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Marginal Inference
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Marginal Inference

X, X |Pr

8 ? ; Pr[X; =1] = Pr[X; =1,X, =0] + Pr[X; =1, X3 = 1]
1 0 :3 =03 + 04

1 1| 4 =07

Goal: Find maximally expressive-efficient models that support marginal inference
in time polynomial in the model size.
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Tractable Marginalization is Useful

Logical control of language models (see Honghua Zhang)
Efficient causal reasoning (see Benjie Wang)

Data compression and control for diffusion models (see Anji Liu)
Probabilistic program inference (see Poorva Garg)
Neurosymbolic learning (see Kareem Ahmed)

Probabilistic logic programming (see Renato Geh)

etc. etc. etc.
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Approaches

Bayes Nets (of bounded treewidth)
Determinantal Point Processes
Characteristic Circuits
Multi-Linear Representations
Probabilistic Generating Circuits
Sum-Product Networks
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Determinantal Point Processes
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How to encode distributions in polynomials?

Bayes Nets (of bounded treewidth)
Determinantal Point Processes
Characteristic Circuits
Multi-Linear Representations
Probabilistic Generating Circuits
Sum-Product Networks

Likelihood Network Generating Fourier
polynomial polynomial polynomial polynomial
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Circuits represent polynomials succinctly
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Circuits represent polynomials succinctly

Circuits are fully expressive

They can also be expressive-efficient

OO0

3119 + 173 + 6:10% + 2x9x3

/43



Polynomial Semantics
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Polynomial Semantics

\ Darwiche [2003] Zhang et al. [2021]

Network «—— Generating
polynomial polynomial
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leeth(.)d Roth and Samdani [2009] Fourler‘
polynomial polynomial
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Network
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p(l’l,l’z,i‘l,i‘Q) = 1x179 + 27129 + 31179 + 4179
X1 XQ Pr
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1 0 .3
1 1 4
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Network
polynomial

SQICIN e

p(l’l,l’z,i‘l,i‘Q) = 1x179 + 27129 + 31179 + 4179

p(1,1,0,1)
A1(0)(1) + .2(0)(1) + .3(1)(1) + .4(1)(1)
0+0+ 3+ 4

=.7
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Progress Update
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Progress Update

Network Generating
polynomial polynomial

Likelihood Fourier
polynomial polynomial
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Likelihood

polynomial
p(z1,x2) = 221 + 1z9 + .1
~ A neural net that for an input vector outputs its probability
X1 X2 Pr
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Likelihood

polynomial
p(z1,x2) = 221 + 1z9 + .1
~ A neural net that for an input vector outputs its probability
X1 Xp | Pr Marginal inference?
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Likelihood

polynomial
p(z1,x2) = 221 + 1z9 + .1
~ A neural net that for an input vector outputs its probability
X1 Xp | Pr Marginal inference?
0 0| .1
0 1 2 Relation to network polynomial?
1 0 3
1 1| 4
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Likelihood

polynomial
p(z1,x2) = 221 + 1z9 + .1
~ A neural net that for an input vector outputs its probability
X1 Xy | Pr Marginal inference?
0 0| .1
0 1 2 Relation to network polynomial?
1 0 3
1 1| 4 (1) Transform network to likelihood:

p(ac, i‘) = 1Z1%9 + 2T129 + 32129 + 42122

— Replace z; with 1 — z;

11
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Likelihood
polynomial

(2) Transform likelihood to network:

p(z1,x2) = 227 + 1xg + .1
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(2) Transform likelihood to network:

p(z1,x2) = 227 + 1xg + .1

L1

1+ x21)(x0 + 7 2 +
(71 + Z1) (72 2)( P

Z2

1 —
T2 + X2
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Likelihood
polynomial

(2) Transform likelihood to network:

p(z1,x2) = 227 + 1xg + .1

_ _ x1 €2
2 1 1
(1 + 71) (22 + T2) ( P + 2o+ + >

.2x1(x2 I fg) + .13:2(331 + fl) + .1(:61 + i’l)(l’z + 572)

= p(x1, T2, %1, 22)

12 .



Likelihood
polynomial

Transform likelihood to network:

Likelihood
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Likelihood
polynomial

Transform likelihood to network:

S

Likelihood Likelihood
[ [ mN x‘
T . €T 1 n
! " Ttz T Tatan
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Removing Divisions

Theorem (Strassen [1973]).  You can remove divisions in polynomial time!
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Likelihood
polynomial

Transform likelihood to network:

ION

[+

Likelihood Likelihood

w N N N
T s Tn T Tp

T+ Tn + Tn

13

/43



Likelihood
polynomial

Transform likelihood to network:
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Likelihood Likelihood Network
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Generating
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Monotone, decomposable circuits
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Generating
polynomial

Monotone, decomposable circuits
computing network polynomials

(SPNs, PCs)
S Circuits computing generating
Kiskoiine polynomials
Spanning tree distribution®
“Martens and Medabalimi [2015], Zhang et al. [2021] 15
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X1 Xo | Pr
0 0| 1
0 1] .2
1 0| .3
1 1 ] 4

g(x) = .14 229 + 321 + 4z 129

Marginal inference: [Zhang et al., 2021]

Relation to network polynomial?
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Generating

polynomial
X1 Xo | Pr
0 0| 1
0 1] .2
1 0| .3
1 1 ] 4

g(x) = .14 229 + 321 + 4z 129

Marginal inference: [Zhang et al., 2021]

Relation to network polynomial?

(1) Transform network to generating:
p(ﬂ:‘l, To,T1, .CZ‘Q) = .1Z21%2 + .2T129 + 32172 + 4T129

— Replace z; with 1
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(2) Transform generating to network:

at

T,
Zn
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Progress Update

Network Generating
polynomial polynomial
Likelihood Fourier
polynomial polynomial
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Fourier Polynomial

Analysis of

Boolean Functions

RYAN O’'DONNELL
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Fourier Polynomial
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Fourier Polynomial

]
Boolea:\ :3:,’:;:: Fourier transform of the probability mass function
e Graphical model approximate inference

e Characteristic Circuits
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Fourier Polynomial

Boolea:\ :jhﬁ':,:: Fourier transform of the probability mass function
e Graphical model approximate inference

e Characteristic Circuits

RYAN O’'DONNELL

Proposition. Generating polynomials and Fourier polynomials compute the same
function on respective domains {—1,1}" and {0,1}".

19

/43



Progress Update

Network <« Generating
polynomial polynomial

//

Likelihood Fourier
polynomial polynomial




Progress Update

Network <« Generating
polynomial polynomial

./ N\

Likelihood Fourier
polynomial polynomial




Some New Semantics

/\,//.

20

/43



Non-binary variables?

X1 X2 Pr
0 1 1
1 3 3
3 2 2
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Non-binary variables?

Literature: just use a binary encoding
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Non-binary variables?

X1 X2 Pr

0 1 1 Generating
1 3 3 polynomial
3 2 2 g(x) = Az + 3zizs + 2z325 +...
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Non-binary variables?

X7 Xo | Pr

0 1 1 Generating
1 3 3 polynomial
3 2 2 g(x) = Az + 3zizs + 2z325 +...

Theorem. For |K| > 4, computing likelihoods on a circuit for g(x) is #P-hard.

Approach: Reduction from 0, 1-permanent.

21

/43



Midway Conclusion

What we’ve done:
e Shown several distinct circuit models are equally expressive-efficient
e Unified existing (and one new) inference algorithms

e Inference is #P-hard in generating polynomials circuits for k > 4 categories
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Midway Conclusion

What we’ve done:
e Shown several distinct circuit models are equally expressive-efficient
e Unified existing (and one new) inference algorithms

e Inference is #P-hard in generating polynomials circuits for k > 4 categories

What’s next?
e How can this theoretical progress be leveraged in practice?

e Are there more expressive-efficient tractable representations?
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Finally Multilinear Arithmetic Circuits

f:{0,1}" =R
p(T1,. .., Tn) = Z (s Hmlnl x;)
SC{1,...,n} €S  i¢gS

X1 Xo| f
0 0 |.1
0 1 ].2
1 0 |.3
1 1|4
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Finally Multilinear Arithmetic Circuits

f:{0,1}" =R
p(T1,. .., Tn) = Z f(s HxZHI x;)
SC{1,...,n} €S  i¢gS
X1 X | f
0 0 | .1
0 1.2
1 0 |.3
1 1 |4

p({L‘l,:EQ) = .1(1 — 131)(1 — 1‘2) + .2(1 — 1'1)132 + .31’1(1 — 1’2) + 4x179
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Functions Tractable for Marginalization

Let f:{0,1}" — {0,1} be a function (family).

Define MAR(f), the marginalization problem for f, which on input m € {0, 1, *}",
asks for 3y, f(x) where My, = {z € {0,1}" : m; € {0,1} = z; = m;}.
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Functions Tractable for Marginalization

Let f:{0,1}" — {0,1} be a function (family).

Define MAR(f), the marginalization problem for f, which on input m € {0, 1, *}",
asks for 3y, f(x) where My, = {z € {0,1}" : m; € {0,1} = z; = m;}.

E.g., the earlier example was an instance of MAR(Pr) with input m = 1x.

X1 Xo|Pr

0 0|1 Pr(X; =1] = Pr[X; =1, X, =0] + Pr[X; =1, X, = 1]
(13 (1) g = 0.3 + 0.4

1 1|4 =07

25,,,
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Finally
Multilinear

Arithmetic
Circuits

Main Question: Does every function family with tractable marginalization have
uniform finally multilinear arithmetic circuits of polynomial size?
26
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Finally
Multilinear
Arithmetic
Circuits

‘verifiers’

Main Question: Does every function family with tractable marginalization have
uniform finally multilinear arithmetic circuits of polynomial size?
26
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Our Approach

Find stronger queries that are tractable for finally multilinear arithmetic circuits
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Our Approach

Find stronger queries that are tractable for finally multilinear arithmetic circuits

Evaluate circuit on any real point
(Virtual evidence marginalization)

Sum over inputs of a given Hamming weight
(Hamming weight marginalization)
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Our Approach
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Hamming weight marginalization

Let f:{0,1}" — {0,1}. Define HMAR(f) which on input m € {0, 1, *}" and
ke€{0,1,2,...,n}, asks for
Y f@)

J?EMm’k

where
My ={z € {0,1}" : (m; € {0,1} = z; =m;) A (|z| =k)}.

28
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Hamming weight marginalization
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Hamming weight marginalization

T X9 r3 T4 Pr
0O 0 0 0].25
0 1 0 1 1].05
1 0O 0 0 ].05
1 0 0 1 ].05
1 0 1 0 | .10
1 0 1 1 ].50

Input:

m = 10 * x

k =

30
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Hamming weight marginalization

T X9 r3 T4 Pr
0O 0 O 0 ].25
0O 1 0 1 |.05
1 0 0 0 |.05
1 0 0 1 |.05
1 0 1 0 |.10
1 0 1 1 | .50

Input:

m = 10 * x

k=2

Output:

Pr[1001] + Pr[1010] =

.05+ .10 =.15
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Hamming weight marginalization
Prop. FMAC C HMAR.

T X9 r3 T4 Pr
0O 0 0 0].25
0O 1 0 1 |.05
1 0 0 0 |.05
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Input:
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Hamming weight marginalization
Prop. FMAC C HMAR.

r1 wy w3 x4 | Pr _
h .
0 0 0 0 5 Use the network polynomial
0 1 0 1 1].05 25X1X223%4 4+ .05Z129T374 +.0521 ToT374
1 0 0 0 ].05 o T i
1 0 0 11.05 + .0521T9%324 4+ 1021727374 +.5021 Tox 324
1 0 1 0 |.10
1 0 1 1 |.50
Input:
m = 10 * *
k=2
Output:
Pr[1001] + Pr[1010] =
.05+ .10=.15

30
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Hamming weight marginalization

T X9 I3 T4 Pr
0O 0 0 0].25
0O 1 0 1 |.05
1 0 0 0 |.05
1 0 0 1 |.05
1 0 1 0 |.10
1 0 1 1 | .50

Input:

m = 10 * x

k=2

Output:

Pr[1001] + Pr[1010] =

.05+.10 = .15

Prop. FMAC C HMAR.
Use the network polynomial:

.25X1X2X37%4 + .05Z1x9x3%4 +.0521T2T3%4

+ .05x12973x4 + .1021T27374 +.50x1T2x324

Substitute as follows:

T1 X1 | X2 T2 | T3 T3 | T4 T4

1 0|0 1 t 1 t 1
=25-0-1-1-1 +.05-0-0-1-¢ +.05-1-1-1-1
+.05-1-1-1-¢ +.10-1-1-¢t-1 +.50-1-1-t-t

=.05 + .05t + .1¢ + .50¢>

_ 2
=.05 + .15¢ 4 .50¢ 30
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A separating example: constraint satisfaction problems

A constraint language I' is a set of relations Example:
each of the form R C {0,1}* for some k > 1. I’ = {disjunctions of < 3 literals}
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A separating example: constraint satisfaction problems

A constraint language I' is a set of relations Example:
each of the form R C {0,1}* for some k > 1. I’ = {disjunctions of < 3 literals}

A I'-formula is a conjunction of constraints
R(z1,...,xy) for R € T where z1,...,xy are

(not necessarily distinct) variables. ¢ = (@1VomaVag) A(z2VowaVoes)

Problems:
CSP(I)
In: a I-formula ¢(z)
Q: Is there an = that satisfies ¢7
k — ONES(T)
In: a I-formula ¢(x), k € {0,1,...,n}
Q: Is there an = with k ones that satisfies ¢?

CSP(T') = 3SAT

32
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Dichotomy Theorems

A relation is (width-k) affine if it is logically equivalent to a system of linear
equations over [y (each mentioning at most k variables).

For example, 1 ® z9 ® x3 = 1 and x3 ® x4 = 0 form a width-3 affine relation.
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A relation is (width-k) affine if it is logically equivalent to a system of linear
equations over [y (each mentioning at most k variables).

For example, 1 ® z9 ® x3 = 1 and x3 ® x4 = 0 form a width-3 affine relation.

Theorem (Creignou and Hermann [1996]). IfT' contains only affine relations,
then #CSP(T") is in PTIME. Otherwise, #CSP(I") is #P-complete.
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Dichotomy Theorems

A relation is (width-k) affine if it is logically equivalent to a system of linear
equations over [y (each mentioning at most k variables).

For example, 1 ® z9 ® x3 = 1 and x3 ® x4 = 0 form a width-3 affine relation.

Theorem (Creignou and Hermann [1996]). IfT' contains only affine relations,
then #CSP(T") is in PTIME. Otherwise, #CSP(I") is #P-complete.

Theorem (Creignou et al. [2010]). IfT' contains only width-2 affine relations,
then #k-ONES(T") is in PTIME. Otherwise, #k-ONES(T") is #P-complete.
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A separating function

f(z,y,2) = /\ Yijk © T; DT © T A /\ Yijk © Zijk- (1)
i,,k€[n]? i,4,k€[n]3
Theorem. MAR(f) is tractable, but HMAR(f) is #P-hard.

Proof summary: Tractability by Gaussian elimination. Hardness by reducing from

#k-ONES(T') with T = {a ® b @ ¢} = {{(0,0,1), (0,1,0), (1,0,0), (1,1, 1)}}.
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A separating function: hardness of HMAR(f)

f(x,y,2) = /\ Yijk © T DT O xp A /\ Yijk © Zijk-
i,j,k€[n]3 i,j,k€[n]?

Reduction: We get input a I'-formula ¢(z1,...,z,) and an integer k € {0,1,...,n}. For any

i ®x; Pk =11in ¢, set yi;1 = 0 and z;5, = 1. Call the resulting ‘evidence string” m. Then
#k-ONES(T')(¢, k) = HMAR(f)(m, k +n®). Suppose ¢(z) = 1; we find the only y and z such that
f(z,y,2) =1, and we then observe that |z, y, 2| = |z| + n®. Every constraint of ¢ is satisfied, and
so every width-4 constraint in f with y;;, = 0 is satisfied. For constraints x; @ x; @ xx not in ¢, the
corresponding width-4 clause in f is satisfied by setting the free variable y;;i to whichever value is
necessary. The values z;;, are then set to the opposite of the values of y;;, which satisfies the

remaining width-2 clauses of f. For every 4,7,k € [n]® we have zi1 # yi;k, and so |y| + |z| = n®.
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Virtual evidence marginalization

Let f:{0,1}™ — {0,1}. Define VMAR(f) which on input z1,...,z, € Q outputs
p(x1,...,x,) where p is the multilinear polynomial computing f.

Hard evidence: observe that X; =0 or X; = 1.
Virtual evidence instead ‘scales’ your belief in X; =0 and X; = 1 by &;, a; > 0.
Happens when having noisy measurements of data, many applications ...

Marginalizing with virtual evidence reduces to VMAR(f):

n
o o171 Qplnp
||04~:U'~|—am< — ... — 2
( (o Z Z))p<Oé1LL‘1—i-Oé1iL‘1 anxn+a"x”) ()

i=1
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VMAR € HMAR

Recall our algorithm for HMAR: we substituted the inputs of p to obtain a
univariate polynomial of degree at most n

It can therefore be recovered by black-box evaluation at n + 1 distinct points
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Are circuits ‘complete’ for virtual evidence marginalization?

real-RAM: real (and discrete) inputs followed (discrete operations and) by sums,
products, and comparisons (i.e., >, =)

Proposition. If there is a polynomial time real-RAM for VMAR(f), then there are
(uniform) FMACs for f.

Does a similar ‘completeness’ hold for Turing machines?
Possibly hard. [Koiran and Perifel, 2011]
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Conclusion

Ongoing/open questions:
More expressive tractable probabilistic models?
Are finally multilinear circuits ‘complete’ for virtual evidence marginalization?

Are there more interesting (useful?) queries living between virtual evidence
and marginalization?

Are there non-parallelizable marginalization algorithms (or is marginalization
inherently parallelizable?)?
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