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Kristin and her son Justin went to visit
her mother Carol on a nice Sunday
afternoon. They went out for a movie
together and had a good time.

I

Q: How is Carol related to Justin ?
A: Carol is the grandmother of Justin

!

~

Can Language Models Perform Logical Reasoning?

Language Models achieve high performance on “reasoning” benchmarks.

Reasoning Example
from the CLUTRR

J

dataset

N

Unclear whether they follow the rules of logical deduction.

Language Models:
input — ? — Carol is the grandmother of Justin.

Logical Reasoning:
input — Justin in Kristin’s son; Carol is Kristin’'s mother; — Carol is Justin’s mother’s mother; if

X is Y’s mother’s mother then X is Y’s grandmother — Carol is the grandmother of Justin.




Problem Setting: SimplelLogic

Easiest of reasoning problems:

Facts:
1. Propositional logic fragment Alice is fast.

Bounded vocabulary & number of rules Alice Is normal.
& reasoning depth — finite space (= 10*360) Rules:

If Alice is fast and smart, then Alice is bad.

2. No language variance: templated language | !f Alice is normal, then Alice is smart.
If Alice is normal and happy, then Alice is sad.

3. Self-contained

. K led Query 1: Alice is bad. [Answer: True]
No prior knowlieage Query 2: Alice is sad. [Answer: False]
4. Purely symbolic predicates @
No shortcuts from word meaning LMs: BERT, T5
5. Tractable logic (definite clauses) @
Can always be solved efficiently True or False

Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang and Guy Van den Broeck. On the Paradox of Learning to Reason from Data, 2022


http://starai.cs.ucla.edu/papers/ZhangArxiv22.pdf

SimplelLogic

Generate textual train and test examples of the form:

Rules: If witty, then diplomatic. If careless and condemned and attractive, then blushing. If dishonest and inquisitive and average,
then shy. If average, then stormy. If popular, then blushing. If talented, then hurt. If popular and attractive, then thoughtless. If
blushing and shy and stormy, then inquisitive. If adorable, then popular. If cooperative and wrong and stormy, then thoughtless.
If popular, then sensible. If cooperative, then wrong. If shy and cooperative, then witty. If polite and shy and thoughtless, then
talented. If polite, then condemned. If polite and wrong, then inquisitive. If dishonest and inquisitive, then talented. If blushing
and dishonest, then careless. If inquisitive and dishonest, then troubled. If blushing and stormy, then shy. If diplomatic and
talented, then careless. If wrong and beautiful, then popular. If ugly and shy and beautiful, then stormy. If shy and inquisitive
and attractive, then diplomatic. If witty and beautiful and frightened, then adorable. If diplomatic and cooperative, then sensible.
If thoughtless and inquisitive, then diplomatic. If careless and dishonest and troubled, then cooperative. If hurt and witty and
troubled, then dishonest. If scared and diplomatic and troubled, then average. If ugly and wrong and careless, then average. If
dishonest and scared, then polite. If talented, then dishonest. If condemned, then wrong. If wrong and troubled and blushing,
then scared. If attractive and condemned, then frightened. If hurt and condemned and shy, then witty. If cooperative, then
attractive. If careless, then polite. If adorable and wrong and careless, then diplomatic. Facts: Alice sensible Alice condemned
Alice thoughtless Alice polite Alice scared Alice average

Query: Alice is shy ?

Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang and Guy Van den Broeck. On the Paradox of Learning to Reason from Data, 2022


http://starai.cs.ucla.edu/papers/ZhangArxiv22.pdf

Training a transformer on SimplelLogic

(1) Randomly sample facts & rules.
Facts: B, C

Rules:A,B>D.B>E.B,C>F. Test accuracy for different reasoning depths
(2) Compute the correct

° e G labels for all predicates given
Test| 0 f 2 B8 4 & B

the facts and rules.
o ‘ . RP | 999 998 99.7 99.3 98.3 975 955

Rule-Priority

Label-Priority ° ‘ ‘

Test | O 1 2 3 4 5 6

= LP [100.0 1000 99.9 99.9 99.7 99.7 99.0
O (2) Set B, C (randomly chosen
@ Q among B, C, E, F) as facts and
(1) Randomly assign labels to sample rules (randomly)
predicates. consistent with the label
True: B, C, E,F. assignments.

False: A, D.

Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang and Guy Van den Broeck. On the Paradox of Learning to Reason from Data, 2022


http://starai.cs.ucla.edu/papers/ZhangArxiv22.pdf

Has the transformer learned to reason from data®?

Easiest of reasoning problems (no variance, self-contained, purely symbolic, tractable)
RP/LP data covers the whole problem space

The learned model has almost 100% test accuracy

e

There exist transformer parameters that compute the ground-truth reasoning function:

Theorem 1: For a BERT model with n layers and 12 attention heads, by construction,
there exists a set of parameters such that the model can correctly solve any
reasoning problem in SimpleLogic that requires at most n — 2 steps of reasoning.

Surely, under these conditions, the transformer has
learned the ground-truth reasoning function!

Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang and Guy Van den Broeck. On the Paradox of Learning to Reason from Data, 2022


http://starai.cs.ucla.edu/papers/ZhangArxiv22.pdf

The Paradox of Learning to Reason from Data

Train Test | O 1 2 3 4 5 6

RP RP | 999 99.8 99.7 993 983 97.5 955
LP | 99.8 99.8 993 96.0 904 750 57.3

RP | 973 669 53.0 542 595 656 69.2
LP | 100.0 100.0 999 99.9 99.7 99.7 99.0

LP

The BERT model trained on one distribution fails to generalize
to the other distribution within the same problem space.

1. If the transformer has learned to reason,
it should not exhibit such generalization failure.

2. If the transformer has not learned to reason,
it is baffling how it achieves near-perfect in-distribution test accuracy.

Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang and Guy Van den Broeck. On the Paradox of Learning to Reason from Data, 2022


http://starai.cs.ucla.edu/papers/ZhangArxiv22.pdf

Why? Statistical Features

Monotonicity of entailment:
Any rules can be freely added to the axioms of any proven fact.

{

[ The more rules given, the more likely a predicate will be proven. ]

.

[ Pr(label = True | Rule # = x) should increase (roughly) monotonically with x }

N WWWWWWWWWWWWMM Mwm i MMWWWMWMMW vmwmum wwmx mhi\rw\MUn\hN Jh \»“ Ml

(a) Statistics for examples generated by Rule-. ty (RP). (b) St: ty (LP). () S y uniform sampling;




Model leverages statistical features to make predictions

RP_b downsamples from RP such that Pr(label = True | rule# = x) = 0.5 for all x

Train Test | 0 1 2 3 4 5 6

RP (999 99.8 99.7 99.3 983 97.5 95.5
RP RP_b[99.0 993 985 97.5 96.7 93.5 883

1. Accuracy drop from RP to RP_b indicates that
the model is using rule# as a statistical feature to make predictions.

2. Potentially countless statistical features

3. Such features are inherent to the reasoning problem, cannot make data “clean”

Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang and Guy Van den Broeck. On the Paradox of Learning to Reason from Data, 2022


http://starai.cs.ucla.edu/papers/ZhangArxiv22.pdf

First Conclusion

Experiments unveil the fundamental difference between

1. learning to reason, and

2. learning to achieve high performance on benchmarks using statistical features.

Be careful deploying Al in applications where this difference matters.

FAQ: Do bigger transformers solve this problem? No, already 99% accurate...

FAQ: Will reasoning emerge? Perhaps on 99% of human behavior...

Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang and Guy Van den Broeck. On the Paradox of Learning to Reason from Data, 2022


http://starai.cs.ucla.edu/papers/ZhangArxiv22.pdf
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the ground-truth reasoning algorithm.

Then SGD will un-learn the algorithm that generalizes OOD

and again learn statistical shortcuts.
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O Generate a sentence using "frisbee", "caught" and "dog",
) following the given order.

After a perfect throw, the frisbee glided through the air,

and the dog, with incredible agility, caught it mid-flight. ChatGPT

O That's not correct. Generate a sentence using "frisbee",
(— ) "caught” and "dog". The keywords should appear in the
order as specified.

Here's the correct sentence: The dog caught the frisbee
in mid-air, showing off its amazing catching skills. ChatGPT

() Afrisbee is caught by a dog. o
‘E A pair of frisbee players are caught in a dog fight. eralo




What do we have?

Prefix; “The weather is”

Constraint a: text contains “winter”

cold 0.05

Model only does p(next-token|prefix) =

warm 0.10

Train some q(. |a) for a specific task distribution o ~ p,.

(amortized inference, encoder, masked model, seq2seq, prompt tuning,...)

Train g(next-token|prefix, o)



What do we need?

Prefix; “The weather is”

Constraint a: text contains “winter”

Generate from p(next-token|prefix, a) =

X Z p(next-token, text, prefix, a)

text

Marginalization!

cold

0.50

warm

0.01




Tractable Probabilistic Models Probabilistic Circuits

HMM

HCLT

Tractable Probabilistic Models (TPMs)
model joint probability distributions
and allow efficient probabilistic inference.

Mixture of Trees

DPP

SPN

e.g., efficient marginalization:

P-py(3rd token = frisbee, 5th token = dog)

For now... keep it simple... just a Hidden Markov Model (HMM)

Honghua Zhang, Meihua Dang, Nanyun Peng and Guy Van den Broeck. Tractable Control for Autoregressive Language Generatio

n, 2023.


https://arxiv.org/pdf/2304.07438.pdf
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1. HMM with 4096 hidden states and 50k emission tokens
2. Data sampled from GPT2-large (domain-adapted), minimizing KL(p_, o

3. Leverages |atent variable distillation for training at scale [ICLR 23].

(Cluster embeddings of examples to estimate latent Z)

Anji Liu, Honghua Zhang and Guy Van den Broeck. Scaling Up Probabilistic Circuits by Latent Variable Distillation, 2023.


http://starai.cs.ucla.edu/papers/LiuICLR23.pdf

CommonGen: a Challenging Benchmark

Given 3-5 keywords, generate a sentence using all keywords,
in any order and any form of inflections. e.qg.,

Input: snow drive car
Reference 1: A car drives down a snow covered road.

Reference 2: Two cars drove through the snow.

Constraintain CNF: (w, V... Vw, JA ... AW ,V..Vw

1,d1) m,dm)

Each clause represents the inflections for one keyword.



Computing p(a | x, .. .)

For constraint a in CNF:

W, V..oVw JA AW V... Vw )

e.g., a=("swims" V "like swimming") A ("lake" V "pool")

Efficient algorithm:
For m clauses and sequence length n, time-complexity for HMM generation is O(2mn)

Trick: dynamic programming with clever preprocessing and local belief updates

Honghua Zhang, Meihua Dang, Nanyun Peng and Guy Van den Broeck. Tractable Control for Autoregressive Language Generation, 2023.


https://arxiv.org/pdf/2304.07438.pdf

Lexical Constraint a: sentence contains keyword “winter”

GelaTo

Overview Constraine-.d Generation: Pr(x,, | | @, x;., = "the weather is")
X intractable \k efficient
v
Pre-trained Tractable
Language Model Probabilistic Model
L Pryp (i 1 x1.) X1 | Propyla| Xp, xy.,)
cold 0.05 cold 0.50
warm 0.10 warm 0.01

Honghua Zhang, Meihua Dang, Nanyun Peng and Guy Van den Broeck. Tractable Control for Autoregressive Language Generation, 2023.


https://arxiv.org/pdf/2304.07438.pdf

Lexical Constraint a: sentence contains keyword “winter”

GelaTo

Overview Constraine-.d Generation: Pr(x,, | | @, x;., = "the weather is")
X intractable \k efficient
v
Pre-trained Tractable
Language Model Probabilistic Model
Xr+1 Pry (X1 1% X1 | Proppfer| Xy, %1.0)
cold 0.05 cold 0.50
warm 0.10 warm 0.01
X1 Py | s Xy
cold 0.025
warm 0.001

Honghua Zhang, Meihua Dang, Nanyun Peng and Guy Van den Broeck. Tractable Control for Autoregressive Language Generation, 2023.


https://arxiv.org/pdf/2304.07438.pdf

Step 2: Control p,, via pj,,,

Unsupervised

Language model is not

fine-tuned/prompted to satisfy constraints

By Bayes rule:
PopXit1 | X1 @) Pepl@ | X1:041) - PoptXey1 | x1.,)

Assume phmm(a |—x1;[+1) ~ pgpt(a I'xlIH-l)’ we
generate from:

P(X,+1 |xl:19 (1) X p/zmm(a |X1:I+1) ’ pg/)l(XH-l |xl:1)

Mathiod Generation Quality Constraint Satisfaction
ROUGE-L BLEU-4 CIDEr SPICE Coverage Success Rate
Unsupervised dev test  dev  test dev test dev test dev test dev test
InsNet (Lu et al., 2022a) - - 18.7 - - - - - 100.0 - 100.0 -
NeuroLogic (Lu et al., 2021) - 41.9 - 24.7 - 14.4 - 275 - 96.7 - -
A*esque (Lu et al., 2022b) - 44.3 - 28.6 - 15.6 - 29.6 - 97.1 - -
NADO (Meng et al., 2022) - - 26.2 - - - - - 96.1 - - -
GeLaTo 4.6 441 1299 294 | 160 158 | 31.3 31.0 | 100.0 100.0 | 100.0 100.0

Honghua Zhang, Meihua Dang, Nanyun Peng and Guy Van den Broeck. Tractable Control for Autoregressive Language Generation, 2023.


https://arxiv.org/pdf/2304.07438.pdf

Step 2: Control p,, via pj,,,

Supervised

Language model is fine-tuned to perform
constrained generation (e.g. seg2seq)

Empirically pppm(@ ] X1:111) R Pgp(@ ] X1.441)
does not hold well enough;

we View Pppy (X1 | X1 @) @nd Py, (X4 | Xy,) @s
classifiers trained for the same task with different

biases; thus we generate from their weighted
geometric mean:

= 5 / x 1—w
p()‘l+l |X1:l’ (Z) & p/mmz(XH—l |“\lil’ a)“ .l)&’l)l()l’*'l |x15/) '

Method Generation Quality Constraint Satisfaction
ROUGE-L BLEU-4 CIDEr SPICE Coverage Success Rate
Supervised dev test  dev  test dev test dev test dev test dev test
NeuroLogic (Lu et al., 2021) - 42.8 - 26.7 - 14.7 - 30.5 - 91.1 - 93.91
A*esque (Lu et al., 2022b) - 43.6 - 28.2 - 152 - 30.8 - 97.8 - 97.97
NADO (Meng et al., 2022) 444t - | 308 - 1617 - | 32.0f 2 97.1 = 88.81 :
GeLaTo 46.0 456 | 341 329 | 167 168 | 31.3 319 | 100.0 100.0 | 100.0 100.0

Honghua Zhang, Meihua Dang, Nanyun Peng and Guy Van den Broeck. Tractable Control for Autoregressive Language Generation, 2023.


https://arxiv.org/pdf/2304.07438.pdf

Advantages of GelaTo:

1. Constraint a is guaranteed to be satisfied:

for any next-token x_, , that would make a unsatisfiable, p(x, | x, .., ) = 0.

2. Training p, _ does not depend on q,

which is only imposed at inference (generation) time.

3. Can impose additional tractable constraints:
o keywords follow a particular order

o keywords appear at a particular position
o keywords must not appear

Conclusion: you can control an intractable generative model
using a tractable probabilistic circuit.
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Neurosymbolic learning of transformers

Given:

1. constraint a (a list of 403 toxic words not to say)
2. training data D

Learn: a transformer Pr(.) that

1. satisfies the constrainta:  Pr(a)?
2. maximizes the likelihood:  Pr(D)t

Kareem Ahmed, Kai-Wei Chang and Guy Van den Broeck. A Pseudo-Semantic Loss for Deep Generative Models with Logical Constraints, In Advances in Neural Information Processing Systems 36 (NeurlPS), 2023.
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Neurosymbolic learning of transformer

Given:

1. constraint a (a list of 403 toxic words not to say)
2. training data D

Learn: a transformer Pr(.) that

1. satisfies the constrainta:  Pr(a)?
2. maximizes the likelihood:  Pr(D)t

Pr(a) is computationally hard, even when a is trivial:
What is prob. that LLM ends the sentence with “UCLA”?

Kareem Ahmed, Kai-Wei Chang and Guy Van den Broeck. A Pseudo-Semantic Loss for Deep Generative Models with Logical Constraints, In Advances in Neural Information Processing Systems 36 (NeurlPS), 2023.


http://starai.cs.ucla.edu/papers/AhmedNeurIPS23.pdf

Autoregressive distributions are hard...

Pr(a) is computationally hard, even when a is trivial:
What is prob. that LLM ends the sentence with “AAAI”?

Why did it work before?

We were using a separate tractable proxy model...

Now we need to train the actual intractable transformer...

Kareem Ahmed, Kai-Wei Chang and Guy Van den Broeck. A Pseudo-Semantic Loss for Deep Generative Models with Logical Constraints, In Advances in Neural Information Processing Systems 36 (NeurlPS), 2023.


http://starai.cs.ucla.edu/papers/AhmedNeurIPS23.pdf

Basic Idea: P(y|$)

Use how likely a constraint is to be n

satisfied around a model sample (x)

as a proxy for how likely it is to be

satisfied under the entire distribution.

Average over many such samples. _l Y
'm(a) |

Kareem Ahmed, Kai-Wei Chang and Guy Van den Broeck. A Pseudo-Semantic Loss for Deep Generative Models with Logical Constraints, In Advances in Neural Information Processing Systems 36 (NeurlPS), 2023.


http://starai.cs.ucla.edu/papers/AhmedNeurIPS23.pdf

Formally, minimize the pseudo-semantic loss

L?L_eudo = lOg E’QNP Z Hp(yz | @—z)

yFai=1

Kareem Ahmed, Kai-Wei Chang and Guy Van den Broeck. A Pseudo-Semantic Loss for Deep Generative Models with Logical Constraints, In Advances in Neural Information Processing Systems 36 (NeurlPS), 2023.


http://starai.cs.ucla.edu/papers/AhmedNeurIPS23.pdf

Formally, minimize the pseudo-semantic loss

‘Cﬁl_eudo — log E'QNP Z Hp(yz | g—z)

X ykEai=l
Basic ldea:
Pick a location to build the plylz) ﬂ

approximation around

J

'm(a) |




Formally, minimize the pseudo-semantic loss

‘Cﬁl_eudo — lOg E’QNP Z Hp(yz | g—z)

X yFai=l

Basic Idea:

- p(y|z)
Extract a local tractable probabilistic A
model around the point

(independent in each dimension)




Formally, minimize the pseudo-semantic loss

‘Cﬁl_eudo — log E'QNP Z Hp(yz | g—z)
X  yEai=1

Basic Idea: ’//

o p(y|z)
Compute Pr(a) locally and maximize it A

'm(a) |



Formally, minimize the pseudo-semantic loss

L?L_eudo — lOg E’QNP Z Hp(yz | g—z)

X yFai=l

p(ylz)
How good is this approximation? |
o Local:
~30 bits entropy vs ~80 for GPT-2.

« Fidelity:
4 bits KL-divergence from GPT-2. l

m(a) |



How to compute pseudo-semantic loss?

pe ~ abc

Kareem Ahmed, Kai-Wei Chang and Guy Van den Broeck. A Pseudo-Semantic Loss for Deep Generative Models with Logical Constraints, In Advances in Neural Information Processing Systems 36 (NeurlPS), 2023.
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How to compute pseudo-semantic loss?

pe ~ abc

N abc a@c abc
abc abc abc

Kareem Ahmed, Kai-Wei Chang and Guy Van den Broeck. A Pseudo-Semantic Loss for Deep Generative Models with Logical Constraints, In Advances in Neural Information Processing Systems 36 (NeurlPS), 2023.
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How to compute pseudo-semantic loss?

pg ~ abc
{ abc abc abc

abc abc abe
_, [ plabc) =013 p(abc) =0.13  p(abe) = 0.13
p(abc) = 0.15 p(abc) =0.21 p(abc) = 0.16

(
IR { pga|bc) = 0.46 p(blac) = 0.38 p(clab) =

p(blac
p(albc) = 0.54 p(blac) = 0.62 p(cladb) =

Kareem Ahmed, Kai-Wei Chang and Guy Van den Broeck. A Pseudo-Semantic Loss for Deep Generative Models with Logical Constraints, In Advances in Neural Information Processing Systems 36 (NeurlPS), 2023.
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How to compute pseudo-semantic loss?

pe ~ abc

abc an abc
abc abc abc

c) =0.13 p(abc) =0.13
c) =0.21 p(abc) =0.16
c) =0.38 p(clab) =
c) =0.62 p(clab) =

IR p(abc) =0.13 p
p(abc) =0.15 p(a

(
p(albc) = 0.46  p(bla
%{mwmzom p(bla

046 0.54 0

Kareem Ahmed, Kai-Wei Chang and Guy Van den Broeck. A Pseudo-Semantic Loss for Deep Generative Models with Logical Constraints, In Advances in Neural Information Processing Systems 36 (NeurlPS), 2023.
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Table 1: Our experimental results on Sudoku.  Table 2: Our experimental results on Warcraft.

Test accuracy % Exact  Consistent Test accuracy % Exact  Consistent
ConvNet 16.80 16.80 ResNet-18 55.00  56.90
ConvNet + SL 2210 22010 ResNet-18 + SL 59.40 61.20
RNN 22.40  22.40 CNN-LSTM 62.00  76.60

RNN + PSEUDOSL  28.20 28.20 CNN-LSTM + PSEUDOSL  66.00 79.00

Kareem Ahmed, Kai-Wei Chang and Guy Van den Broeck. A Pseudo-Semantic Loss for Deep Generative Models with Logical Constraints, In Advances in Neural Information Processing Systems 36 (NeurlPS), 2023.


http://starai.cs.ucla.edu/papers/AhmedNeurIPS23.pdf

Detoxify LLMs by disallowing bad words

Constraint a is a list of 403 toxic words not to say
Evaluation is a toxicity classifier

Exp. Max. Toxicity (/) Toxicity Prob. (])
Models Full Toxic Nontoxic | Full Toxic Nontoxic FEE (D)

GPT-2 | 0.44 0.62 0.39 | 34.11% 67.27% 24.85% | 25.85

Domain- SGEAT [42] 0.32 0.46 0.28 14.05% 35.72% 7.99% 28.72
Adaptive PseudoSL (ours) | 0.29 0.38 0.27 9.80% 20.07% 6.93% 28.14
Word GPT-2 0.40 0.55 0.36 27.92%  57.86% 19.56% 22.24
Banning SGEAT [42] 0.30 0.41 0.27 10.73% 27.05% 6.17% 24.91
PseudoSL (ours) | 0.29 0.37 0.27 9.20% 18.71% 6.55% 24.19

Kareem Ahmed, Kai-Wei Chang and Guy Van den Broeck. A Pseudo-Semantic Loss for Deep Generative Models with Logical Constraints, In Advances in Neural Information Processing Systems 36 (NeurlPS), 2023.
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Thanks

This was the work of many wonderful
students/postdocs/collaborators!

Honghua Kareem Meihua
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