
1 COMMUNICATIONS OF THE ACM | NOVEMBER 2020 | VOL. 63 | NO. 11

ranked leak roots and reports them
together to the user for leak diagno-
sis. With BLeak, the authors were
able to precisely and quickly identify
important leaks in widely used Web
applications including Airbnb and
Firefox debugger.

These results are both impressive
and aspiring, particularly in the con-
text of at least 20 years of memory
leak research. Prior work uncovers a
range of low-level “symptoms” that
characterize leaks for a variety of
applications. These symptoms are
defined at the level of object read
and write and often far away from
actual causes of leaks. When new ap-
plications emerge, these old symp-
toms no longer correlate with leaks.
BLeak takes a step further by explor-
ing semantics-aware diagnosis and
demonstrates that simple semantic
information provided by developers
(for example, round trips) can enable
heap tracking that is orders of mag-
nitude more precise than semantics-
agnostic symptoms used by conven-
tional approaches.

Looking forward, semantics-
aware bug diagnosis and optimiza-
tion is an exciting research direction,
especially given that modern appli-
cations and workloads are becoming
increasingly complex and diverse. Se-
mantics-agnostic approaches would
be either unscalable to large code
bases/heaps or unable to adapt to the
high diversity in modern workloads.
Future work, potentially inspired by
the observation made in this paper,
will determine how program seman-
tics can be employed to optimize ap-
plications in different domains.	

Harry Xu is an associate professor in the computer
science department at the University of California Los
Angeles, CA, USA.

Copyright held by author.

WEB APPLICATIONS ARE at least as likely
to leak memory as regular applica-
tions. Web leaks can significantly in-
crease a browser’s memory footprint,
reducing application responsiveness
and even crashing browser tabs. Such
leaks exist everywhere, on websites
that people use on a daily basis—
Google Maps, Firefox, Google Ana-
lytics, or Airbnb, just to name a few.
They are notoriously difficult to di-
agnose: developers see the growth of
memory usage, but where exactly are
the statements that cause the growth?

Despite a rich literature of leak
detection for regular (Java, C++, Py-
thon, and so on) applications, prior
techniques do not work well for Web
applications where leaks exhibit
very different characteristics. For ex-
ample, the developer may forget to
remove certain event listeners and
hence these listener objects are still
reachable in the heap. While they are
no longer used by the application,
they still respond to events (for ex-
ample, when the user uses the mouse
on the editor), keeping their states
“fresh.” As a result, existing tech-
niques that identify suspicious ob-
jects based on their staleness (that is,
time since their last access)—which
have worked effectively on a wide
range of traditional applications—
would miss these leaks in Web appli-
cations entirely.

A key research question here is:
What is the right leak oracle that can
precisely capture the behavior of
leaks in Web applications? In other
words, what kinds of objects should
be considered suspicious? Once this
question is answered, developing a dy-
namic analysis that finds such objects
would be just a step away.

The following paper provides a sim-
ple and yet unexpected answer to this
question: What distinguishes leaking
objects from normally behaved ob-
jects is whether their behavior obeys
certain high-level semantic rules

as opposed to low-level semantics-
agnostic access patterns. One clear
semantic rule in Web applications is
that if a user navigates to a Web page
and later returns to the original page,
the application’s memory consump-
tion should remain (approximately)
the same. In other words, the mem-
ory consumption for such navigation
“round trips” can be used as a leak
oracle—if the application consumes
significantly more memory when
coming back to the original page, the
application has a high chance of leak-
ing memory.

Based on this observation, the au-
thors created BLeak, a Web debugger
that can help developers quickly find
causes of leaks. BLeak uses a user-
defined script to drive an application
into a loop of navigation round trips.
Next, it identifies heap paths that are
growing each round trip by differ-
encing heap snapshots. BLeak ranks
these paths to find “leak roots,” cap-
tures call stacks associated with top-

With BLeak,
the authors
were able
to precisely and
quickly identify
important leaks
in widely used
Web applications
including
Airbnb and
Firefox debugger.

Technical Perspective
BLeak: Semantics-Aware
Leak Detection in the Web
By Harry Xu

To view the accompanying paper,
visit doi.acm.org/10.1145/3422598 rh

research highlights

DOI:10.1145/3422590

http://doi.acm.org/10.1145/3422598
http://dx.doi.org/10.1145/3422590

