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Abstract Discriminative deep-learning models are often reliant on copious labeled
training data. By contrast, from relatively small corpora of training data, deep genera-
tive models can learn to generate realistic images approximating real-world distribu-
tions. In particular, the proper training of Generative Adversarial Networks (GANs)
and Variational AutoEncoders (VAEs) enables them to perform semi-supervised
image classification. Combining the power of these two models, we introduceMulti-
Adversarial Variational autoEncoder Networks (MAVENs), a novel deep generative
model that incorporates an ensemble of discriminators in a VAE-GAN network in
order to perform simultaneous adversarial learning and variational inference. We
applyMAVENs to the generation of synthetic images and propose a new distribution
measure to quantify the quality of these images. Our experimental results with only
10% labeled training data from the computer vision and medical imaging domains
demonstrate performance competitive to state-of-the-art semi-supervised models in
simultaneous image generation and classification tasks.

1 Introduction

Training deep neural networks usually requires copious data, yet obtaining large,
accurately labeled datasets for image classification and other tasks remains a fun-
damental challenge [36]. Although there has been explosive progress in the produc-
tion of vast quantities of high resolution images, large collections of labeled data
required for supervised learning remain scarce. Especially in domains such as med-
ical imaging, datasets are often limited in size due to privacy issues, and annotation
by medical experts is expensive, time-consuming, and prone to human subjectivity,
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Fig. 1 Image generation based on the CIFAR-10 dataset [19]: a Relatively good images generated
by a GAN. bBlurry images generated by a VAE. Based on the SVHN dataset [24]: cmode collapsed
images generated by a GAN

inconsistency, and error. Even when large labeled datasets become available, they
are often highly imbalanced and non-uniformly distributed. In an imbalanced med-
ical dataset there will be an over-representation of common medical problems and
an under-representation of rarer conditions. Such biases make the training of neural
networks across multiple classes with consistent effectiveness very challenging.

The small-training-data problem is traditionally mitigated through simplistic and
cumbersome data augmentation, often by creating new training examples through
translation, rotation, flipping, etc. The missing or mismatched label problem may
be addressed by evaluating similarity measures over the training examples. This is
not always robust and its effectiveness depends largely on the performance of the
similarity measuring algorithms.

With the advent of deep generative models such as Variational AutoEncoders
(VAEs) [18] and Generative Adversarial Networks (GANs) [9], the ability to learn
underlying data distributions from training samples has become practical in common
scenarios where there is an abundance of unlabeled data. With minimal annotation,
efficient semi-supervised learning could be the preferred approach [16].More specif-
ically, based on small quantities of annotation, realistic new training images may be
generated by models that have learned real-world data distributions (Fig. 1a). Both
VAEs and GANs may be employed for this purpose.

VAEs can learn dimensionality-reduced representations of training data and, with
an explicit density estimation, can generate new samples. Although VAEs can per-
form fast variational inference, VAE-generated samples are usually blurry (Fig. 1b).
On the other hand, despite their successes in generating images and semi-supervised
classifications, GAN frameworks remain difficult to train and there are challenges
in using GAN models, such as non-convergence due to unstable training, dimin-
ished gradient issues, overfitting, sensitivity to hyper-parameters, andmode collapsed
image generation (Fig. 1c).

Despite the recent progress in high-quality image generation with GANs and
VAEs, accuracy and image quality are usually not ensured by the same model, espe-
cially inmulticlass image classification tasks. To tackle this shortcoming, we propose
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a novel method that can simultaneously learn image generation and multiclass image
classification. Specifically, our work makes the following contributions:

1. The Multi-Adversarial Variational autoEncoder Network, or MAVEN, a novel
multiclass image classificationmodel incorporating an ensemble of discriminators
in a combined VAE-GAN network. An ensemble layer combines the feedback
from multiple discriminators at the end of each batch. With the inclusion of
ensemble learning at the end of a VAE-GAN, both generated image quality and
classification accuracy are improved simultaneously.

2. A simplified version of theDescriptiveDistributionDistance (DDD) [14] for eval-
uating generativemodels, which better represents the distribution of the generated
data and measures its closeness to the real data.

3. Extensive experimental results utilizing two computer vision and two medical
imaging datasets.1 These confirm that our MAVEN model improves upon the
simultaneous image generation and classification performance of a GAN and of
a VAE-GAN with the same set of hyper-parameters.

2 Related Work

Several techniques have been proposed to stabilize GAN training and avoid mode
collapse. Nguyen et al. [26] proposed a model where a single generator is used
alongside dual discriminators. Durugkar et al. [7] proposed a model with a single
generator and feedback aggregated over several discriminators, considering either
the average loss over all discriminators or only the discriminator with the maximum
loss in relation to the generator’s output. Neyshabur et al. [25] proposed a framework
in which a single generator simultaneously trains against an array of discrimina-
tors, each of which operates on a different low-dimensional projection of the data.
Moridido et al. [23], arguing that all the previous approaches restrict the discrimina-
tor’s architecture thereby compromising extensibility, proposed the Dropout-GAN,
where a single generator is trained against a dynamically changing ensemble of
discriminators. However, there is a risk of dropping out all the discriminators. Fea-
ture matching and minibatch discrimination techniques have been proposed [32] for
eliminating mode collapse and preventing overfitting in GAN training.

Realistic image generation helps address problems due to the scarcity of labeled
data. Various architectures of GANs and their variants have been applied in ongoing
efforts to improve the accuracy and effectiveness of image classification. The GAN
framework has been utilized as a generic approach to generating realistic train-
ing images that synthetically augment datasets in order to combat overfitting; e.g.,
for synthetic data augmentation in liver lesions [8], retinal fundi [10], histopathol-
ogy [13], and chest X-rays [16, 31]. Calimeri et al. [3] employed a LAPGAN [6] and
Han et al. [11] used a WGAN [1] to generate synthetic brain MR images. Bermudez

1This chapter significantly expands upon our ICMLA 2019 publication [15], which excluded our
experiments on medical imaging datasets.
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et al. [2] used a DCGAN [29] to generate 2D brain MR images followed by an
autoencoder for image denoising. Chuquicusma et al. [4] utilized a DCGAN to gen-
erate lung nodules and then conducted a Turing test to evaluate the quality of the
generated samples. GAN frameworks have also been shown to improve accuracy
of image classification via the generation of new synthetic training images. Frid et
al. [8] used a DCGAN and an ACGAN [27] to generate images of three liver lesion
classes to synthetically augment the limited dataset and improve the performance of a
Convolutional Neural Net (CNN) in liver lesion classification. Similarly, Salehinejad
et al. [31] employed a DCGAN to artificially simulate pathology across five classes
of chest X-rays in order to augment the original imbalanced dataset and improve the
performance of a CNN in chest pathology classification.

The GAN framework has also been utilized in semi-supervised learning architec-
tures to leverage unlabeled data alongside limited labeled data. The following efforts
demonstrate how incorporating unlabeled data in the GAN framework has led to sig-
nificant improvements in the accuracy of image-level classification.Madani et al. [20]
used an order of magnitude less labeled data with a DCGAN in semi-supervised
learning yet showed comparable performance to a traditional supervised CNN clas-
sifier and furthermore demonstrated reduced domain overfitting by simply supplying
unlabeled test domain images. Springenberg et al. [33] combined a WGAN and Cat-
GAN [35] for unsupervised and semi-supervised learning of feature representation
of dermoscopy images.

Despite the aforecited successes, GAN frameworks remain challenging to train,
as we discussed above. Our MAVEN framework mitigates the difficulties of training
GANs by enabling training on a limited quantity of labeled data, preventing overfit-
ting to a specific data domain source, and preventingmode collapse, while supporting
multiclass image classification.

3 The MAVEN Architecture

Figure2 illustrates the models that serve as precursors to our MAVEN architecture.
The VAE is an explicit generative model that uses two neural nets, an encoder

E and decoder D′. Network E learns an efficient compression of real data x into a
lower dimensional latent representation space z(x); i.e., qλ(z|x).With neural network
likelihoods, computing the gradient becomes intractable; however, via differentiable,
non-centered re-parameterization, sampling is performed from an approximate func-
tion qλ(z|x) = N (z;μλ, σ

2
λ ), where z = μλ + σλ � ε̂ with ε̂ ∼ N (0, 1). Encoder E

yields μ and σ , and with the re-parameterization trick, z is sampled from a Gaus-
sian distribution. Then, with D′, new samples are generated or real data samples
are reconstructed; i.e., D′ provides parameters for the real data distribution pλ(x |z).
Subsequently, a sample drawn from pφ(x |z) may be used to reconstruct the real data
by marginalizing out z.

The GAN is an implicit generative model where a generatorG and a discriminator
D compete in a minimax game over the training data in order to improve their perfor-
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Fig. 2 Our MAVEN architecture compared to those of the VAE, GAN, and VAE-GAN. In the
MAVEN, inputs to D can be real data X , or generated data X̂ or X̃ . An ensemble ensures the
combined feedback from the discriminators to the generator

mance. Generator G tries to approximate the underlying distribution of the training
data and generates synthetic samples, while discriminator D learns to discriminate
synthetic samples from real samples. The GAN model is trained on the following
objectives:

max
D

V (D) = Ex∼pdata(x)[log D(x)] + Ex∼pg(z)[log(1 − D(G(z))]; (1)

min
G

V (G) = Ex∼pz(z)[log(1 − D(G(z))]. (2)

G takes a noise sample z ∼ pg(z) and learns to map it into image space as if it
comes from the original data distribution pdata(x), while D takes as input either real
image data or generated image data and provides feedback to G as to whether that
input is real or generated. On the one hand, D wants to maximize the likelihood for
real samples and minimize the likelihood of generated samples; on the other hand,
G wants D to maximize the likelihood of generated samples. A Nash equilibrium
results when D can no longer distinguish real and generated samples, meaning that
the model distribution matches the data distribution.

Makhzani et al. [21] proposed the adversarial training of VAEs; i.e., VAE-GANs.
Although they kept both D′ and G, one can merge these networks since both can
generate data samples from the noise samples of the representation z. In this case, D
receives real data samples x and generated samples x̃ or x̂ via G. Although G and D
compete against each other, the feedback from D eventually becomes predictable for
G and it keeps generating samples from the same class, at which point the generated
samples lack heterogeneity. Figure 1c shows an example where all the generated
images are of the same class. Durugkar et al. [7] proposed that using multiple dis-
criminators in a GAN model helps improve performance, especially for resolving
this mode collapse. Moreover, a dynamic ensemble of multiple discriminators has
recently been proposed to address the issue [23] (Fig. 3).

As in aVAE-GAN, ourMAVENhas three components, E ,G, and D; all are CNNs
with convolutional or transposed convolutional layers. First, E takes real samples
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Fig. 3 The three convolutional neural networks, E , G, and D, in the MAVEN

x and generates a dimensionality-reduced representation z(x). Second, G can input
samples from noise distribution z ∼ pg(z) or sampled noise z(x) ∼ qλ(x) and it
produces generated samples. Third, D takes inputs from distributions of real labeled
data, real unlabeled data, and generated data. Fractionally strided convolutions are
performed in G to obtain the image dimension from the latent code. The goal of an
autoencoder is to maximize the Evidence Lower Bound (ELBO). The intuition here
is to show the network more real data. The greater the quantity of real data that it
sees, the more evidence is available to it and, as a result, the ELBO can bemaximized
faster.
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In our MAVEN architecture (Fig. 2), the VAE-GAN combination is extended to
include multiple discriminators aggregated in an ensemble layer. K discriminators
are collected and the combined feedback

V (D) = 1

K

K∑

k=1

wk Dk (3)

is passed to G. In order to randomize the feedback from the multiple discriminators,
a single discriminator is randomly selected.

4 Semi-Supervised Learning

Algorithm 1 presents the overall training procedure of our MAVEN model. In the
forward pass, different real samples x into E and noise samples z into G provide
different inputs for each of the multiple discriminators. In the backward pass, the
combined feedback from the discriminators is computed and passed to G and E .

In the conventional image generator GAN, D works as a binary classifier—it
classifies the input image as real or generated. To facilitate the training for an n-class
classifier, D assumes the role of an (n + 1)-classifier. For multiple logit generation,
the sigmoid function is replaced by a softmax function. Now, it can receive an image
x as input and output an (n + 1)-dimensional vector of logits {l1, . . . , ln, ln+1}, which
are finally transformed into class probabilities for the n labels in the real data while
class (n + 1) denotes the generated data. The probability that x is real and belongs
to class 1 ≤ i ≤ n is

p(y = i | x) = exp(li )∑n+1
j=1 exp(l j )

(4)

while the probability that x is generated corresponds to i = n + 1 in (4). As a semi-
supervised classifier, the model takes labels only for a small portion of the training
data. It is trained via supervised learning from the labeled data, while it learns in an
unsupervisedmanner from the unlabeled data. The advantage comes from generating
new samples. The model learns the classifier by generating samples from different
classes.

4.1 Losses

Three networks, E , G, and D, are trained on different objectives. E is trained on
maximizing the ELBO, G is trained on generating realistic samples, and D is trained
to learn a classifier that classifies generated samples or particular classes for the real
data samples.
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Algorithm 1MAVEN Training procedure.
m is the number of samples; B is the minibatch-size; and K is the number of dis-
criminators.
steps ← m

B
for each epoch do
for each step in steps do
for k = 1 to K do
Sample minibatch z(1), . . . , z(m) from pg(z)
Sample minibatch x (1), . . . , x (m) from pdata(x)
Update Dk by ascending along its gradient:

∇Dk

1

m

m∑

i=1

[
log Dk(xi ) + log(1 − Dk(G(zi )))

]

end for
Sample minibatch z(1)k , . . . , z(m)

k from pg(z)
if ensemble is ‘mean’ then
Assign weights wk to the Dk
Determine the mean discriminator

Dμ = 1

K

K∑

k

wk Dk

end if
Update G by descending along its gradient from the ensemble of Dμ:

∇G
1

m

m∑

i=1

[
log(1 − Dμ(G(zi )))

]

Sample minibatch x (1), . . . , x (m) from pdata(x)
Update E along its expectation function:

∇Eqλ

[
log

p(z)

qλ(z | x)
]

end for
end for

4.1.1 D Loss

Since the model is trained on both labeled and unlabeled training data, the loss
function of D includes both supervised and unsupervised losses. When the model
receives real labeled data, it is the standard supervised learning loss

LDsupervised = −Ex,y∼pdata log[p(y = i | x)], i < n + 1. (5)

When it receives unlabeled data from three different sources, the unsupervised loss
contains the original GAN loss for real and generated data from two different sources:
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synG directly from G and synE from E via G. The three losses,

LDreal = −Ex∼pdata log[1 − p(y = n + 1 | x)], (6)

LDsynG = −Ex̂∼G log[p(y = n + 1 | x̂)], (7)

LDsynE = −Ex̃∼G log[p(y = n + 1 | x̃)], (8)

are combined as the unsupervised loss in D:

LDunsupervised = LDreal + LDsynG + LDsynE . (9)

4.1.2 G Loss

ForG, the feature loss is used alongwith the originalGAN loss. Activation f (x) from
an intermediate layer of D is used to match the feature between real and generated
samples. Feature matching has shown much potential in semi-supervised learning
[32]. The goal of feature matching is to encourage G to generate data that matches
real data statistics. It is natural for D to find the most discriminative features in real
data relative to data generated by the model:

LGfeature = ∥∥Ex∼pdata f (x) − Ex̂∼G f (x̂)
∥∥2
2 . (10)

The total G loss becomes the combined feature loss (10) plus the cost of maximizing
the log-probability of D making a mistake on the generated data (synG / synE); i.e.,

LG = LGfeature + LGsynG + LGsynE, (11)

where
LGsynG = −Ex̂∼G log[1 − p(y = n + 1 | x̂)], (12)

and
LGsynE = −Ex̃∼G log[1 − p(y = n + 1 | x̃)]. (13)

4.1.3 E Loss

In the encoder E , the maximization of ELBO is equivalent to minimizing the KL-
divergence, allowing approximate posterior inferences. Therefore the loss function
includes the KL-divergence and also a feature loss to match the features in the synE
data with the real data distribution. The loss for the encoder is

LE = LEKL + LEfeature , (14)
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where

LEKL = −KL [qλ(z | x) ‖ p(z)] = Eqλ(z|x)
[
log

p(z)

qλ(z | x)
]

≈ Eqλ(z|x)
(15)

and
LEfeature = ∥∥Ex∼pdata f (x) − Ex̃∼G f (x̃)

∥∥2
2 . (16)

5 Experiments

Applying semi-supervised learning using training data that is only partially labeled,
we evaluated our MAVEN model in image generation and classification tasks in a
number of experiments. For all our experiments, we used 10% labeled and 90%
unlabeled training data.

5.1 Data

We employed the following four image datasets:

1. The Street ViewHouse Numbers (SVHN) dataset [24] (Fig. 4a). There are 73,257
digit images for training and 26,032 digit images for testing. Out of two versions
of the images, we used the version which has MNIST-like 32 × 32 pixel RGB
color images centered around a single digit. Each image is labeled as belonging
to one of 10 classes: digits 0–9.

2. The CIFAR-10 dataset [19] (Fig. 4b). It consists of 60,000 32 × 32 pixel RGB
color images in 10 classes. There are 50,000 training images and 10,000 test
images. Each image is labeled as belonging to one of 10 classes: plane, auto, bird,
cat, deer, dog, frog, horse, ship, and truck.

3. The anterior-posterior Chest X-Ray (CXR) dataset [17] (Fig. 4c). The dataset
contains 5,216 training and 624 test images. Each image is labeled as belonging
to one of three classes: normal, bacterial pneumonia (b-pneumonia), and viral
pneumonia (v-pneumonia).

4. The skin lesion classification (SLC) dataset (Fig. 4d). We employed 2,000 RGB
skin images from the ISIC 2017 dermoscopy image dataset [5]; of which we used
1,600 for training and 400 for testing. Each image is labeled as belonging to one
of two classes: non-melanoma and melanoma.

For the SVHN and CIFAR-10 datasets, the images were normalized and provided
to the models in their original (32 × 32 × 3) pixel sizes. For the CXR dataset, the
images were normalized and resized to 128 × 128 × 1 pixels. For the SLC dataset,
the images were resized to 128 × 128 × 3 pixels.
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Fig. 4 Example images of each class in the four datasets

5.2 Implementation Details

To compare the image generation and multiclass classification performance of
our MAVEN model, we used two baselines, the Deep Convolutional GAN (DC-
GAN) [29] and the VAE-GAN. The same generator and discriminator architectures
were used for DC-GAN and MAVENmodels and the same encoder was used for the
VAE-GAN and MAVENmodels. For our MAVENs, we experimented with 2, 3, and
5 discriminators. In addition to using the mean feedback of the multiple discrimi-
nators, we also experimented with feedback from a randomly selected discrimina-
tor. The six MAVEN variants are therefore denoted MAVEN-m2D, MAVEN-m3D,
MAVEN-m5D,MAVEN-r2D,MAVEN-r3D, andMAVEN-r5D,where “m” indicates
mean feedback while “r” indicates random feedback.
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All the models were implemented in TensorFlow and run on a single Nvidia Titan
GTX (12 GB) GPU. For the discriminator, after every convolutional layer, a dropout
layer was added with a dropout rate of 0.4. For all the models, we consistently
used the Adam optimizer with a learning rate of 2.0−4 for G and D, and 1.0−5 for
E , with a momentum of 0.9. All the convolutional layers were followed by batch
normalizations. Leaky ReLU activations were used with α = 0.2.

5.3 Evaluation

5.3.1 Image Generation Performance Metrics

There are no perfect performancemetrics formeasuring the quality of generated sam-
ples. However, to assess the quality of the generated images, we employed the widely
used Fréchet Inception Distance (FID) [12] and a simplified version of the Descrip-
tive Distribution Distance (DDD) [14]. To measure the Fréchet distance between two
multivariate Gaussians, the generated samples and real data samples are compared
through their distribution statistics:

FID = ∥∥μdata − μsyn

∥∥2 + Tr
(
�data + �syn − 2

√
�data�syn

)
. (17)

Two distribution samples, Xdata ∼ N(μdata, �data) and Xsyn ∼ N(μsyn, �syn), for
real and model data, respectively, are calculated from the 2,048-dimensional acti-
vations of the pool3 layer of Inception-v3 [32]. DDD measures the closeness of
a generated data distribution to a real data distribution by comparing descriptive
parameters from the two distributions. We propose a simplified version based on the
first four moments of the distributions, computed as the weighted sum of normalized
differences of moments, as follows:

DDD = −
4∑

i=1

logwi

∣∣μdatai − μsyni

∣∣ , (18)

where theμdatai are themoments of the data distribution, theμsyni are themoments of
the model distribution, and thewi are the corresponding weights found in an exhaus-
tive search. The higher order moments are weighted more in order to emphasize the
stability of a distribution. For both the FID and DDD, lower scores are better.

5.3.2 Image Classification Performance Metrics

To evaluate model performance in classification, we used two measures, image-level
classification accuracy and class-wise F1 scoring. The F1 score is
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F1 = 2 × precision × recall

precision + recall
, (19)

with

precision = TP

TP + FP
and recall = TP

TP + FN
, (20)

where TP, FP, and FN are the number of true positives, false positives, and false
negatives, respectively.

5.4 Results

We measured the image classification performances of the models with cross-
validation and in the following sections report the average scores from running each
model 10 times.

5.4.1 SVHN

For the SVHN dataset, we randomly selected 7,326 labeled images and they along
with the remaining 65,931 unlabeled images were provided to the network as training
data. All the models were trained for 300 epochs and then evaluated. We generated
new images equal in number to the training set size. Figure 5 presents a visual
comparison of a random selection of images generated by the DC-GAN, VAE-GAN,
andMAVENmodels and real training images. Figure 6 compares the image intensity
histograms of 10K randomly sampled real images and equally many images sampled
from among those generated by each of the different models.

Generally speaking, our MAVEN models generate images that are more realistic
than those generated by the DC-GAN and VAE-GAN models. This was further
corroborated by randomly sampling 10K generated images and 10K real images. The
generated image quality measurement was performed for the eight different models.
Table 1 reports the resulting FID and DDD scores. For the FID score calculation, the
score is reported after running the pre-trained Inception-v3 network for 20 epochs
for each model. The MAVEN-r3D model achieved the best FID score and the best
DDD score was achieved by the MAVEN-m5D model.

Table 2 compares the classification performance of all the models for the SVHN
dataset. TheMAVENmodel consistently outperformed theDC-GANandVAE-GAN
classifiers both in classification accuracy and class-wise F1 scores. Among all the
models, our MAVEN-m2D and MAVEN-m3D models were the most accurate.
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Fig. 5 Visual comparison of image samples from the SVHN dataset against those generated by the
different models

Fig. 6 Histograms of the real SVHN training data, and of the data generated by the DC-GAN and
VAE-GAN models and by our MAVEN models with mean and random feedback from 2, 3, to 5
discriminators
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Table 2 Average cross-validation accuracy and class-wise F1 scores in the semi-supervised clas-
sification performance comparison of the DC-GAN, VAE-GAN, and MAVEN models using the
SVHN dataset
Model Accuracy F1 scores

0 1 2 3 4 5 6 7 8 9

DC-GAN 0.876 0.860 0.920 0.890 0.840 0.890 0.870 0.830 0.890 0.820 0.840

VAE-GAN 0.901 0.900 0.940 0.930 0.860 0.920 0.900 0.860 0.910 0.840 0.850

MAVEN-m2D 0.909 0.890 0.930 0.940 0.890 0.930 0.900 0.870 0.910 0.870 0.890

MAVEN-m3D 0.909 0.910 0.940 0.940 0.870 0.920 0.890 0.870 0.920 0.870 0.860

MAVEN-m5D 0.905 0.910 0.930 0.930 0.870 0.930 0.900 0.860 0.910 0.860 0.870

MAVEN-r2D 0.905 0.910 0.930 0.940 0.870 0.930 0.890 0.860 0.920 0.850 0.860

MAVEN-r3D 0.907 0.890 0.910 0.920 0.870 0.900 0.870 0.860 0.900 0.870 0.890

MAVEN-r5D 0.903 0.910 0.930 0.940 0.860 0.910 0.890 0.870 0.920 0.850 0.870

5.4.2 CIFAR-10

For the CIFAR-10 dataset, we used 50 K training images, only 5 K of them labeled.
All the models were trained for 300 epochs and then evaluated. We generated new
images equal in number to the training set size. Figure 7 visually compares a random
selection of images generated by the DC-GAN, VAE-GAN, and MAVEN models
and real training images. Figure 8 compares the image intensity histograms of 10K
randomly sampled real images and equally many images sampled from among those
generated by each of the different models. Table 1 reports the FID and DDD scores.
As the tabulated results suggest, ourMAVENmodels achieved better FID scores than
some of the recently published models. Note that those models were implemented
in different settings.

As for the visual comparison, the FID and DDD scores confirmed more realistic
image generation by our MAVENmodels compared to the DC-GAN and VAE-GAN
models. The MAVEN models have smaller FID scores, except for MAVEN-r5D.
MAVEN-m3D has the smallest FID and DDD scores among all the models.

Table 3 compares the classification performance of all themodelswith theCIFAR-
10 dataset. All the MAVEN models performed better than the DC-GAN and VAE-
GAN models. In particular, MAVEN-m5D achieved the best classification accuracy
and F1 scores.

5.4.3 CXR

With the CXR dataset, we used 522 labeled images and 4,694 unlabeled images. All
the models were trained for 150 epochs and then evaluated. We generated an equal
number of new images as the training set size. Figure 9 presents a visual comparison
of a random selection of generated and real images. The FID andDDDmeasurements
were performed for the distributions of generated and real training samples, indicating
that more realistic images were generated by the MAVEN models than by the GAN
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Fig. 7 Visual comparison of image samples from the CIFAR-10 dataset against those generated
by the different models

Fig. 8 Histograms of the real CIFAR-10 training data, and of the data generated by the DC-GAN
and VAE-GAN models and by our MAVEN models with mean and random feedback from 2, 3, to
5 discriminators



266 A.-A.-Z. Imran and D. Terzopoulos

Table 3 Average cross-validation accuracy and class-wise F1 scores in the semi-supervised clas-
sification performance comparison of the DC-GAN, VAE-GAN, and MAVEN models using the
CIFAR-10 dataset
Model Accuracy F1 scores

Plane Auto Bird Cat Deer Dog Frog Horse Ship Truck

DC-GAN 0.713 0.760 0.840 0.560 0.510 0.660 0.590 0.780 0.780 0.810 0.810

VAE-GAN 0.743 0.770 0.850 0.640 0.560 0.690 0.620 0.820 0.770 0.860 0.830

MAVEN-m2D 0.761 0.800 0.860 0.650 0.590 0.750 0.680 0.810 0.780 0.850 0.850

MAVEN-m3D 0.759 0.770 0.860 0.670 0.580 0.700 0.690 0.800 0.810 0.870 0.830

MAVEN-m5D 0.771 0.800 0.860 0.650 0.610 0.710 0.640 0.810 0.790 0.880 0.820

MAVEN-r2D 0.757 0.780 0.860 0.650 0.530 0.720 0.650 0.810 0.800 0.870 0.860

MAVEN-r3D 0.756 0.780 0.860 0.640 0.580 0.720 0.650 0.830 0.800 0.870 0.830

MAVEN-r5D 0.762 0.810 0.850 0.680 0.600 0.720 0.660 0.840 0.800 0.850 0.820

and VAE-GANmodels. The FID and DDD scores presented in Table 1 show that the
mean MAVEN-m3D model has the smallest FID and DDD scores.

The classification performance reported in Table 4 suggests that our MAVEN
model-based classifiers are more accurate than the baseline GAN and VAE-GAN
classifiers. Among all themodels, theMAVEN-m3Dclassifierwas themost accurate.

5.4.4 SLC

For the SLC dataset, we used 160 labeled images and 1,440 unlabeled images. All the
models were trained for 150 epochs and then evaluated. We generated new images
equal in number to the training set size. Figure 10 presents a visual comparison of
randomly selected generated and real image samples.

The FID and DDDmeasurements for the distributions of generated and real train-
ing samples indicate that more realistic images were generated by theMAVENmod-
els than by the GAN and VAE-GAN models. The FID and DDD scores presented
in Table 1 show that the mean MAVEN-m3D model has the smallest FID and DDD
scores.

The classification performance reported in Table 5 suggests that our MAVEN
model-based classifiers are more accurate than the baseline GAN and VAE-GAN
classifiers.Amongall themodels,MAVEN-r3D is themost accurate in discriminating
between non-melanoma and melanoma lesion images.
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Fig. 9 Visual comparison of image samples from the CXR dataset against those generated by the
different models

Table 4 Average cross-validation accuracy and class-wise F1 scores for the semi-supervised clas-
sification performance comparison of the DC-GAN, VAE-GAN, and MAVEN models using the
CXR dataset
Model Accuracy F1 scores

Normal B-Pneumonia V-Pneumonia

DC-GAN 0.461 0.300 0.520 0.480

VAE-GAN 0.467 0.220 0.640 0.300

MAVEN-m2D 0.469 0.310 0.620 0.260

MAVEN-m3D 0.525 0.640 0.480 0.480

MAVEN-m5D 0.477 0.380 0.480 0.540

MAVEN-r2D 0.478 0.280 0.630 0.310

MAVEN-r3D 0.506 0.440 0.630 0.220

MAVEN-r5D 0.483 0.170 0.640 0.240
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Fig. 10 Visual comparison of image samples from the SLC dataset against those generated by the
different models



Multi-Adversarial Variational Autoencoder Nets for Simultaneous … 269

Table 5 Average cross-validation accuracy and class-wise F1 scores for the semi-supervised clas-
sification performance comparison of the DC-GAN, VAE-GAN, and MAVEN models using the
SLC dataset

Model Accuracy F1 scores

Non-melanoma Melanoma

DC-GAN 0.802 0.890 0.120

VAE-GAN 0.810 0.890 0.012

MAVEN-m2D 0.815 0.900 0.016

MAVEN-m3D 0.814 0.900 0.110

MAVEN-m5D 0.812 0.900 0.140

MAVEN-r2D 0.808 0.890 0.260

MAVEN-r3D 0.821 0.900 0.020

MAVEN-r5D 0.797 0.890 0.040

6 Conclusions

We have introduced a novel generative modeling approach, called Multi-Adversarial
Variational autoEncoder Networks, or MAVENs, which demonstrates the advantage
of an ensemble of discriminators in the adversarial learning of variational autoen-
coders. We have shown that training our MAVEN models on small, labeled datasets
and allowing them to leverage large numbers of unlabeled training examples enables
them to achieve superior performance relative to prior GAN and VAE-GAN-based
classifiers, suggesting that MAVENs can be very effective in simultaneously gen-
erating high-quality realistic images and improving multiclass image classification
performance. Furthermore, unlike conventional GAN-based semi-supervised clas-
sification, improvements in the classification of natural and medical images do not
compromise the quality of the generated images. Future work with MAVENs should
explore more complex image analysis tasks beyond classification and include more
extensive experimentation spanning additional domains.
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