
Discrete Probabilistic

Programming from First Principles

Guy Van den Broeck

The Fourth International Workshop on

Declarative Learning Based Programming (DeLBP)

Aug 11, 2019

What are probabilistic programs?

What is the formal semantics?

How to do exact inference?

What about approximate

inference?

References

…with slides stolen from Steven Holtzen and Tal Friedman.

 Steven Holtzen, Todd Millstein and Guy Van den Broeck. Symbolic Exact

Inference for Discrete Probabilistic Programs, In Proceedings of the ICML

Workshop on Tractable Probabilistic Modeling (TPM), 2019.

 Tal Friedman and Guy Van den Broeck. Approximate Knowledge

Compilation by Online Collapsed Importance Sampling, In Advances in

Neural Information Processing Systems 31 (NeurIPS), 2018.

 Steven Holtzen, Guy Van den Broeck and Todd Millstein. Sound

Abstraction and Decomposition of Probabilistic Programs, In Proceedings

of the 35th International Conference on Machine Learning (ICML), 2018.

 Steven Holtzen, Todd Millstein and Guy Van den Broeck. Probabilistic

Program Abstractions, In Proceedings of the 33rd Conference on

Uncertainty in Artificial Intelligence (UAI), 2017.

http://starai.cs.ucla.edu/papers/HoltzenTPM19.pdf
http://starai.cs.ucla.edu/papers/HoltzenTPM19.pdf
http://starai.cs.ucla.edu/papers/FriedmanNeurIPS18.pdf
http://starai.cs.ucla.edu/papers/FriedmanNeurIPS18.pdf
http://starai.cs.ucla.edu/papers/HoltzenICML18.pdf
http://starai.cs.ucla.edu/papers/HoltzenICML18.pdf
http://starai.cs.ucla.edu/papers/HoltzenUAI17.pdf
http://starai.cs.ucla.edu/papers/HoltzenUAI17.pdf

What are probabilistic programs?

What are probabilistic programs?

means “flip a coin, and
output true with probability ½”

x ∼ flip(0.5);
y ∼ flip(0.7);
z := x || y;
if(z) {
 …
}
observe(z);

means “reject this execution if
z is not true”

Standard programming
language constructs

Semantics of a
Probabilistic Program

A probability distribution on its states

Goal: To perform probabilistic inference
• Compute the probability of some event
• Can be used for Bayesian machine learning: compute

posterior (learned) parameters/structure given data

Semantics

0

0.1

0.2

0.3

0.4

x=T,y=T x=T,y=F x=F,y=T x=F,y=F

Joint Probability

x ∼ flip(0.5);
y ∼ flip(0.7);

Why Probabilistic Programming?

• PPLs have grown in popularity: there are dozens

• They are popular with practitioners
• Specify a probability model in a familiar language

• Expressive and concise

• Cleanly separates model from inference

Pyro
Venture, Church

Stan

Figaro

ProbLog, PRISM, LPADs, CPLogic, ICL, PHA, etc.

The Challenge of PPL Inference

Most popular inference algorithms are black box

– Treat program as a map from inputs to outputs

 (black-box variational, Hamiltonian MC)

– Simplifying assumptions: differentiability, continuity

– Little to no effort to exploit program structure

 (automatic differentiation aside)

– Approximate inference

Stan
Pyro

Why Discrete Models?

1. Real programs have inherent discrete

structure (e.g. if-statements)

2. Discrete structure is important in modeling

(graphs, topic models, etc.)

3. Many existing systems assume smooth and

differentiable densities:

Discrete probabilistic programming is

the important unsolved open problem!

What is the formal semantics?

Simple Discrete PPL Syntax
(statements and expressions)

Semantics

• The program state is a map from

variables to values, denoted 𝜎

• The goal of our semantics is to

associate

–statements in the syntax with

–a probability distribution on states

• Notation: semantic brackets [[s]]

Sampling Semantics

• The simplest way to give a semantics to our
language is to run the program infinite times

• The probability distribution of the program is
defined as the long run average of how often it
ends in a particular state

Draw samples

𝝈

x=true

x=false

x=true

x=false

x ∼ flip(0.5);

Semantics of

𝜔1 𝜔2

𝜔3 𝜔4

0.5*0.7 = 0.35 0.5*0.7 = 0.35

0.5*0.3 = 0.15 0.5*0.3 = 0.15

x = true
y = true

x = false
y = false

x = false
y = true

x = true
y = false

x ∼ flip(0.5);
y ∼ flip(0.7);

Semantics of

𝜔1 𝜔2

𝜔3 𝜔4

0.5*0.7 = 0.35 0.5*0.7 = 0.35

0.5*0.3 = 0.15 0.5*0.3 = 0.15

x = true
y = true

x = false
y = false

x = false
y = true

x = true
y = false

x ∼ flip(0.5);
y ∼ flip(0.7);
observe(x || y);

Semantics: Throw
away all executions
that do not satisfy

the condition x || y.

Rejection Sampling Semantics

• Observes give a posterior distribution on the
program states

• Semantics of a program: draw (infinite) samples,
take the long run average over accepted samples

𝝈

x=true y=true

x=false x=false

x=true y=false

x=false y=true

Draw samples

x ∼ flip(0.5);
y ∼ flip(0.7);
observe(x || y);

Rejection Sampling Semantics

• Extremely general: you only need to be able to run the

program to implement a rejection-sampling semantics
• This how most AI researchers think about the meaning of

their programs (?)

• “Procedural”: the meaning of the program is whatever it

executes to …not entirely satisfying…
• A sample is a full execution: a global property that makes it

harder to think modularly about local meaning of code

Next: the gold standard in programming languages
denotational semantics

Denotational Semantics

• Idea: We don’t have to run a flip statement to know
what its distribution is

• For some input state 𝜎 and output state 𝜎′, we can
directly compute the probability of transitioning
from 𝜎 to 𝜎′ upon executing a flip statement:

𝝈

x=true
Run x ~ flip(0.4) on 𝜎

𝝈′

x=true
Pr = 0.4

𝝈′

x=false
Pr = 0.6

We can avoid having to
think about sampling!

Denotational Semantics of Flip

Idea: Directly define the probability of transitioning
upon executing each statement

Call this its denotation, written

Semantic
bracket:

associate
semantics

with syntax

Output
state

Input State

Assign x to false in the
state 𝜎

Semantics of Expressions

•What about x := e?

•Need semantics for expressions: simple

• Just evaluate the expression e on state 𝜎

Semantics of Assignments

What about x := e?

(semantics of if-then-else
 also based on if-test expression)

Semantics of Sequencing

• Assume the program has no observe statements

• We can compute the denotation of sequencing by
marginalizing out the intermediate state

Example:

= 0.4 ⋅ 0.9 + 0.6 ⋅ 0

Semantics of Observations

• What if we introduce observations only at the end
of the program?

• Bayes rule “given that the observe succeeds”

• Look ma! No rejected samples!

What is the meaning of?

What is the meaning of?

Are these programs equivalent?

Are these programs equivalent?

In the probability of x = F in the output state is:
2/3

In the probability of x = F in the output state is:
2/3 ⋅ 1/2

1/3 + 2/3 ⋅ 1/2
=
1

2

2

Accepting and Transition Semantics

Pitfalls of Denotational Semantics

• Intermediate observes:
• Need accepting semantic

• Key difference from probabilistic graphical models

• Sometimes encoded using unnormalized probabilities

• While loops
• Bounded? “while(i<10)”

• Almost surely terminating? “while(flip(0.5))”

• Not almost surely terminating? “while(true)”

• Adding continuous variables:
• Indian GPA problem [Wu et al. ICML 2018]

• What is the meaning of “if(Normal(0,1) == 0.34) then …“

• Etc.

How to do exact inference

for probabilistic programs?

The Challenge of PPL Inference

• Probabilistic inference is #P-hard

– Implies there is likely no universal solution

• In practice inference is often feasible

– Often relies on conditional independence

– Manifests as graph properties

• Why exact?
1. No error propagation

2. Approximations are intractable in theory as well

3. Approximates are known to mislead learners

4. Core of effective approximation techniques

5. Unaffected by low-probability observations

Techniques for exact inference

Graphical Model

Compilation

Symbolic compilation

(This work)

Enumeration

Keeps program structure?

Exploits independence

to decompose inference?

Yes

Yes No

No

PL Background: Symbolic
Execution

• Non-probabilistic programs can be interpreted as
logical formulae which relate input and output states

x := y; 𝜑 = 𝑥′ ⇔ 𝑦 ∧ 𝑦′ ⇔ 𝑦

Program
Symbolic
Execution

Logical
Formula

SAT
Output

reachable
given input?

𝑆𝐴𝑇 𝜑 ∧ 𝑥′ ∧ 𝑦 = 𝑇

𝑆𝐴𝑇 𝜑 ∧ 𝑥′ ∧ 𝑦 = F

Output state: primed
Input state: unprimed

Our Approach: Inference via
Weighted Model Counting

 Probabilistic
Program

Symbolic
Compilation

Weighted
Boolean
Formula

WMC
Query
Result

Binary
Decision
Diagram

Exploits
Independence

Retains Program
Structure

Inference via Weighted Model
Counting

Probabilistic
Program

Symbolic
Compilation

Weighted
Boolean
Formula

WMC
Query
Result

x := flip(0.4);

𝑥′ ⇔ 𝑓1

𝒍 𝒘 𝒍

𝑓1 0.4

𝑓1 0.6

WMC 𝜑,𝑤 = 𝑤 𝑙 .

𝑙∈𝑚𝑚⊨𝜑

WMC 𝑥′ ⇔ 𝑓1 ∧ 𝑥 ∧ 𝑥
′, 𝑤 ?

• A single model: m = 𝑥′ ∧ 𝑥 ∧ 𝑓1

• 𝑤 𝑥′ ∗ 𝑤 𝑥 ∗ 𝑤 𝑓1 = 0.4

Symbolic compilation: Flip

• Compositional process

All variables in the program except
for x are not changed by this statement

Symbolic compilation:
Assignment

• Compositional process

Compiling to BDDs

• BDDs compactly capture complex program
structure x = a || b || c || d || e || f;

Symbolic compilation:
Sequencing
• Compositional process

• Compile two sub-statements, do some relabeling,
then combine them to get the result

Inference via Weighted Model
Counting

Probabilistic

Program
Symbolic

Compilation

Weighted
Boolean
Formula

WMC
Query
Result

Binary
Decision
Diagram

Compiling to BDDs
• Consider an example program:

• WMC is efficient for BDDs: time linear in size
• Small BDD = Fast Inference

x~flip(0.4);

y~flip(0.6)

True
edge

False
edge

This sub-function
does not depend

on x: exploits
independence

BDDs Exploit
Conditional Independence

Size of BDD grows linearly with length of Markov chain

 Given y=T, does not depend on
the value of X: exploits

conditional independence

BDDs Exploit
Context-Specific Independence

Experiments: Markov Chain

Experiment: Bayesian Networks

Alarm Network Pathfinder Network

Specialized BN
inference algorithm

Large programs (thousands of lines, tens of thousands of flips)

Symbolic Compilation

• Exact inference algorithm for discrete programs
• Relies on PL ideas to construct state space: symbolic execution,

symbolic model checking
• Relies on AI ideas to perform inference: weighted model

counting, knowledge compilation

• Proved correct (= denotational semantics)

• Competitive performance

• Will release a language+system soon!

• Also see probabilistic logic programming work
 Jonas Vlasselaer, Guy Van den Broeck, Angelika Kimmig, Wannes Meert and Luc De

Raedt. Tp-Compilation for Inference in Probabilistic Logic Programs, In International
Journal of Approximate Reasoning, 2016.

 Daan Fierens, Guy Van den Broeck, Joris Renkens, Dimitar Shterionov, Bernd
Gutmann, Ingo Thon, Gerda Janssens and Luc De Raedt. Inference and Learning in
Probabilistic Logic Programs using Weighted Boolean Formulas, In Theory and Practice of
Logic Programming, volume 15, 2015.

http://starai.cs.ucla.edu/papers/VlasselaerIJAR16.pdf
http://starai.cs.ucla.edu/papers/VlasselaerIJAR16.pdf
http://starai.cs.ucla.edu/papers/VlasselaerIJAR16.pdf
http://starai.cs.ucla.edu/papers/FierensTPLP15.pdf
http://starai.cs.ucla.edu/papers/FierensTPLP15.pdf

What about approximate inference?

Exact

Independence

Properties

Logical
Structure

Approx

Scalable

Anytime

Compilation Sampling

Collapsed

Compilation

Collapsed Sampling

(Rao-Blackwell)

Sampling on some variables,

exact inference conditioned on sample

Sample A,B

Collapsed Sampling

(Rao-Blackwell)

Sampling on some variables,

exact inference conditioned on sample

Observe sampled values

Collapsed Sampling

(Rao-Blackwell)

Sampling on some variables,

exact inference conditioned on sample

Compute exactly P(C|A,B)

What to Sample?

Sample 1 Sample 2

• Is it even possible to pick a correct set a priori?

• Consider a network of potential smokers,

with friendships sampled

Online Collapsed Sampling

Choose on-the-fly which variable to

sample next, based on result of sampling

previous variables

Theorem: Still unbiased

How to do Collapsed Sampling?

1. What/when do we sample?

2. How do we sample?

3. How do we do exact inference?

Collapsed Compilation

Result: A circuit with some sampled variables

Exact
Inference

Sampling

Big Circuit?

Small Circuit?

How to do Collapsed Compilation?

1. What/when do we sample?

– When: Circuit too big

– What: Heuristic on current circuit

Intuition: variables with dense weak dependencies

2. How do we sample?

3. How do we do exact inference?

How to do Collapsed Compilation?

1. What/when do we sample?

2. How do we sample?

– Importance Sampling

– Need a proposal for any variable

conditioned on any other variables

– Sample according to marginal in current

partially compiled circuit

3. How do we do exact inference?

How to do Collapsed Compilation?

1. What/when do we sample?

2. How do we sample?

3. How do we do exact inference?

– Compiled circuit for each sample

– Tractable for all required computations

(marginals, particle weights, etc.)

Collapsed Compilation Algorithm

To sample a circuit:

1. Compile bottom up until you reach the size limit

2. Pick a variable you want to sample

3. Sample it according to its marginal distribution in
the current circuit

4. Condition on the sampled value

5. (Repeat)

Asymptotically unbiased importance sampler

 Circuits +
importance weights
approximate any query

Experiments

Competitive with state-of-the-art

approximate inference in graphical models.

Outperforms it on several benchmarks!

Conclusions

Programming Languages Artificial Intelligence

Probabilistic

Predicate Abstraction

Knowledge Compilation

Fun with

Discrete Structure

Thanks

…with slides stolen from Steven Holtzen and Tal Friedman.

 Steven Holtzen, Todd Millstein and Guy Van den Broeck. Symbolic Exact

Inference for Discrete Probabilistic Programs, In Proceedings of the ICML

Workshop on Tractable Probabilistic Modeling (TPM), 2019.

 Tal Friedman and Guy Van den Broeck. Approximate Knowledge

Compilation by Online Collapsed Importance Sampling, In Advances in

Neural Information Processing Systems 31 (NeurIPS), 2018.

 Steven Holtzen, Guy Van den Broeck and Todd Millstein. Sound

Abstraction and Decomposition of Probabilistic Programs, In Proceedings

of the 35th International Conference on Machine Learning (ICML), 2018.

 Steven Holtzen, Todd Millstein and Guy Van den Broeck. Probabilistic

Program Abstractions, In Proceedings of the 33rd Conference on

Uncertainty in Artificial Intelligence (UAI), 2017.

http://starai.cs.ucla.edu/papers/HoltzenTPM19.pdf
http://starai.cs.ucla.edu/papers/HoltzenTPM19.pdf
http://starai.cs.ucla.edu/papers/FriedmanNeurIPS18.pdf
http://starai.cs.ucla.edu/papers/FriedmanNeurIPS18.pdf
http://starai.cs.ucla.edu/papers/HoltzenICML18.pdf
http://starai.cs.ucla.edu/papers/HoltzenICML18.pdf
http://starai.cs.ucla.edu/papers/HoltzenUAI17.pdf
http://starai.cs.ucla.edu/papers/HoltzenUAI17.pdf

