
On the Role of Canonicity in
Knowledge Compilation

Guy Van den Broeck and Adnan Darwiche

Jan 28, 2015, AAAI

Knowledge Compilation

• Reasoning with logical knowledge bases

• Tractable languages and compilers

• Boolean circuits:
OBDDs, d-DNNFs, SDDs, etc.

• Applications:
– Diagnosis

– Planning

– Inference in probabilistic databases, graphical
models, probabilistic programs

– Learning tractable probabilistic models

A

B

C

1

D

0

Bottom-Up Compilation with Apply

• Build Boolean combinations of existing circuits

• Compile CNF: (1) circuit for literals (2) disjoin to
get circuit for clauses (3) conjoin for CNF.

• Compile arbitrary sentence incrementally

• Avoiding CNF crucial for many applications

 =
(A  (B  D))  (C ∨ D) (A  (B  D)) (C ∨ D)

Two Properties Under Investigation

Polytime Apply

Complexity is polynomial
in size of input circuits.

Informally: one Apply
cannot blow up size.

Canonicity

Equivalent sentences have
identical circuits.



= O() x

A  (C ∨ D) (A  C) ∨ (A  D) ≡

=

What We Knew Before

• A practical language for bottom-up compilation
requires a polytime Apply.

– Explains success of OBDDs

– Why do Apply when it blows up?

– Guided search for new languages (structured DNNF)

• Canonicity is convenient for building compilers

– Detect/cache equivalent subcircuits

What We Knew Before

• A practical language for bottom-up compilation
requires a polytime Apply.

– Explains success of OBDDs

– Why do Apply when it blows up?

– Guided search for new languages (structured DNNF)

• Canonicity is convenient for building compilers

– Detect/cache equivalent subcircuits

Sentential Decision Diagrams

Properties:
• OBDD  SDD
• Treewidth

upper bound
• Quasipolynomial

separation with OBDD
• Supports OBDD queries

C

¬A A ¬A A

¬B B D ¬B B ¬D







C

¬A A ¬A A

¬B B D ¬B B ¬D







f (A, B, C, D) =
 (A  (B  D))  C

Sentential Decision Diagrams



C



¬A A



¬A A



¬B B D



¬B B ¬D







 

   

   

f (A, B, C, D) =
 (A  (B  D))  C

Sentential Decision Diagrams

Basing Decisions on Sentences

f (A, B, C, D) =
 (A  B)  (C  D)

A B ¬A A ¬B ¬A C D ¬C





 

A = t, B = f,
C = t, D = t

Basing Decisions on Sentences

f (A, B, C, D) =
 (A  B)  (C  D)

A B ¬A A ¬B ¬A C D ¬C





 

A = t, B = f,
C = t, D = t

A ¬B C D

Basing Decisions on Sentences

f (A, B, C, D) =
 (A  B)  (C  D)

A B ¬A A ¬B ¬A C D ¬C





 

A = t, B = f,
C = t, D = t

A ¬B C D

A  B A  B

Basing Decisions on Sentences

f (A, B, C, D) =
 (A  B)  (C  D)

A B ¬A A ¬B ¬A C D ¬C





 

A = t, B = f,
C = t, D = t

A ¬B C D

A  B A  B

primes,subs primes,subs

Basing Decisions on Sentences

f (A, B, C, D) =
 (A  B)  (C  D)


A  B A  B

primes,subs primes,subs

In an (X,Y)-partition:

 f (X, Y) = p1(X) s1(Y) …  pn(X) sn(Y)

primes are mutually exclusive, exhaustive and not false

Compression and Canonicity

• An (X,Y)-partition:

 f (X, Y) = p1(X)s1(Y) …  pn(X)sn(Y)

is compressed when the subs are distinct:

 si(Y) ≠ si(Y) if i≠j

• f(X,Y) has a unique compressed (X,Y)-partition

• For fixed X,Y throughout the SDD (i.e. a vtree),
compressed SDDs* are canonical!

* requires some additional maintenance (pruning/normalization)

Compression

Compression

Compression

Compression

Compression



Is Apply for SDDs Polytime?

Is Apply for SDDs Polytime?

• |α|x|β| recursive calls
• Polytime!

Is Apply for SDDs Polytime?

• |α|x|β| recursive calls
• Polytime!
• But what about

compression/canonicity?

Is Apply for SDDs Polytime?

• Polytime Apply?
• Open question answered

in this paper

Theoretical Results

Theorem:
There exists a class of Boolean functions fm (X1,…,Xm)
such that fm has an SDD of size O(m2), yet the
canonical SDD of fm has size Ω(2m).

Two options

1. Enable compression

– No polytime Apply

– Canonicity

2. Disable compression

– Polytime Apply

– No Canonicity

What should we do? Popular belief:
Choose polytime Apply, or circuits blow up!

Empirical Results

Empirical Results

What We Know Now

• Canonical SDDs have no polytime Apply!

• Yet they work!
Outperform OBDDs and non-canonical SDDs

• We argue: Canonicity is more important

Facilitates caching and minimization (vtree search)

• Questions common wisdom

Thanks

