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Kristin and her son Justin went to visit
her mother Carol on a nice Sunday
afternoon. They went out for a movie
together and had a good time.

I

Q: How is Carol related to Justin ?
A: Carol is the grandmother of Justin

!

~

Can Language Models Perform Logical Reasoning?

Language Models achieve high performance on various “reasoning” benchmarks in NLP.

Reasoning Example
from the CLUTRR

J

dataset

N

It is unclear whether they solve the tasks following the rules of logical deduction.

Language Models:
input — ? — Carol is the grandmother of Justin.

Logical Reasoning:
input — Justin in Kristin’s son; Carol is Kristin’'s mother; — Carol is Justin’s mother’s mother; if

X is Y’s mother’s mother then X is Y’s grandmother — Carol is the grandmother of Justin.




SimplelLogic

Generate textual train and test examples of the form:

Rules: If witty, then diplomatic. If careless and condemned and attractive, then blushing. If dishonest and inquisitive and average,
then shy. If average, then stormy. If popular, then blushing. If talented, then hurt. If popular and attractive, then thoughtless. If
blushing and shy and stormy, then inquisitive. If adorable, then popular. If cooperative and wrong and stormy, then thoughtless.
If popular, then sensible. If cooperative, then wrong. If shy and cooperative, then witty. If polite and shy and thoughtless, then
talented. If polite, then condemned. If polite and wrong, then inquisitive. If dishonest and inquisitive, then talented. If blushing
and dishonest, then careless. If inquisitive and dishonest, then troubled. If blushing and stormy, then shy. If diplomatic and
talented, then careless. If wrong and beautiful, then popular. If ugly and shy and beautiful, then stormy. If shy and inquisitive
and attractive, then diplomatic. If witty and beautiful and frightened, then adorable. If diplomatic and cooperative, then sensible.
If thoughtless and inquisitive, then diplomatic. If careless and dishonest and troubled, then cooperative. If hurt and witty and
troubled, then dishonest. If scared and diplomatic and troubled, then average. If ugly and wrong and careless, then average. If
dishonest and scared, then polite. If talented, then dishonest. If condemned, then wrong. If wrong and troubled and blushing,
then scared. If attractive and condemned, then frightened. If hurt and condemned and shy, then witty. If cooperative, then
attractive. If careless, then polite. If adorable and wrong and careless, then diplomatic. Facts: Alice sensible Alice condemned
Alice thoughtless Alice polite Alice scared Alice average

Query: Alice is shy ?

Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang and Guy Van den Broeck. On the Paradox of Learning to Reason from Data, 2022


http://starai.cs.ucla.edu/papers/ZhangArxiv22.pdf

Problem Setting: SimplelLogic

The easiest of reasoning problems:

Facts:
1. Propositional logic fragment Alice is fast.
a. bounded vocabulary & number of rules | | Ace s rermal
b. bounded reasoning depth (< 6) Rules:

If Alice is fast and smart, then Alice is bad.
If Alice is normal, then Alice is smart.
If Alice is normal and happy, then Alice is sad.

c. finite space (= 10*360)

2. No language variance: templated language

. Query 1: Alice is bad. [Answer: True]
3. Self-contained Query 2: Alice is sad. [Answer: False]
No prior knowledge @
4. Purely symbolic predicates LMs: BERT, T5
No shortcuts from word meaning @
5. Tractable logic (definite clauses) True or False

Can always be solved efficiently

Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang and Guy Van den Broeck. On the Paradox of Learning to Reason from Data, 2022


http://starai.cs.ucla.edu/papers/ZhangArxiv22.pdf

Training a BERT model on SimpleLogic

(1) Randomly sample facts & rules.
Facts: B, C

Rules:A,B>D.B>E.B,C>F. Test accuracy for different reasoning depths
(2) Compute the correct

° e G labels for all predicates given
Test| 0 f 2 B8 4 & B

the facts and rules.
o ‘ . RP | 999 998 99.7 99.3 98.3 975 955

Rule-Priority

Label-Priority ° ‘ ‘

Test | O 1 2 3 4 5 6

= LP [100.0 1000 99.9 99.9 99.7 99.7 99.0
O (2) Set B, C (randomly chosen
@ Q among B, C, E, F) as facts and
(1) Randomly assign labels to sample rules (randomly)
predicates. consistent with the label
True: B, C, E,F. assignments.

False: A, D.

Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang and Guy Van den Broeck. On the Paradox of Learning to Reason from Data, 2022


http://starai.cs.ucla.edu/papers/ZhangArxiv22.pdf

Has BERT learned to reason from data®”?

Easiest of reasoning problems (no variance, self-contained, purely symbolic, tractable)
RP/LP data covers the whole problem space

The learned model has almost 100% test accuracy

e

There exist BERT parameters that compute the ground-truth reasoning function:

Theorem 1: For a BERT model with n layers and 12 attention heads, by construction,
there exists a set of parameters such that the model can correctly solve any
reasoning problem in SimpleLogic that requires at most n — 2 steps of reasoning.

Surely, under these conditions,
BERT has learned the ground-truth reasoning function!

Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang and Guy Van den Broeck. On the Paradox of Learning to Reason from Data, 2022


http://starai.cs.ucla.edu/papers/ZhangArxiv22.pdf

The Paradox of Learning to Reason from Data

Train Test | O 1 2 3 4 5 6

RP RP | 999 99.8 99.7 993 983 97.5 955
LP | 99.8 99.8 993 96.0 904 750 57.3

RP | 973 669 53.0 542 595 656 69.2
LP | 100.0 100.0 999 99.9 99.7 99.7 99.0

LP

The BERT model trained on one distribution fails to generalize
to the other distribution within the same problem space.

1. If BERT has learned to reason,
it should not exhibit such generalization failure.

2. If BERT has not learned to reason,
it is baffling how it achieves near-perfect in-distribution test accuracy.

Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang and Guy Van den Broeck. On the Paradox of Learning to Reason from Data, 2022


http://starai.cs.ucla.edu/papers/ZhangArxiv22.pdf

Why? Statistical Features

Monotonicity of entailment:
Any rules can be freely added to the hypothesis of any proven fact.

{

[ The more rules given, the more likely a predicate will be proved. }

.

[ Pr(label = True | Rule # = x) should increase (roughly) monotonically with x }

N WWWWWWWWWWWWMM Mwm i MMWWWMWMMW vmwmum wwmx mhi\rw\MUn\hN Jh \»“ Ml

(a) Statistics for examples generated by Rule-. ty (RP). (b) St: ty (LP). () S y uniform sampling;




BERT leverages statistical features to make predictions

RP_b downsamples from RP such that Pr(label = True | rule# = x) = 0.5 for all x

Train Test | 0 1 2 3 4 5 6

RP (999 99.8 99.7 99.3 983 97.5 95.5
RP RP_b[99.0 993 985 97.5 96.7 93.5 883

1. Accuracy drop from RP to RP_b indicates that
the model is using rule# as a statistical feature to make predictions.

2. Potentially countless statistical features

3. Such features are inherent to the reasoning problem, cannot make data “clean”

Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang and Guy Van den Broeck. On the Paradox of Learning to Reason from Data, 2022


http://starai.cs.ucla.edu/papers/ZhangArxiv22.pdf

First Conclusion

Experiments unveil the fundamental difference between

1. learning to reason, and

2. learning to achieve high performance on benchmarks using statistical features.

Be careful deploying Al in applications where this difference matters.

FAQ: Do bigger transformers solve this problem? No, already 99% accurate...

FAQ: Will reasoning emerge? Perhaps on 99% of human behavior...

Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang and Guy Van den Broeck. On the Paradox of Learning to Reason from Data, 2022


http://starai.cs.ucla.edu/papers/ZhangArxiv22.pdf
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Controlled generation is still challenging ...

generate a sentence with "pan" as the third word and "vegetable" as the fifth word.

The chef used tho gently sauté the diceor their delicious stir-fry

dish. §
i

ChatGPT



more reasoning! Generate image

Stable Diffusion



What do we have?

Prefix; “The weather is”

Constraint a: text contains “winter”

cold 0.05

Model only does p(next-token|prefix) =

warm 0.10

intractable

Train some q(. |a) for a specific task distribution o ~ p,.

(amortized inference, encoder, masked model, seq2seq, prompt tuning,...)

Train g(next-token|prefix, o)



What do we need?

Prefix; “The weather is”

Constraint a: text contains “winter”

Generate from p(next-token|prefix, a) =

X Z p(next-token, text, prefix, a)

text

Marginalization!

cold

0.50

warm

0.01




Tractable Probabilistic Models

Probabilistic Generating Circuits
Tractable Probabilistic Models (TPMs) model joint

probability distributions (just like auto-regressive LMs) and
allow efficient computation of various probabilistic queries.

HMM

HCLT
Mixture of Trees

DPP

. C e SPN
e.g., efficient marglnallzatlon:

pTPM(Brd token = pan, 5th token = vegetable)
in particular ...

Zsentence Popy(Sentence, next-token = "warm", prefix = "The weather is", a)

=) Efficient conditioning given lexical constraints : Popy(Next-token | prefix, a)



Step 1: Distill an HMM p, __ that approximates Pypr

77\ Vg V \
{ h 4 ( \
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1. An HMM with 4096 hidden states and 50k emission tokens

2. Train the HMM on data sampled from GPT2-large (domain-adapted, either via
prompting or fine-tuning), effectively minimizing KL(p,_, e

3. Training leverages the latent variable distillation technique (ICLR 23°), roughly:
we cluster embeddings of the training examples to estimate latent variables Z




Pi pe| ine Lexical Constraint a: sentence contains keyword “winter

Overview

Constrained Generation: Pr(x, | a, x;., = "the weather is")

)( intractable \k efficient

v

Pre-trained Tractable
Language Model Probabilistic Model

Xer1 Pryp (x4 [ X1 X1 | Proppla]| X g, %)
cold 0.05 cold 0.50
warm 0.10 warm 0.01
Xe41 Pl a,xy.)
cold 0.025

warm 0.001




Computing oI (a | X,. t+1

Let be a conjunctive normal form (CNF) with m clauses:

(W, | V..V W) A A w V..Vw

m,dm)

where each w_ is a keyword (i.e. a string of tokens), which also represents the
constraint that w; appears in the generated text.

e.g., a=("swims" V "like swimming") A ("lake" V "pool")

Given some pre-processing with time-complexity O(2/™n), the time complexity for
computing p, (A, X, .. )is O2™), where n is the maximum length for the
generated sequence. The overall time-complexity for generation is O(2Mn).



CommonGen: a Challenging Benchmark

Given 3 to 5 concepts (keywords), our goal is to generate a sentence using all
keywords, which can appear in any order and any form of inflections. e.g.,

Input: snow drive car
Reference 1: A car drives down a snow covered road.

Reference 2: Two cars drove through the snow.

w,, V..Vw AN Aw  V..Vw

1,d1) m,dm)

Each clause represents the inflections for one keyword.



Step 2: Control p,, via pj,,,

Unsupervised

Language model is not

fine-tuned/prompted to satisfy constraints

By Bayes rule:
PopXit1 | X1 @) Pepl@ | X1:041) - PoptXey1 | x1.,)

ASSUME Dy | Xy111) R Pgpa | Xy.y1), We
generate from:

p(xH-l |xl:1’ a) plzmm(a |x1:l+1) ’ pg/)l(xl-H |xl:1)

Generation Quality

Constraint Satisfaction

Method ROUGE-L BLEU-4 Coverage Success Rate
Unsupervised dev test dev  test dev test dev test
InsNet (Lu et al., 2022a) - - 18.7 - 100.0 100.0 -
NeuroLogic (Lu et al., 2021) - 41.9 - 24.7 - 96.7 - -
A*esque (Lu et al., 2022b) - 44.3 - 28.6 - 97.1 - -
NADO (Meng et al., 2022) - - 26.2 - 96.1 - - -
Ours 44.6 44.1 | 299 294 | 100.0 100.0 | 100.0 100.0




Step 2: Control p,, via pj,,,

Supervised

' o i s d )
Language model is fine-tuned to perform we VI,?N p HMM(x”fl 1% ) el p g”’().ct“ |.:ff1") as
constrained generation (e.g. seq2seq) classifiers trained for the same task with different

biases; thus we generate from their weighted
geometric mean:

Empirically prpm(0| X1.11) R Py X14p)

does not hold well enough; [7(X,+1 |xl:1’ (1) X p/mmz(XH—l |xl:z’ a)w'pgpl(xtﬂ |xl:1)l_w
Method Generation Quality Constraint Satisfaction
ROUGE-L BLEU-4 Coverage Success Rate
Supervised dev test dev  test dev test  dev test
NeuroLogic (Lu et al., 2021) - 48| - 267 : 97.7 = 93.91
A*esque (Lu et al., 2022b) . 436 | - 282 : 97.8 - 97.97
NADO (Meng et al., 2022) 44 47 - 30.8 - 97.1 - 88.81 -
Ours 46.0 456 | 34.1 329 | 100.0 100.0 | 100.0 100.0




Advantages of our framework:

1. Constraint a is guaranteed to be satisfied: for any next-token x_, , that
would make a unsatisfiable, p(x = 0 for both the supervised and
unsupervised settings.

t+1 |X1 't )

2. Training p, _to approximate p_ . does not depend on a, which is only
imposed at inference (generatlon) time. Hence, once p, s trained, we
can impose whatever a without re-training.

3. In addition to the keyword-type constraint a of the CNF form, we can in
addition impose the following constraints:
o The keywords are generated following a particular order.

o (Some) keywords must appear at a particular position.
o (Some) keywords must not appear in the generated sentence.
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Warcraft Shortest Path

// for a 12 x 12 grid, 2'** states but only 10*° valid ones!

[Differentiation of Blackbox Combinatorial Solvers, Marin Vlastelica, Anselm Paulus, Vit Musil, Georg Martius, Michal Rolinek, 2019]



https://arxiv.org/abs/1912.02175

. ine Predicti
Baseline Prediction Baseline Prediction

Baseline Prediction Baseline Prediction




ARCHITECTURE EXACT MATCH HAMMING SCORE CONSISTENCY

RESNET-18+FIL 55.0 97.7 56.9
Is prediction Are individual Is output
the shortest path? edge predictions a path?
This is the real task! correct?

Kareem Ahmed, Eric Wang, Kai-Wei Chang and Guy Van den Broeck. Neuro-Symbolic Entropy Regularization, 2021.


https://arxiv.org/pdf/2201.11250.pdf

Declarative Knowledge of the Output

Neural Network

—_—

How is the output structured?
Are all possible outputs valid?

VS.

How are the outputs related to each other?

Learning this from data is inefficient
Much easier to express this declaratively



pylon

PyTorch Code

for i in range(train_iters):

b§'= model(x)

loss = CrossEntropy(py, ...

@ Specify knowledge as a predicate
def check(y):

return isValid



pylon

1 ) Specify knowledge as a predicate

(y):

isValid

PyTorch Code

for i in range(train_iters):
. @ Add as loss to training

py = model(x)
///// loss += constraint_loss(check)

iéés = CrossEntropy(py, ...)
-

loss += constraint_loss(check) (py)

4




pylon

PyTorch Code
for i in range(train_iters):
py = model(x)

loss = CrossEntropy(py, ...)

loss += constraint_loss(check) (py)

4

1

2

Specify knowledge as a predicate

(y):

isValid

Add as loss to training

loss += ( )

pylon derives the gradients
(solves a combinatorial problem)



°

without constraint

Baseline Prediction

Baseline Prediction

with constraint

SL Prediction

without constraint

Baseline Prediction

with constraint

SL Prediction

20 20
20
40 40
40
60 60
60
80 80
80
0 20 40 60 80 0 20 a0 60 80

SL Prediction

Baseline Prediction

SL Prediction




p(ylz)

L(a,p)oc—log > [ » ]I (-9

xX=a xeX ==X
\
~

v

— m(a) —

a) A network uncertain over both valid
& invalid predictions

Probability of satisfying
constraint a after sampling from

p(y|z) neural net output layer p

SS07 o1UBWAS

<

In general: #P-hard &

- y Do this probabilistic-logical reasoning
— m(a) —

c) A network allocating most of
its mass to models of constraint

during learning in a computation graph




a: AAB=>C -log( )

C ~C C
1
0.2
| |
,_I
A -B -4
A -A B -B A -A B -B
1 11

0.3 0.7 0.5 0.5



without constraint with constraint without constraint with constraint

ARCHITECTURE EXACT MATCH HAMMING SCORE CONSISTENCY

RESNET-18+FIL 55.0 97.7 56.9
RESNET-18+Ls 59.4 97.7 61.2




Semantic Probabilistic Layers

® How to give a 100% guarantee that Boolean constraints will be satisfied?
® Bake the constraint into the neural network as a special layer

x—>|fl>2z —|S : z |90+ X->Tre | ry|x
| P ply | x)
— L

X
Y c ¥B

Y : SPL

® Secret sauce is tractable circuits — computation graphs for reasoning

Kareem Ahmed, Stefano Teso, Kai-Wei Chang, Guy Van den Broeck and Antonio Vergari. Semantic Probabilistic Layers for Neuro-Symbolic Learning, 2022.


https://arxiv.org/abs/2206.00426

GROUND TRUTH RESNET-18 SEMANTIC LOSS SPL (ours)
ARCHITECTURE EXACT MATCH HAMMING SCORE CONSISTENCY
RESNET-18+FIL 55.0 97.7 56.9
RESNET-18+Lg 59.4 97.7 61.2
RESNET-18+SPL 7827 | 97.6 100.0
OVERPARAM. SDD 78.2 06.3 100.0

Kareem Ahmed, Stefano Teso, Kai-Wei Chang, Guy Van den Broeck and Antonio Vergari. Semantic Probabilistic Layers for Neuro-Symbolic Learning, 2022.


https://arxiv.org/abs/2206.00426

Hierarchical Multi-Label Classification

“if the image is classified as a dog, it must
also be classified as an animal”

“if the image is classified as an animal, it
must be classified as either cat or dog”

DATASET EXACT MATCH
HMCNN MLP+SPL

CELLCYCLE 3.05 :0.11 3.79 + 0.18
DERISI 1.39 4+ 0.47 2.28 + 0.23
EISEN 5.40 &+ 0.15 6.18 + 0.33
EXPR 420 10.21 5.54 + 0.36
GASCHI 3.48 + 0.96 4.65 + 0.30
GASCH2 3.11 + 0.08 3.95 + 0.28
SEQ 5.24 +0.27 7.98 + 0.28
Spo 1.97 4+ 0.06 1.92 4+ 0.11
DIATOMS 48.21 + 0.57 58.71 + 0.68
ENRON 5.97 + 0.56 8.18 + 0.68
IMCLEFO7A 79.75 4+ 0.38 86.08 + 0.45
IMCLEFO7D 76.47 + 0.35 81.06 + 0.68




SIMPLE: Gradient Estimator for k-Subset Sampling

pote |5 = b x.
@ ~ | /@% ol

VoL(x,y;w) ~ Ogu(0)Vl(fu(z,%x),y

[

Example. Taste Score Key Words (k = 10)

Learning to Explain (L2X) 0.7 a lite bodied beer with a pleasant taste. was like a
reddish color. a little like wood and caramel with a
hop finish. has a sort of fruity flavor like grapes or
cherry that is sort of buried in there. mouth feel was
lite, sort of bubbly. not hard to down, though a bit
harder then one would expect given the taste.

Kareem Ahmed, Zhe Zeng, Mathias Niepert, Guy Van den Broeck. SIMPLE: A Gradient Estimator for k-Subset Sampling, ICLR 2023


https://arxiv.org/abs/2210.01941

SIMPLE: Gradient Estimator for k-Subset Sampling

v pg(z|z,zi:k) ~ z g
X 0 ' U fu(z, %),y

VGL(va;w) ~ ag[,l,(e) fu Z X

We achieve lower bias and variance by exact, discrete samples and exact derivative of conditional marginals.

0.6 :
[ Bias - 0.15 1.25

B Variance
1.00

0.4- i
010 s {
0.50 *
0.2 1 - 0.05 (0}
ii 0.25 é
0.0 o 'i“—- 000 000 @

Exact SoftSub IMLE SFE  SIMPLE-FSIMPLE-B SIMPLE Exact  SoftSub IMLE SFE SIMPLE-F SIMPLE-B SIMPLE

Kareem Ahmed, Zhe Zeng, Mathias Niepert, Guy Van den Broeck. SIMPLE: A Gradient Estimator for k-Subset Sampling, ICLR 2023


https://arxiv.org/abs/2210.01941

Experiment: Learn to Explain (L2X)

Taste Score

Key Words (k = 10)

0.7

a lite bodied beer with a
pleasant taste. was like a
reddish color. a little like
wood and caramel with a
hop finish. has a sort of
fruity flavor like grapes or
cherry that is sort of buried
in there. mouth feel was
lite, sort of bubbly. not
hard to down, though a bit
harder then one would
expect given the taste.

Results for three aspects with k=10
Appearance Palate Taste
Test MSE Precision Test MSE Precision Test MSE Precision

SIMPLE (Ours)  2.35+0.28  66.81 +7.56 2.68+0.06 44.78+275 2.11+0.02 4231+ 0.61

L2X (t=0.1) 1070 £ 482 30.02+ 1582 6.70+0.63 50.39 £13.58 6924161 3223+492
SoftSub (t=0.5) 2.48+0.10 5286+7.08 294+0.08 39.17+3.17 2.18+0.10 41.98+1.42
IFMLE (7=30) 251+0.05 65474495 296+0.04 40.73+3.15 238+0.04 4138+ 1.55

Method

Results for aspect Aroma, for k in {5, 10, 15}
=5 k=10 k=15

Method

Test MSE Precision Test MSE Precision Test MSE Precision

SIMPLE (Ours) 227 +£0.05 57.30+3.04 223+0.03 47.17+211 320+0.04 53.18+1.09

L2X (t=0.1) 575+£030 3363+691 668+1.08 2665+939 7.71+0.64 23.49+10.93
SoftSub (t=05) 257+0.12 54.06+6.29 267+0.14 4444 +227 2524007 3778+ 1.71
I-MLE (7=30) 262+005 5476+250 271+0.10 47.98+226 291+0.18 39.56+ 2.07

Kareem Ahmed, Zhe Zeng, Mathias Niepert, Guy Van den Broeck. SIMPLE: A Gradient Estimator for k-Subset Sampling, ICLR 2023


https://arxiv.org/abs/2210.01941
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Probabillistic circuits

computational graphs that recursively define distributions

©
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Probabilistic circuits

computational graphs that recursively define distributions

.25
@ 0.20

P
_lX wi w2 — 015
)
000
@ 0.05
X Xl Xl 0.00
~10 -5 0 5 10

Xi
p(X1) = wips (X1) + wapo (Xy)

= p(X)=p(Z =0 -r1(X|Z =D
mixtures +pZ2=B) n(X|1Z=BE



Probabillistic circuits

computational graphs that recursively define distributions

©

—IX w1 w2
X X1 X1 Xl X2

p(X1) = wip; (X1) + wapa (X1) p(X1,X2) = p(X1) - p(X2) %
= =
mixtures factorizations



Likelihood p(X; =—1.85,X,=0.5,X3 =—1.3,X; =0.2)




Likelihood p(X1 =-1.85,X, =05, X3 =-1.3,X, =0.2)




Likelihood p(X1 = —1.85, X, =0.5,X3 = —1.3, X4 = 0.2)
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m+ decomposability gl tractable MAR



m ull decomposability gl tractable MAR

If p(x) = >, wipi(X), (smoothness):

—> integrals are “pushed down” to children

[Darwiche & Marquis JAIR 2001, Poon & Domingos UAI11]



m ul decomposability g tractable MAR
If p(x,y,2z) = p(x)p(y)p(2), (decomposability):

///p(x’y’z)dXdydz:
:/ / / p(x)p(y)p(z)dxdydz =
— / p(x)dx / p(y)dy / il

—> integrals decompose into easier ones




m ] decomposability &

Forward pass evaluation for MAR
—> linear in circuit size!

E.g. to compute p(x2, 24):
B leafs over X; and X3 output Z; = [ p(x;)dx;
—> for normalized leaf distributions:
B leafs over X5 and X4 output | 37/




Smoothness b decomposability B tractable MAR

Forward pass evaluation for MAR /@\

—> linear in circuit size! @_)@ @(_Q

E.g. to compute p(xg, T4): é/@ @\é
B leafs over X; and X3 output Z; = fp(xi)dxi X2/' n 4 \X2

— for normalized leaf distributions: @ @ @ @
B leafs over X5 and X, output |37/ | W >< |

B feedforward evaluation (bottom-up) @ @ @ @




Learn more about probabilistic circuits?

Tutorial (3h) Overview Paper (80p)
“I Probabilistic Circuits:

A Unifying Framework for Tractable Probabilistic Models*

Inference
Representations
Learning

Probabilistic
Circuits

YooJung Choi
Antonio Vergari

Guy Van den Broeck
Computer Science Department
University of California

Antonio Vergari Yoojung Choi Los Angeles, CA, USA
University of California, Los Angeles University of California, Los Angeles
Robert Peharz Guy Van den Broeck

TU Eindhoven University of California, Los Angeles

Contents
September 14th, 2020 - Ghent, Belgium - ECML-PKDD 2020
1 Introduction 3
> b ) oo0)soaie
2 Probabilistic Inference: Models, Queries, and Tractability 4

httDS//VOUtUbe/Z RAGS-LQR?O 2.1 Probabilistic Models . . . . . .. ... 5

2.2 Probabilistic Queries
2.3 Tractable Probabilistic Inference
2.4 Properties of Tractable Probabilistic Models

http://starai.cs.ucla.edu/papers/ProbCirc20.pdf



https://youtu.be/2RAG5-L9R70
http://starai.cs.ucla.edu/papers/ProbCirc20.pdf

Outline

1. The paradox of learning to reason from data
deepfearnng
2. Architectures for Learning and Reasoning
logical (and probabilistic) reasoning + deep learning

a. Constrained language generation
b. Constrained structured prediction
C. Secret sauce: tractable circuits
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http://starai.cs.ucla.edu/publications/

