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What are probabilistic programs? 



What are probabilistic programs? 

means “flip a coin, and  
output true with probability ½” 

x ∼ flip(0.5); 
y ∼ flip(0.7); 
z := x || y; 
if(z) {  
 … 
} 
observe(z); 

means “reject this execution if 
z is not true” 

Standard programming 
language constructs  



Semantics of a  
Probabilistic Program 

A probability distribution on its states 
 
 
 
 
 
 
 

Goal: To perform probabilistic inference 
• Compute the probability of some event 
• Can be used for Bayesian machine learning: compute 

posterior (learned) parameters/structure given data 
 

 

Semantics 

0

0.1

0.2

0.3

0.4

x=T,y=T x=T,y=F x=F,y=T x=F,y=F

Joint Probability 

x ∼ flip(0.5); 
y ∼ flip(0.7); 



Why Probabilistic Programming? 

• PPLs have grown in popularity: there are dozens 

 

 

 

 

• They are popular with practitioners 
• Specify a probability model in a familiar language 

• Expressive and concise 

• Cleanly separates model from inference 

Pyro 
Venture, Church 

Stan 

Figaro 

ProbLog, PRISM, LPADs, CPLogic, ICL, PHA, etc. 



The Challenge of PPL Inference 

Most popular inference algorithms are black box 

– Treat program as a map from inputs to outputs 

 

 

 

     (black-box variational, Hamiltonian MC) 

– Simplifying assumptions: differentiability, continuity 

– Little to no effort to exploit program structure   

            (automatic differentiation aside) 

– Approximate inference  

Stan 
Pyro 



Why Discrete Models? 

1. Real programs have inherent discrete 

structure (e.g. if-statements) 

 

2. Discrete structure is important in modeling 

(graphs, topic models, etc.) 

 

3. Many existing systems assume smooth and 

differentiable densities: 
  

Discrete probabilistic programming is  

the important unsolved open problem! 

 



What is the formal semantics? 



Simple Discrete PPL Syntax  
(statements and expressions) 



Semantics 

• The program state is a map from 

variables to values, denoted 𝜎 

• The goal of our semantics is to 

associate 

–statements in the syntax with  

–a probability distribution on states 

• Notation: semantic brackets [[s]] 



Sampling Semantics 

• The simplest way to give a semantics to our 
language is to run the program infinite times 

 

 

 

 

 

• The probability distribution of the program is 
defined as the long run average of how often it 
ends in a particular state 

Draw samples 

𝝈 

x=true 

x=false 

x=true 

x=false 

x ∼ flip(0.5); 



Semantics of 

𝜔1 𝜔2 

𝜔3 𝜔4 

0.5*0.7 = 0.35 0.5*0.7 = 0.35 

0.5*0.3 = 0.15 0.5*0.3 = 0.15 

x = true 
y = true 

x = false 
y = false 

x = false 
y = true 

x = true 
y = false 

x ∼ flip(0.5); 
y ∼ flip(0.7); 



Semantics of 

𝜔1 𝜔2 

𝜔3 𝜔4 

0.5*0.7 = 0.35 0.5*0.7 = 0.35 

0.5*0.3 = 0.15 0.5*0.3 = 0.15 

x = true 
y = true 

x = false 
y = false 

x = false 
y = true 

x = true 
y = false 

x ∼ flip(0.5); 
y ∼ flip(0.7); 
observe(x || y); 

Semantics: Throw 
away all executions 
that do not satisfy 

the condition x || y. 



Rejection Sampling Semantics 

• Observes give a posterior distribution on the 
program states 

• Semantics of a program: draw (infinite) samples, 
take the long run average over accepted samples 

𝝈 

x=true y=true 

x=false x=false 

x=true y=false 

x=false y=true 

Draw samples 

x ∼ flip(0.5); 
y ∼ flip(0.7); 
observe(x || y); 



Rejection Sampling Semantics 

 
• Extremely general: you only need to be able to run the 

program to implement a rejection-sampling semantics 
• This how most AI researchers think about the meaning of 

their programs (?) 

 
• “Procedural”: the meaning of the program is whatever it 

executes to …not entirely satisfying… 
• A sample is a full execution: a global property that makes it 

harder to think modularly about local meaning of code 
 

 
 

Next: the gold standard in programming languages  
denotational semantics 



Denotational Semantics 

• Idea: We don’t have to run a flip statement to know 
what its distribution is 

• For some input state 𝜎 and output state 𝜎′, we can 
directly compute the probability of transitioning 
from 𝜎 to 𝜎′ upon executing a flip statement: 

 
 
 

𝝈 

x=true 
Run x ~ flip(0.4) on 𝜎 

𝝈′ 

x=true 
Pr = 0.4 

𝝈′ 

x=false 
Pr = 0.6 

We can avoid having to  
think about sampling! 



Denotational Semantics of Flip 

Idea: Directly define the probability of transitioning 
upon executing each statement 

Call this its denotation, written 

Semantic 
bracket: 

associate 
semantics 

with syntax 

Output 
state 

Input State 

Assign x to false in the 
state 𝜎 



Semantics of Expressions 

•What about x := e? 

•Need semantics for expressions: simple 

• Just evaluate the expression e on state 𝜎 



Semantics of Assignments 

What about x := e? 

 

 

 

 

(semantics of if-then-else  
  also based on if-test expression) 

 



Semantics of Sequencing 

• Assume the program has no observe statements 

• We can compute the denotation of sequencing by 
marginalizing out the intermediate state 

Example: 

= 0.4 ⋅ 0.9 + 0.6 ⋅ 0 



Semantics of Observations 

• What if we introduce observations only at the end 
of the program?  

 

 

 

 

 

• Bayes rule “given that the observe succeeds” 

• Look ma! No rejected samples! 

 

 

 

 



What is the meaning of? 



What is the meaning of? 



Are these programs equivalent? 



Are these programs equivalent? 

In                       the probability of x = F in the output state is: 
2/3 

In                       the probability of x = F in the output state is: 
2/3 ⋅ 1/2

1/3 + 2/3 ⋅ 1/2
= 
1

2
 

2 



Accepting and Transition Semantics 



Pitfalls of Denotational Semantics 

• Intermediate observes:  
• Need accepting semantic 

• Key difference from probabilistic graphical models 

• Sometimes encoded using unnormalized probabilities 

• While loops 
• Bounded?    “while(i<10)” 

• Almost surely terminating?    “while(flip(0.5))” 

• Not almost surely terminating?     “while(true)” 

• Adding continuous variables:  
• Indian GPA problem [Wu et al. ICML 2018] 

• What is the meaning of “if(Normal(0,1) == 0.34) then …“ 

• Etc. 

 



How to do exact inference  

for probabilistic programs? 



The Challenge of PPL Inference 

• Probabilistic inference is #P-hard 

– Implies there is likely no universal solution 

• In practice inference is often feasible 

– Often relies on conditional independence 

– Manifests as graph properties 

• Why exact? 
1. No error propagation 

2. Approximations are intractable in theory as well 

3. Approximates are known to mislead learners 

4. Core of effective approximation techniques 

5. Unaffected by low-probability observations 

 



Techniques for exact inference 

 

 

Graphical Model 

Compilation 

 

 

Symbolic compilation 

(This work) 

 

 

 

Enumeration 

 

Keeps program structure? 

Exploits independence 

to decompose inference? 

Yes 

Yes No 

No 



PL Background: Symbolic 
Execution 

• Non-probabilistic programs can be interpreted as 
logical formulae which relate input and output states 

x := y; 𝜑 = 𝑥′ ⇔ 𝑦 ∧ 𝑦′ ⇔ 𝑦  

Program 
Symbolic 
Execution 

Logical 
Formula 

SAT 
Output 

reachable 
given input? 

𝑆𝐴𝑇 𝜑 ∧ 𝑥′ ∧ 𝑦 = 𝑇 

𝑆𝐴𝑇 𝜑 ∧ 𝑥′ ∧ 𝑦 = F 

Output state: primed 
Input state: unprimed 



Our Approach: Inference via 
Weighted Model Counting  

 

 Probabilistic 
Program 

Symbolic 
Compilation 

Weighted 
Boolean 
Formula 

WMC 
Query 
Result 

Binary 
Decision 
Diagram 

Exploits 
Independence 

Retains Program 
Structure 



Inference via Weighted Model 
Counting 

 

 

 

Probabilistic 
Program 

Symbolic 
Compilation 

Weighted 
Boolean 
Formula 

WMC 
Query 
Result 

x := flip(0.4); 

𝑥′ ⇔ 𝑓1  

𝒍 𝒘 𝒍  

𝑓1 0.4 

𝑓1  0.6 

WMC 𝜑,𝑤 =   𝑤 𝑙 .

𝑙∈𝑚𝑚⊨𝜑

 

WMC 𝑥′ ⇔ 𝑓1 ∧ 𝑥 ∧ 𝑥
′, 𝑤 ? 

• A single model: m = 𝑥′ ∧ 𝑥 ∧ 𝑓1 
 

• 𝑤 𝑥′ ∗ 𝑤 𝑥 ∗ 𝑤 𝑓1 = 0.4 



Symbolic compilation: Flip 

• Compositional process 

 

 

All variables in the program except 
for x are not changed by this statement 



Symbolic compilation: 
Assignment 

• Compositional process 

 

 

 

 

 

 

 



Compiling to BDDs 

• BDDs compactly capture complex program 
structure x = a || b || c || d || e || f; 



Symbolic compilation: 
Sequencing 
• Compositional process 

 

 

 

 

 

 

• Compile two sub-statements, do some relabeling, 
then combine them to get the result 

 

 



Inference via Weighted Model 
Counting  

 

 
Probabilistic 

Program 
Symbolic 

Compilation 

Weighted 
Boolean 
Formula 

WMC 
Query 
Result 

Binary 
Decision 
Diagram 



Compiling to BDDs 
• Consider an example program: 

 

 

 

 

 

 

 

 

 

 

 

• WMC is efficient for BDDs: time linear in size 
• Small BDD = Fast Inference 

x~flip(0.4); 

y~flip(0.6) 

True 
edge 

False 
edge 

This sub-function 
does not depend 

on x: exploits 
independence 



BDDs Exploit  
Conditional Independence 

Size of BDD grows linearly with length of Markov chain 

 

 

 

 

 

 

 Given y=T, does not depend on 
the value of X: exploits 

conditional independence 



BDDs Exploit  
Context-Specific Independence 



Experiments: Markov Chain 



Experiment: Bayesian Networks 

Alarm Network Pathfinder Network 

Specialized BN  
inference algorithm 

Large programs (thousands of lines, tens of thousands of flips) 



Symbolic Compilation 

• Exact inference algorithm for discrete programs 
• Relies on PL ideas to construct state space: symbolic execution, 

symbolic model checking 
• Relies on AI ideas to perform inference: weighted model 

counting, knowledge compilation 

• Proved correct (= denotational semantics) 

• Competitive performance 

• Will release a language+system soon! 

• Also see probabilistic logic programming work 
 Jonas Vlasselaer, Guy Van den Broeck, Angelika Kimmig, Wannes Meert and Luc De 

Raedt. Tp-Compilation for Inference in Probabilistic Logic Programs, In International 
Journal of Approximate Reasoning, 2016. 

 Daan Fierens, Guy Van den Broeck, Joris Renkens, Dimitar Shterionov, Bernd 
Gutmann, Ingo Thon, Gerda Janssens and Luc De Raedt. Inference and Learning in 
Probabilistic Logic Programs using Weighted Boolean Formulas, In Theory and Practice of 
Logic Programming, volume 15, 2015. 
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What about approximate inference? 



 

 

 

 

Exact 

 
Independence 

Properties 

 

Logical 
Structure 

 

Approx 

 

Scalable 

 

Anytime 

 

 

Compilation Sampling 

Collapsed 

Compilation 



Collapsed Sampling  

(Rao-Blackwell) 

Sampling on some variables,  

exact inference conditioned on sample 

 

Sample A,B 



Collapsed Sampling  

(Rao-Blackwell) 

Sampling on some variables,  

exact inference conditioned on sample 

 

Observe sampled values 



Collapsed Sampling  

(Rao-Blackwell) 

Sampling on some variables,  

exact inference conditioned on sample 

 

Compute exactly P(C|A,B) 



What to Sample? 

Sample 1 Sample 2 

• Is it even possible to pick a correct set a priori? 

• Consider a network of potential smokers,  

with friendships sampled 

 



Online Collapsed Sampling 

Choose on-the-fly which variable to 

sample next, based on result of sampling 

previous variables 

 

 

Theorem: Still unbiased 

 



How to do Collapsed Sampling? 

1. What/when do we sample? 

2. How do we sample? 

3. How do we do exact inference? 

 

 

 

 

 



Collapsed Compilation 

Result: A circuit with some sampled variables  

Exact 
Inference 

Sampling 

Big Circuit? 

Small Circuit? 



How to do Collapsed Compilation? 

1. What/when do we sample? 

– When: Circuit too big 

– What: Heuristic on current circuit 

Intuition: variables with dense weak dependencies 

2. How do we sample? 

3. How do we do exact inference? 

 

 

 

 

 



How to do Collapsed Compilation? 

1. What/when do we sample? 

2. How do we sample? 

– Importance Sampling 

– Need a proposal for any variable 

conditioned on any other variables 

– Sample according to marginal in current 

partially compiled circuit 

3. How do we do exact inference? 

 

 

 

 

 



How to do Collapsed Compilation? 

1. What/when do we sample? 

2. How do we sample? 

3. How do we do exact inference? 

– Compiled circuit for each sample 

– Tractable for all required computations 

(marginals, particle weights, etc.) 

 

 

 

 

 



Collapsed Compilation Algorithm 

To sample a circuit: 

1. Compile bottom up until you reach the size limit 

2. Pick a variable you want to sample 

3. Sample it according to its marginal distribution in 
the current circuit 

4. Condition on the sampled value 

5. (Repeat) 

 

Asymptotically unbiased importance sampler  



 Circuits +  
importance weights 
approximate any query 



Experiments 

 

Competitive with state-of-the-art  

approximate inference in graphical models. 

Outperforms it on several benchmarks!  



Conclusions 

Programming Languages Artificial Intelligence 

Probabilistic  

Predicate Abstraction 

Knowledge Compilation 

Fun  with 

Discrete Structure 



Thanks 

…with slides stolen from Steven Holtzen and Tal Friedman. 

 Steven Holtzen, Todd Millstein and Guy Van den Broeck. Symbolic Exact 

Inference for Discrete Probabilistic Programs, In Proceedings of the ICML 

Workshop on Tractable Probabilistic Modeling (TPM), 2019. 

 Tal Friedman and Guy Van den Broeck. Approximate Knowledge 

Compilation by Online Collapsed Importance Sampling, In Advances in 

Neural Information Processing Systems 31 (NeurIPS), 2018. 

 Steven Holtzen, Guy Van den Broeck and Todd Millstein. Sound 

Abstraction and Decomposition of Probabilistic Programs, In Proceedings 

of the 35th International Conference on Machine Learning (ICML), 2018. 

 Steven Holtzen, Todd Millstein and Guy Van den Broeck. Probabilistic 

Program Abstractions, In Proceedings of the 33rd Conference on 

Uncertainty in Artificial Intelligence (UAI), 2017. 

http://starai.cs.ucla.edu/papers/HoltzenTPM19.pdf
http://starai.cs.ucla.edu/papers/HoltzenTPM19.pdf
http://starai.cs.ucla.edu/papers/FriedmanNeurIPS18.pdf
http://starai.cs.ucla.edu/papers/FriedmanNeurIPS18.pdf
http://starai.cs.ucla.edu/papers/HoltzenICML18.pdf
http://starai.cs.ucla.edu/papers/HoltzenICML18.pdf
http://starai.cs.ucla.edu/papers/HoltzenUAI17.pdf
http://starai.cs.ucla.edu/papers/HoltzenUAI17.pdf

