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Knowledge Compilation 

• Reasoning with logical knowledge bases 

• Tractable languages and compilers 

• Boolean circuits:  
OBDDs, d-DNNFs, SDDs, etc. 

• Applications:  
– Diagnosis 

– Planning 

– Inference in probabilistic databases, graphical 
models, probabilistic programs 

– Learning tractable probabilistic models 

A

B

C

1

D

0



Bottom-Up Compilation with Apply 

• Build Boolean combinations of existing circuits 

• Compile CNF: (1) circuit for literals (2) disjoin to 
get circuit for clauses (3) conjoin for CNF. 

• Compile arbitrary sentence incrementally 
 
 
 
 

• Avoiding CNF crucial for many applications 

 = 
( A  ( B  D ))  (C ∨ D)  ( A  ( B  D ))  (C ∨ D) 



Two Properties Under Investigation 

Polytime Apply  
  

Complexity is polynomial 
in size of input circuits. 

Informally: one Apply 
cannot blow up size. 

 

 

Canonicity 
  

Equivalent sentences have 
identical circuits. 

 

= O( ) x 

A  (C ∨ D) (A  C) ∨ (A  D) ≡ 

= 



What We Knew Before 

• A practical language for bottom-up compilation 
requires a polytime Apply. 

– Explains success of OBDDs 

– Why do Apply when it blows up? 

– Guided search for new languages (structured DNNF) 

• Canonicity is convenient for building compilers 

– Detect/cache equivalent subcircuits 
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Sentential Decision Diagrams 

Properties: 
• OBDD  SDD 
• Treewidth  

upper bound 
• Quasipolynomial  

separation with OBDD 
• Supports OBDD queries 
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Basing Decisions on Sentences 

f (A, B, C, D) =  
 ( A  B )  ( C  D ) 

 
A  B A  B 

primes,subs primes,subs 

In an (X,Y)-partition: 

  f (X, Y) = p1(X) s1(Y) …  pn(X) sn(Y) 

primes are mutually exclusive, exhaustive and not false 



Compression and Canonicity 

• An (X,Y)-partition: 

   f (X, Y) = p1(X)s1(Y) …  pn(X)sn(Y) 

is compressed when the subs are distinct: 

  si(Y) ≠ si(Y) if i≠j  

• f(X,Y) has a unique compressed (X,Y)-partition 

• For fixed X,Y throughout the SDD (i.e. a vtree), 
compressed SDDs* are canonical! 
 

 
* requires some additional maintenance (pruning/normalization) 
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• |α|x|β| recursive calls 
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• But what about 

compression/canonicity? 
 



Is Apply for SDDs Polytime? 

• Polytime Apply? 
• Open question answered 

in this paper 



Theoretical Results 

Theorem: 
There exists a class of Boolean functions fm (X1,…,Xm)  
such that fm has an SDD of size O(m2 ), yet the 
canonical SDD of fm has size Ω(2m). 



Two options 

1. Enable compression 

– No polytime Apply 

– Canonicity 

2. Disable compression 

– Polytime Apply 

– No Canonicity 

What should we do? Popular belief:  
Choose polytime Apply, or circuits blow up! 
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What We Know Now 

• Canonical SDDs have no polytime Apply! 

• Yet they work! 
Outperform OBDDs and non-canonical SDDs 

• We argue: Canonicity is more important 

Facilitates caching and minimization (vtree search) 

• Questions common wisdom   

 



Thanks 

 


