I

Polynomial semantics of probabilistic circuits
Oliver Broadrick, Honghua Zhang, Guy Van den Broeck — UAT 2024

The limits of tractable marginalization
Oliver Broadrick, Sanyam Agarwal, Markus Blaser, Guy Van den Broeck — wip



Probabilistic Models

2 /43



Probabilistic Models

0 1

1 2

(1) i Transformers
Diffusion models

Variational Autoencoders

Expressive-efficient

2 /43



Probabilistic Models

Tree Bayes Net

Mixture models

X7 Xo | Pr .%
0 0| .1 ‘g
0 1.2 =
1 0 3 Transformers
1 1| 4

Diffusion models

Variational Autoencoders

Expressive-efficient

/43



Probabilistic Models

Tree Bayes Net
. Circuits!
Mixture models
X, X, |Pr =
0 0 |.1 g
0 1 2 g
1 0 -3 Transformers
1 1 4
Diffusion models
Variational Autoencoders

Expressive-efficient

/43



Marginal Inference

X7 Xy | Pr

8 ? ; PrX; =1] = Pr[X; =1, X5 =0] + Pr[X; =1, X, =1]
1 ol 3 = 03 + 04

1 1 4 =0.7

/43



Marginal Inference

X, X |Pr

8 ? ; Pr[X; =1] = Pr[X; =1,X, =0] + Pr[X; =1, X3 = 1]
1 0 :3 =03 + 04

1 1| 4 =07

Goal: Find maximally expressive-efficient models that support marginal inference
in time polynomial in the model size.

/43



Tractable Marginalization is Useful

Logical control of language models (see Honghua Zhang)
Efficient causal reasoning (see Benjie Wang)

Data compression and control for diffusion models (see Anji Liu)
Probabilistic program inference (see Poorva Garg)
Neurosymbolic learning (see Kareem Ahmed)

Probabilistic logic programming (see Renato Geh)

etc. etc. etc.

/43



Approaches

Bayes Nets (of bounded treewidth)
Determinantal Point Processes
Characteristic Circuits
Multi-Linear Representations
Probabilistic Generating Circuits
Sum-Product Networks

/43



Approaches

Bayes Nets (of bounded treewidth)
Determinantal Point Processes
Characteristic Circuits
Multi-Linear Representations
Probabilistic Generating Circuits
Sum-Product Networks

Polynomials!

/43



How to encode distributions in polynomials?

Bayes Nets (of bounded treewidth)
Determinantal Point Processes
Characteristic Circuits
Multi-Linear Representations
Probabilistic Generating Circuits
Sum-Product Networks

Likelihood Network Generating Fourier
polynomial polynomial polynomial polynomial

/43



Circuits represent polynomials succinctly

OO0

3119 + 173 + 6x§ + 2x9x3

/43



Circuits represent polynomials succinctly

Circuits are fully expressive

OO0

3119 + 173 + 6x§ + 2x9x3

/43



Circuits represent polynomials succinctly

Circuits are fully expressive

They can also be expressive-efficient

OO0

3119 + 173 + 6:10% + 2x9x3

/43



Polynomial Semantics

Network
polynomial

Likelihood
polynomial

Generating
polynomial

Fourier
polynomial

/43



Polynomial Semantics

Darwiche [2003] Zhang et al. [2021]
Network Generating
polynomial polynomial
Likelih Fouri
L O(,)d Roth and Samdani [2009] ourier Yu et al. [2023]
polynomial polynomial

/43



Polynomial Semantics

Darwiche [2003] Zhang et al. [2021]
Network Generating
polynomial polynomial
leeth(.)d Roth and Samdani [2009] Fourler‘ Yu et al. [2023]
polynomial polynomial

/43



Polynomial Semantics

Darwiche [2003] Zhang et al. [2021]
Network «—— Generating
polynomial polynomial
Likelihood Fourier

Roth and Samdani [2009] Yu et al. [2023]

polynomial polynomial

/43



Polynomial Semantics

\ Darwiche [2003] Zhang et al. [2021]

Network «—— Generating
polynomial polynomial

// N\

leeth(.)d Roth and Samdani [2009] Fourler‘
polynomial polynomial

Yu et al. [2023]

/43



Network

polynomial
p(l’l,l’z,i‘l,i‘Q) = 1x179 + 27129 + 31179 + 4179
X1 XQ Pr
0 0 1
0 1 2
1 0 .3
1 1 4

/43



Network

polynomial
p(l’l,l’z,i‘l,i‘Q) = 1x179 + 27129 + 31179 + 4179
X1 XQ Pr
0 0 1
0 1|22 Pr(X; =1]
1 0 .3
1 1 4

/43



Network
polynomial

SQICIN e

p(l’l,l’z,i‘l,i‘Q) = 1x179 + 27129 + 31179 + 4179

p(1,1,0,1)
A1(0)(1) + .2(0)(1) + .3(1)(1) + .4(1)(1)
0+0+ 3+ 4

=.7

/43



Network
polynomial

A
<
b

-

O - O

S O =

9 /43



Network

polynomial
0 0 .1
0 1.2 Pr[X; = 1]?
1 0.3
1 1| 4

/43



Network

polynomial
Xl XQ Pr
0 0] .1
0 1 1.2
1 0| .3
1 1| 4

/43



Network

polynomial
X1 X2 Pr
0 0|1
0 1 9 PI‘[Xl = 1] ?
1 0| .3
1 1] 4

/43



Progress Update

N

Network
polynomial

Likelihood
polynomial

Generating
polynomial

Fourier
polynomial

10

/43



Progress Update

Network Generating
polynomial polynomial

Likelihood Fourier
polynomial polynomial

10

/43



Likelihood

polynomial
p(z1,x2) = 221 + 1z9 + .1
~ A neural net that for an input vector outputs its probability
X1 X2 Pr
0 0| .1
0 1] .2
1 0 3
1 1| 4

11

/43



Likelihood

polynomial
p(z1,x2) = 221 + 1z9 + .1
~ A neural net that for an input vector outputs its probability
X1 Xp | Pr Marginal inference?
0 0 1
0 1 2
1 0 .3
1 1 4

11

/43



Likelihood

polynomial
p(z1,x2) = 221 + 1z9 + .1
~ A neural net that for an input vector outputs its probability
X1 Xp | Pr Marginal inference?
0 0| .1
0 1 2 Relation to network polynomial?
1 0 3
1 1| 4

11

/43



Likelihood

polynomial
p(z1,x2) = 221 + 1z9 + .1
~ A neural net that for an input vector outputs its probability
X1 Xy | Pr Marginal inference?
0 0| .1
0 1 2 Relation to network polynomial?
1 0 3
1 1| 4 (1) Transform network to likelihood:

p(ac, i‘) = 1Z1%9 + 2T129 + 32129 + 42122

— Replace z; with 1 — z;

11

/43



Likelihood
polynomial

(2) Transform likelihood to network:

p(z1,x2) = 227 + 1xg + .1

12 .



Likelihood
polynomial

(2) Transform likelihood to network:

p(z1,x2) = 227 + 1xg + .1

L1

1+ x21)(x0 + 7 2 +
(71 + Z1) (72 2)( P

Z2

1 —
T2 + X2

+.1>

12

/43



Likelihood
polynomial

(2) Transform likelihood to network:

p(z1,x2) = 227 + 1xg + .1

_ _ x1 €2
2 1 1
(1 + 71) (22 + T2) ( P + 2o+ + >

.2x1(x2 I fg) + .13:2(331 + fl) + .1(:61 + i’l)(l’z + 572)

12 .



Likelihood
polynomial

(2) Transform likelihood to network:

p(z1,x2) = 227 + 1xg + .1

_ _ x1 €2
2 1 1
(1 + 71) (22 + T2) ( P + 2o+ + >

.2x1(x2 I fg) + .13:2(331 + fl) + .1(:61 + i’l)(l’z + 572)

= p(x1, T2, %1, 22)

12 .



Likelihood
polynomial

Transform likelihood to network:

Likelihood

12

/43



Likelihood
polynomial

Transform likelihood to network:

S

Likelihood Likelihood
[ [ mN x‘
T . €T 1 n
! " Ttz T Tatan

12

/43



Removing Divisions

Theorem (Strassen [1973]).  You can remove divisions in polynomial time!

13

/43



Removing Divisions

Theorem (Strassen [1973]).  You can remove divisions in polynomial time!

~ AA A

13

/43



Removing Divisions

Theorem (Strassen [1973]).  You can remove divisions in polynomial time!

13

/43



Likelihood
polynomial

Transform likelihood to network:

ION

[+

Likelihood Likelihood

w N N N
T s Tn T Tp

T+ Tn + Tn

13

/43



Likelihood
polynomial

Transform likelihood to network:

ION

H(:UZ aF fz)

Likelihood Likelihood Network

I [ [ { T 1 1
T Tn o) T X1 X1 -+ TpTn

T+ Tn + Tn

13

/43



Progress Update

Network
polynomial

Likelihood
polynomial

Generating
polynomial

Fourier
polynomial

14

/43



Progress Update

Network Generating
polynomial polynomial
Likelihood Fourier
polynomial polynomial

14

/43



Progress Update

Network Generating
polynomial polynomial
Likelihood Fourier
polynomial polynomial

14

/43



Generating
polynomial

generatingfunctionology

15

/43



Generating
polynomial

Monotone, decomposable circuits

computing network polynomials
(SPNs, PCs)

generatingfunctionology
™ r1on

15

/43



Generating
polynomial

Monotone, decomposable circuits

computing network polynomials
(SPNs, PCs)

tionology

Circuits computing generating
polynomials

erbert S. Wilf

15

/43



Generating
polynomial

Monotone, decomposable circuits
computing network polynomials

(SPNs, PCs)
S Circuits computing generating
Kiskoiine polynomials
Spanning tree distribution®
“Martens and Medabalimi [2015], Zhang et al. [2021] 15

/43



Generating

polynomial
X1 Xo | Pr
0 0| 1
0 1] .2
1 0| .3
1 1 ] 4

g(x) = .14 229 + 321 + 4z 129

16

/43



Generating

polynomial
g(x) = .14 229 + 321 + 4z 129
X; Xo | Pr Marginal inference: [Zhang et al., 2021]
0 0 | .1
0 1 2
1 0| .3
1 1 4

16

/43



Generating

polynomial
X1 Xo | Pr
0 0| 1
0 1] .2
1 0| .3
1 1 ] 4

g(x) = .14 229 + 321 + 4z 129

Marginal inference: [Zhang et al., 2021]

Relation to network polynomial?

16

/43



Generating

polynomial
X1 Xo | Pr
0 0| 1
0 1] .2
1 0| .3
1 1 ] 4

g(x) = .14 229 + 321 + 4z 129

Marginal inference: [Zhang et al., 2021]

Relation to network polynomial?

(1) Transform network to generating:
p(ﬂ:‘l, To,T1, .CZ‘Q) = .1Z21%2 + .2T129 + 32172 + 4T129

— Replace z; with 1

16

/43



(2) Transform generating to network:

at

T,
Zn

17

/43



Progress Update

Network Generating
polynomial polynomial
Likelihood Fourier
polynomial polynomial

18

/43



Progress Update

Network Generating
polynomial polynomial
Likelihood Fourier

polynomial polynomial



Progress Update

Network Generating
polynomial polynomial
Likelihood Fourier

polynomial polynomial



Fourier Polynomial

Analysis of

Boolean Functions

RYAN O’'DONNELL

19

/43



Fourier Polynomial

" Analysis of . . :
B B D VRl Fourier transform of the probability mass function

RYAN O’'DONNELL

19

/43



Fourier Polynomial

]
Boolea:\ :3:,’:;:: Fourier transform of the probability mass function
e Graphical model approximate inference

e Characteristic Circuits

RYAN O’'DONNELL

19

/43



Fourier Polynomial

Boolea:\ :jhﬁ':,:: Fourier transform of the probability mass function
e Graphical model approximate inference

e Characteristic Circuits

RYAN O’'DONNELL

Proposition. Generating polynomials and Fourier polynomials compute the same
function on respective domains {—1,1}" and {0,1}".

19

/43



Progress Update

Network <« Generating
polynomial polynomial

//

Likelihood Fourier
polynomial polynomial




Progress Update

Network <« Generating
polynomial polynomial

./ N\

Likelihood Fourier
polynomial polynomial




Some New Semantics

/\,//.

20

/43



Non-binary variables?

X1 X2 Pr
0 1 1
1 3 3
3 2 2

21

/43



Non-binary variables?

Literature: just use a binary encoding

X1 X2 Pr
0 1 1
1 3 3
3 2 2

21

/43



Non-binary variables?

X1 X2 Pr

0 1 1 Generating
1 3 3 polynomial
3 2 2 g(x) = Az + 3zizs + 2z325 +...

21

/43



Non-binary variables?

X7 Xo | Pr

0 1 1 Generating
1 3 3 polynomial
3 2 2 g(x) = Az + 3zizs + 2z325 +...

Theorem. For |K| > 4, computing likelihoods on a circuit for g(x) is #P-hard.

Approach: Reduction from 0, 1-permanent.

21

/43



Midway Conclusion

What we’ve done:
e Shown several distinct circuit models are equally expressive-efficient
e Unified existing (and one new) inference algorithms

e Inference is #P-hard in generating polynomials circuits for k > 4 categories

22

/43



Midway Conclusion

What we’ve done:
e Shown several distinct circuit models are equally expressive-efficient
e Unified existing (and one new) inference algorithms

e Inference is #P-hard in generating polynomials circuits for k > 4 categories

What’s next?
e How can this theoretical progress be leveraged in practice?

e Are there more expressive-efficient tractable representations?

22

/43



I

Polynomial semantics of probabilistic circuits
Oliver Broadrick, Honghua Zhang, Guy Van den Broeck — UAT 2024

The limits of tractable marginalization
Oliver Broadrick, Sanyam Agarwal, Markus Blaser, Guy Van den Broeck — wip

23



Finally Multilinear Arithmetic Circuits

f:{0,1}" =R
p(T1,. .., Tn) = Z (s Hmlnl x;)
SC{1,...,n} €S  i¢gS

X1 Xo| f
0 0 |.1
0 1 ].2
1 0 |.3
1 1|4

24

/43



Finally Multilinear Arithmetic Circuits

f:{0,1}" =R
p(T1,. .., Tn) = Z f(s HxZHI x;)
SC{1,...,n} €S  i¢gS
X1 X | f
0 0 | .1
0 1.2
1 0 |.3
1 1 |4

p({L‘l,:EQ) = .1(1 — 131)(1 — 1‘2) + .2(1 — 1'1)132 + .31’1(1 — 1’2) + 4x179

24

/43



Functions Tractable for Marginalization

Let f:{0,1}" — {0,1} be a function (family).

Define MAR(f), the marginalization problem for f, which on input m € {0, 1, *}",
asks for 3y, f(x) where My, = {z € {0,1}" : m; € {0,1} = z; = m;}.

25

/43



Functions Tractable for Marginalization

Let f:{0,1}" — {0,1} be a function (family).

Define MAR(f), the marginalization problem for f, which on input m € {0, 1, *}",
asks for 3y, f(x) where My, = {z € {0,1}" : m; € {0,1} = z; = m;}.

E.g., the earlier example was an instance of MAR(Pr) with input m = 1x.

X1 Xo|Pr

0 0|1 Pr(X; =1] = Pr[X; =1, X, =0] + Pr[X; =1, X, = 1]
(13 (1) g = 0.3 + 0.4

1 1|4 =07

25,,,



Finally
Multilinear

Arithmetic
Circuits

26

/43



Finally
Multilinear

Arithmetic
Circuits

Main Question: Does every function family with tractable marginalization have
uniform finally multilinear arithmetic circuits of polynomial size?
26

/43



Finally
Multilinear
Arithmetic
Circuits

‘verifiers’

Main Question: Does every function family with tractable marginalization have
uniform finally multilinear arithmetic circuits of polynomial size?
26

/43



Our Approach

Find stronger queries that are tractable for finally multilinear arithmetic circuits

27

/43



Our Approach

Find stronger queries that are tractable for finally multilinear arithmetic circuits

Evaluate circuit on any real point
(Virtual evidence marginalization)

27

/43



Our Approach

Find stronger queries that are tractable for finally multilinear arithmetic circuits

Evaluate circuit on any real point
(Virtual evidence marginalization)

Sum over inputs of a given Hamming weight
(Hamming weight marginalization)

27

/43



Our Approach

Finally
Multilinear

Arithmetic
Circuits

27

/43



Hamming weight marginalization

Let f:{0,1}" — {0,1}. Define HMAR(f) which on input m € {0, 1, *}" and
ke€{0,1,2,...,n}, asks for
Y f@)

J?EMm’k

where
My ={z € {0,1}" : (m; € {0,1} = z; =m;) A (|z| =k)}.

28

/43



Hamming weight marginalization

Finally
Multilinear

Arithmetic
Circuits

29

/43



Hamming weight marginalization

T X9 r3 T4 Pr
0O 0 0 0].25
0 1 0 1 1].05
1 0O 0 0 ].05
1 0 0 1 ].05
1 0 1 0 | .10
1 0 1 1 ].50

Input:

m = 10 * x

k =

30

/43



Hamming weight marginalization

T X9 r3 T4 Pr
0O 0 0 0].25
0 1 0 1 1].05
1 0O O 0 ].05
1 0 0 1 ].05
1 0 1 0 | .10
1 0 1 1 | .50

Input:

m = 10 * x

k =

30

/43



Hamming weight marginalization

T X9 r3 T4 Pr
0O 0 O 0 ].25
0O 1 0 1 |.05
1 0 0 0 |.05
1 0 0 1 |.05
1 0 1 0 |.10
1 0 1 1 | .50

Input:

m = 10 * x

k=2

Output:

Pr[1001] + Pr[1010] =

.05+ .10 =.15

30

/43



Hamming weight marginalization
Prop. FMAC C HMAR.

T X9 r3 T4 Pr
0O 0 0 0].25
0O 1 0 1 |.05
1 0 0 0 |.05
1 0 0 1 |.05
1 0 1 0 |.10
1 0 1 1 | .50

Input:

m = 10 * x

k=2

Output:

Pr[1001] + Pr[1010] =

.05+.10 = .15

30

/43



Hamming weight marginalization
Prop. FMAC C HMAR.

r1 wy w3 x4 | Pr _
h .
0 0 0 0 5 Use the network polynomial
0 1 0 1 1].05 25X1X223%4 4+ .05Z129T374 +.0521 ToT374
1 0 0 0 ].05 o T i
1 0 0 11.05 + .0521T9%324 4+ 1021727374 +.5021 Tox 324
1 0 1 0 |.10
1 0 1 1 |.50
Input:
m = 10 * *
k=2
Output:
Pr[1001] + Pr[1010] =
.05+ .10=.15

30

/43



Hamming weight marginalization

T X9 I3 T4 Pr
0O 0 0 0].25
0O 1 0 1 |.05
1 0 0 0 |.05
1 0 0 1 |.05
1 0 1 0 |.10
1 0 1 1 | .50

Input:

m = 10 * x

k=2

Output:

Pr[1001] + Pr[1010] =

.05+.10 = .15

Prop. FMAC C HMAR.
Use the network polynomial:

.25X1X2X37%4 + .05Z1x9x3%4 +.0521T2T3%4

+ .05x12973x4 + .1021T27374 +.50x1T2x324

Substitute as follows:

T1 X1 | X2 T2 | T3 T3 | T4 T4

1 0|0 1 t 1 t 1
=25-0-1-1-1 +.05-0-0-1-¢ +.05-1-1-1-1
+.05-1-1-1-¢ +.10-1-1-¢t-1 +.50-1-1-t-t

=.05 + .05t + .1¢ + .50¢>

_ 2
=.05 + .15¢ 4 .50¢ 30

/43



Hamming weight marginalization

Finally
Multilinear

Arithmetic
Circuits

31

/43



Hamming weight marginalization

Finally
Multilinear

Arithmetic
Circuits

31

/43



A separating example: constraint satisfaction problems

A constraint language I' is a set of relations Example:
each of the form R C {0,1}* for some k > 1. I’ = {disjunctions of < 3 literals}

32

/43



A separating example: constraint satisfaction problems

A constraint language I' is a set of relations Example:
each of the form R C {0,1}* for some k > 1. I’ = {disjunctions of < 3 literals}

A I'-formula is a conjunction of constraints
R(z1,...,xy) for R € T where z1,...,xy are

(not necessarily distinct) variables. ¢ = (@1VomaVag) A(z2VowaVoes)

32

/43



A separating example: constraint satisfaction problems

A constraint language I' is a set of relations Example:
each of the form R C {0,1}* for some k > 1. I’ = {disjunctions of < 3 literals}

A I'-formula is a conjunction of constraints
R(z1,...,xy) for R € T where z1,...,xy are

(not necessarily distinct) variables. ¢ = (@1VomaVag) A(z2VowaVoes)

Problems:
CSP(I)
In: a I-formula ¢(z)
Q: Is there an = that satisfies ¢7
k — ONES(T)
In: a I-formula ¢(x), k € {0,1,...,n}
Q: Is there an = with k ones that satisfies ¢?

CSP(T') = 3SAT

32

/43



Dichotomy Theorems

A relation is (width-k) affine if it is logically equivalent to a system of linear
equations over [y (each mentioning at most k variables).

For example, 1 ® z9 ® x3 = 1 and x3 ® x4 = 0 form a width-3 affine relation.

33

/43



Dichotomy Theorems

A relation is (width-k) affine if it is logically equivalent to a system of linear
equations over [y (each mentioning at most k variables).

For example, 1 ® z9 ® x3 = 1 and x3 ® x4 = 0 form a width-3 affine relation.

Theorem (Creignou and Hermann [1996]). IfT' contains only affine relations,
then #CSP(T") is in PTIME. Otherwise, #CSP(I") is #P-complete.

33

/43



Dichotomy Theorems

A relation is (width-k) affine if it is logically equivalent to a system of linear
equations over [y (each mentioning at most k variables).

For example, 1 ® z9 ® x3 = 1 and x3 ® x4 = 0 form a width-3 affine relation.

Theorem (Creignou and Hermann [1996]). IfT' contains only affine relations,
then #CSP(T") is in PTIME. Otherwise, #CSP(I") is #P-complete.

Theorem (Creignou et al. [2010]). IfT' contains only width-2 affine relations,
then #k-ONES(T") is in PTIME. Otherwise, #k-ONES(T") is #P-complete.

33

/43



A separating function

f(z,y,2) = /\ Yijk © T; DT © T A /\ Yijk © Zijk- (1)
i,,k€[n]? i,4,k€[n]3
Theorem. MAR(f) is tractable, but HMAR(f) is #P-hard.

Proof summary: Tractability by Gaussian elimination. Hardness by reducing from

#k-ONES(T') with T = {a ® b @ ¢} = {{(0,0,1), (0,1,0), (1,0,0), (1,1, 1)}}.

34

/43



A separating function: hardness of HMAR(f)

f(x,y,2) = /\ Yijk © T DT O xp A /\ Yijk © Zijk-
i,j,k€[n]3 i,j,k€[n]?

Reduction: We get input a I'-formula ¢(z1,...,z,) and an integer k € {0,1,...,n}. For any

i ®x; Pk =11in ¢, set yi;1 = 0 and z;5, = 1. Call the resulting ‘evidence string” m. Then
#k-ONES(T')(¢, k) = HMAR(f)(m, k +n®). Suppose ¢(z) = 1; we find the only y and z such that
f(z,y,2) =1, and we then observe that |z, y, 2| = |z| + n®. Every constraint of ¢ is satisfied, and
so every width-4 constraint in f with y;;, = 0 is satisfied. For constraints x; @ x; @ xx not in ¢, the
corresponding width-4 clause in f is satisfied by setting the free variable y;;i to whichever value is
necessary. The values z;;, are then set to the opposite of the values of y;;, which satisfies the

remaining width-2 clauses of f. For every 4,7,k € [n]® we have zi1 # yi;k, and so |y| + |z| = n®.

35

/43



Update

Finally
Multilinear

Arithmetic
Circuits

36

/43



Update

Finally
Multilinear

Arithmetic
Circuits

36

/43



Virtual evidence marginalization

Let f:{0,1}™ — {0,1}. Define VMAR(f) which on input z1,...,z, € Q outputs
p(x1,...,x,) where p is the multilinear polynomial computing f.

Hard evidence: observe that X; =0 or X; = 1.
Virtual evidence instead ‘scales’ your belief in X; =0 and X; = 1 by &;, a; > 0.
Happens when having noisy measurements of data, many applications ...

Marginalizing with virtual evidence reduces to VMAR(f):

n
o o171 Qplnp
||04~:U'~|—am< — ... — 2
( (o Z Z))p<Oé1LL‘1—i-Oé1iL‘1 anxn+a"x”) ()

i=1

37

/43



VMAR € HMAR

Recall our algorithm for HMAR: we substituted the inputs of p to obtain a
univariate polynomial of degree at most n

It can therefore be recovered by black-box evaluation at n + 1 distinct points

38

/43



Update

Finally
Multilinear

Arithmetic
Circuits

39

/43



Are circuits ‘complete’ for virtual evidence marginalization?

real-RAM: real (and discrete) inputs followed (discrete operations and) by sums,
products, and comparisons (i.e., >, =)

Proposition. If there is a polynomial time real-RAM for VMAR(f), then there are
(uniform) FMACs for f.

Does a similar ‘completeness’ hold for Turing machines?
Possibly hard. [Koiran and Perifel, 2011]

40

/43



Conclusion

Ongoing/open questions:
More expressive tractable probabilistic models?
Are finally multilinear circuits ‘complete’ for virtual evidence marginalization?

Are there more interesting (useful?) queries living between virtual evidence
and marginalization?

Are there non-parallelizable marginalization algorithms (or is marginalization
inherently parallelizable?)?

41

/43



References 1

Nadia Creignou and Miki Hermann. Complexity of generalized satisfiability
counting problems. Information and computation, 125(1):1-12, 1996. doi:
10.1006/inco.1996.0016. URL https://doi.org/10.1006/inco.1996.0016.

Nadia Creignou, Henning Schnoor, and Ilka Schnoor. Nonuniform boolean
constraint satisfaction problems with cardinality constraint. ACM Trans.
Comput. Logic, 11(4), jul 2010. ISSN 1529-3785. doi: 10.1145/1805950.1805954.
URL https://doi.org/10.1145/1805950.1805954.

Adnan Darwiche. A differential approach to inference in bayesian networks. J.
ACM, 50(3):280-305, may 2003. ISSN 0004-5411. doi: 10.1145/765568.765570.
URL https://doi.org/10.1145/765568.765570.

Pascal Koiran and Sylvain Perifel. Interpolation in valiant’s theory. Computational
Complexity, 20:1-20, 2011.

James Martens and Venkatesh Medabalimi. On the expressive efficiency of sum

product networks, 2015.
42

/43


https://doi.org/10.1006/inco.1996.0016
https://doi.org/10.1145/1805950.1805954
https://doi.org/10.1145/765568.765570

References 11

Dan Roth and Rajhans Samdani. Learning multi-linear representations of
distributions for efficient inference. Machine Learning, 76(2):195-209, 2009. doi:
10.1007/s10994-009-5130-x. URL
https://doi.org/10.1007/s10994-009-5130-x.

Volker Strassen. Vermeidung von divisionen. Journal fiir die reine und angewandte
Mathematik, 264:184-202, 1973. URL http://eudml.org/doc/151394.

Zhongjie Yu, Martin Trapp, and Kristian Kersting. Characteristic circuit. In
Proceedings of the 37th Conference on Neural Information Processing Systems
(NeurIPS), 2023.

Honghua Zhang, Brendan Juba, and Guy Van den Broeck. Probabilistic
generating circuits. In International Conference on Machine Learning, pages
12447-12457. PMLR, 2021.

43

/43


https://doi.org/10.1007/s10994-009-5130-x
http://eudml.org/doc/151394

	References

