usefulness of the CTR and estimated
cardiac size in clinical applications (e.g., [22–29]). Several research groups have
attempted the automatic calculation of cardiac parameters for diagnosis [30–36].

However, the CTR is generally calculated from a single chest radiograph in which
the heart may be in any phase of motion and, consequently, it is subject to mea-
surement errors. In Dynamic Pulmonary Imaging, a whole cardiac motion cycle is
available and the minimal CTR and maximal CTR may be computed to form an
interval as a revised measurement of cardiac size. That is,
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Fig. 18 Various parameters
of the heart and lungs in
chest radiographs given by
Nakamori et. al. in [36].
“Cardiac broad diameter” may
also be referred as “cardiac
short diameter”

CT Rmin = mint C(t)

maxt T (t)
(9)

CT Rmax = maxt C(t)

maxt T (t)
(10)

where C(t) is the transverse diameter of the cardiac shadow at time t and T (t) is
the transverse diameter of the thorax at time t . The difference between CT Rmin

and CT Rmax indicates the strength (effectiveness) of the heart pumping action.
For a normal case, we expect that CT Rmin < CT Rmax ≤ 50 % and CT Rmax −
CT Rmin > 5 % with the exception of athletes.

T(t)

C(t)

(a) (b) (c)

Fig. 19 Case I (with ventilation): Calculating RCTR. a The maximal thoracic transverse diameter
(i.e., maxt (T (t))). b The minimal cardiac transverse diameter (i.e., mint (C(t))). c The maximal
cardiac transverse diameter (i.e., maxt (C(t))). A clinically normal case with normal heart size and
effective heart pumping
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(a) (b)

Fig. 20 Case II (with the breath held): a The minimal cardiac transverse diameter. b The maximal
cardiac transverse diameter. The thoracic transverse diameter is a constant over time due to the held
breath. An athlete. Heart size is normal, but heart pumping is weak. This is the typical “ineffective”
phenomena of athletic hearts during rest

(a) (b)

Fig. 21 Case III (with the breath held): Another athlete with the typical phenomena of athletic
hearts during rest. The same notation is used as in Fig. 20

(a) (b)

Fig. 22 Case IV (with the breath held): Calculating RCTR. a The minimal cardiac transverse
diameter. b The maximal cardiac transverse diameter. The thoracic transverse diameter is a constant
over time due to the breath held. A pathological case with advanced pulmonary embolism. Large
heart and extremely ineffective heart pumping action



312 J. Liang et al.

7.2 Clinical Case Studies

We have applied this new measurement to our 53 ventilation patients and 52 perfusion
patients. We have found that 7 of them have large hearts and heart pumping is not
effective in 16 cases. Here we list four representative cases:

• Case I (with ventilation) (see Fig. 19): A clinically normal case. Normal heart
size and effective heart pumping (CT Rmin = 40.22 % and CT Rmax = 46.53 %).

• Case II (see Fig. 20): An athlete. Heart size is normal, but heart pumping is weaker
(CT Rmin = 45.97 % and CT Rmax = 47.29 %) than Case I. This is the typical
“ineffective” phenomena of athletic hearts

• Case III (see Fig. 21): Another athlete. Heart size is good but it does not pump as
effectively (CT Rmin = 37.99 % and CT Rmax = 40.92 %) as Case I. Again, the
typical phenomena of athletic hearts during rest.

• Case IV (see Fig. 22): This is a pathological case with advanced pulmonary
embolism. Large heart and extremely ineffective heart pumping (CT Rmin =
53.49 % and CT Rmax = 54.38 %).

These patients are the same as in Sect. 6.2. Referring to Table 7, we can see that the
findings there are corroborated by the new findings here.

8 Conclusions

This chapter has utilized our United Snakes technique to reveal pulmonary ventilation
and perfusion abnormalities through motion and shape analysis of the lungs and heart.
This fluoroscopical examination takes only about 4 s for ventilation studies and 2 s
for perfusion studies with low radiation dose to the patient and with no preparation,
radioactive isotopes, and contrast media.
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