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Abstract
Remote memory techniques for datacenter applications have
recently gained a great deal of popularity. Existing remote
memory techniques focus on the efficiency of a single ap-
plication setting only. However, when multiple applications
co-run on a remote-memory system, significant interference
could occur, resulting in unexpected slowdowns even if the
same amounts of physical resources are granted to each ap-
plication. This slowdown stems from massive sharing in ap-
plications’ swap data paths. Canvas is a redesigned swap
system that fully isolates swap paths for remote-memory ap-
plications. Canvas allows each application to possess its ded-
icated swap partition, swap cache, prefetcher, and RDMA
bandwidth. Swap isolation lays a foundation for adaptive
optimization techniques based on each application’s own
access patterns and needs. We develop three such tech-
niques: (1) adaptive swap entry allocation, (2) semantics-
aware prefetching, and (3) two-dimensional RDMA schedul-
ing. A thorough evaluation with a set of widely-deployed ap-
plications demonstrates that Canvas minimizes performance
variation and dramatically reduces performance degradation.

1 Introduction
Techniques enabling datacenter applications to use far mem-
ory [36, 39, 8, 62, 73, 91, 104, 90, 19] have gained trac-
tion due to their potential to break servers’ memory capacity
wall, thereby improving performance and resource utiliza-
tion. Existing far-memory techniques can be roughly classi-
fied into two categories: (1) clean-slate techniques [90, 19]
that provide new primitives for developers to manage remote
memory, and (2) swap-based techniques [39, 91, 8, 104, 2]
that piggyback on existing swap mechanisms in the OS ker-
nel. Clean-slate techniques provide greater efficiency by en-
abling user-space far memory accesses, while swap-based
techniques offer transparency, allowing legacy code to run
as is on a far-memory system. This paper focuses on swap
mechanisms as they are more practical and easier to adopt.

A typical swap system in the OS uses a swap partition and
swap cache for applications to swap data between memory
and external storage. The swap partition is a storage-backed
swap space. The swap cache is an intermediate buffer be-
tween the local memory and storage—it caches unmapped
pages that were just swapped in or are about to be swapped
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out. Upon a page fault, the OS looks up the swap cache;
a cache miss would trigger a demand swap and a number
of prefetching swaps. Swaps are served by RDMA and all
fetched pages are initially placed in the swap cache. The de-
mand page is then mapped to a virtual page and moved out
of the swap cache, completing the fault handling process.
Problems. Current swap systems run multiple applications
over shared swap resources (i.e., swap partition, RDMA,
etc.). This design works for disk-based swapping where disk
access is slow—each application can allow only a tiny num-
ber of pages to be swapped to maintain an acceptable over-
head. This assumption, however, no longer holds under far
memory because an application can place more data in far
memory than local memory and yet still be efficient, thanks
to RDMA’s low latency and high bandwidth.

As such, applications have orders-of-magnitude more
swap requests under far memory than disks. Millions of
swap requests from different applications go through the
same shared data path in a short period of time, leading to se-
vere performance interference. Our experiments show that,
with the same amounts of CPU and local-memory resources,
co-running applications leads up to a 6× slowdown, an over-
head unacceptable for any real-world deployment.
State of the Art. Interference is a known problem in data-
center applications and a large body of work exists on iso-
lation of CPU [64, 16, 25], I/O [40, 96], network band-
width [13, 37, 94, 87, 77, 53] and processing [59]. Most
of these techniques build on Linux’s cgroup mechanism,
which focuses on isolation of traditional resources such as
CPU and memory, not swap resources such as remote mem-
ory usage and RDMA. Prior swap optimizations such as In-
finiswap [39] and Fastswap [8] focus on reducing remote ac-
cess latency, overlooking the impact of swap interference in
realistic settings. Justitia [113] isolates RDMA bandwidth
between applications, but does not eliminate other types of
interference such as locking and swap cache usage.
Contribution #1: Interference Study (§3). We conducted
a systematic study with a set of widely-deployed applica-
tions on Linux 5.5, the latest kernel version compatible with
Mellanox’s latest driver (4.9-3.1.5.0) for our InfiniBand card.
Our results reveal three major performance problems:

• Severe lock contention: Since all applications share a
single swap partition, extensive locking is needed for
swap entry allocation (needed by every swap-out), reduc-



ing throughput and precluding full utilization of RDMA’s
bandwidth. Our experience shows that in windows of fre-
quent remote accesses, applications can spend 70% of the
windows’ time on swap entry allocation.

• Uncontrolled use of swap resources (e.g., RDMA): The
use of the shared RDMA bandwidth is often dominated
by the pages fetched for applications with many threads
simultaneously performing frequent remote accesses. For
example, aggressively (pre)fetching pages to fulfill one
application’s needs can disproportionally reduce other ap-
plications’ bandwidth usage. Further, even within one
application, prefetching competes for resources with de-
mand swaps, leading to either prolonged fault handling or
delayed prefetching that fails to bring back pages in time.

• Reduced prefetching effectiveness: Applications use the
same prefetcher, prefetching data based on low-level (se-
quential or strided) access patterns across applications.
However, modern applications exhibit far more diverse ac-
cess patterns, making it hard for prefetching to be effec-
tive across the board. For example, co-running Spark and
native applications reduces Leap [73]’s prefetching contri-
bution by 3.19×.

These results highlight two main problems. First, in-
terference is caused by sharing a combination of swap re-
sources including the swap partition/cache, and RDMA
(bandwidth and SRAM on RNIC). Although recent kernel
versions added support [47] for charging prefetched pages
into cgroup, resolving interference requires a holistic ap-
proach that can isolate all these resources. Furthermore,
interference stems not only from resource racing, but also
from fundamental limitations with the current design of the
swap system. For instance, reducing interference between
prefetching and demand swapping requires understanding
whether a prefetching request can come back in time. If not,
it should be dropped to give resources to demand requests,
which are on the critical path. This, in turn, requires a re-
design of the kernel’s fault handling logic.

Second, cloud applications exhibit highly diverse behav-
iors and resource profiles. For example, applications with a
great number of threads are more sensitive to locking than
single-threaded applications. Furthermore, managed appli-
cations such as Spark often make heavy use of reference-
based data structures while native applications are often
dominated by large arrays. The application-agnostic nature
of the swap system makes it hard for a one-size-fits-all policy
(e.g., a global prefetcher) to work well for diverse applica-
tions. Effective per-application policies dictates (1) holistic
swap isolation and (2) understanding application semantics,
which is currently inaccessible in the kernel.

Contribution #2: Holistic Swap Isolation (§4). To solve
the first problem, we develop Canvas, a fully-isolated swap
system, which enables each application to have its dedicated
swap partition, swap cache, and RDMA usage. In doing so,

Canvas can charge each application’s cgroup for the usage
of all kinds of swap resources, preventing certain applica-
tions from aggressively invading others’ resources.
Contribution #3: Isolation-Enabled Adaptive Optimiza-
tions (§5). To solve the second problem, we develop a
set of adaptive optimizations that can tailor their policies
and strategies to application-specific swap behaviors and re-
source needs. Our adaptive optimizations bring a further
boost on top of the isolation-provided benefits, making co-
running applications even outperform their individual runs.

(1) Adaptive Swap Entry Allocation (§5.1) Separating
swap partitions reduces lock contention at swap entry alloca-
tions to a certain degree, but the contention can still be heavy
for multi-threaded applications. For example, Spark creates
many threads to fully utilize cores and these threads need
synchronizations before obtaining swap entries. The syn-
chronization overhead increases dramatically with the num-
ber of cores (§6.4.1), creating a scalability bottleneck. We
develop an adaptive swap entry allocator that dynamically
balances between the degree of lock contention (i.e., time)
and the amount of swap space needed (i.e., space) based on
each application’s memory behaviors.

(2) Adaptive Two-tier Prefetching (§5.2) Current ker-
nel prefetchers build on low-level access patterns (e.g., se-
quential or strided). Although such patterns are useful for
applications with large array usages, many cloud applica-
tions are written in high-level, managed languages such as
Java or Python; their accesses come from multiple threads
or exhibit pointer-chasing behavior as opposed to sequential
or strided patterns. As effective prefetching is paramount
to remote-memory performance, Canvas employs a two-tier
prefetching design. Our kernel-tier prefetcher prefetches
data for each application into its private swap cache based
on low-level patterns. Once this prefetcher cannot effectively
prefetch data, Canvas adaptively forwards the faulty address
up to the application tier via a modified userfaultfd in-
terface, enabling customized prefetching logic at the level of
reference-based or thread-based access patterns.

(3) Adaptive RDMA Scheduling (§5.3) Isolating RDMA
bandwidth alone for each application is insufficient. As there
could be many more prefetching requests than demand swap
requests, naı̈vely sending all to RDMA delays demand re-
quests, increasing fault-handling latency. On the other hand,
naı̈vely delaying prefetching requests (as in FastSwap [8])
reduces their timeliness, making prefetched pages useless.
We built a two-dimensional RDMA scheduler, which sched-
ules packets not only between applications but also between
prefetching and demand requests for each application.
Results. Our evaluation (§6) with a set of 14 widely-
deployed applications (including Spark [109], Cassan-
dra [10], Neo4j [79], Memcached [4], XGBoost [23, 22],
Snappy [38], etc.) demonstrates that Canvas improves the
overall application performance by up to 6.2× (average
3.5×) and reduces applications’ performance variation (i.e.,
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Figure 1: The kernel’s remote-access data path.

standard deviation) by 7×, from an overall of 1.72 to 0.23.
Canvas improves the overall RDMA bandwidth utilization
by 2.8× for co-run applications. Canvas is available at
https://github.com/uclasystem/canvas.

2 Background
This section presents the necessary background in Linux
5.5, which is the latest kernel version compatible with Mel-
lanox’s latest driver for our InfiniBand adapter.

Figure 1 illustrates the kernel’s remote access data path
where remote memory is mapped into the host server as a
swap partition where applications access remote memory via
page faults. The swap partition is split into a set of 4KB swap
entries, each mapping to an actual remote memory cell and
has a unique entry ID. Upon a page fault, the kernel uses
the swap entry ID contained in the corresponding page table
entry (PTE) to locate the swap entry that stores the page.

The first step in handling the fault is to look up the swap
cache, which is a set of radix trees, each containing a number
of cached and unmapped pages for a block (e.g., 64MB) of
swap entries. These pages were either just swapped in due to
demand swapping or prefetching, or are about to be swapped
out. If a page can be found there, it gets mapped to a vir-
tual page and removed from the swap cache. Otherwise, the
kernel needs to perform a demand swap-in.

Before issuing the request, the kernel first does cgroup

accounting to understand if there is enough physical memory
to swap in the page. If there is, the kernel issues an RDMA
read request, which is then pushed into RDMA’s dispatch
queue. As the demand swap occurs, the kernel prefetches
a number of pages that will likely be needed in the future.
This number depends on the swap history at the past few
page faults. For example, if the pages fetched follow a se-
quential or strided pattern, the kernel will use this pattern to
fetch a few more pages. If no pattern is found, the kernel re-
duces the number of prefetched pages until it stops prefetch-
ing completely. Once these demand and prefetched pages
arrive, they are placed into the swap cache. Their swap en-
tries in remote memory are then freed.

If cgroup accounting deems that local memory is insuf-
ficient for the new page, the kernel uses an LRU algorithm
to evict pages. Evicting a page unmaps it and pushes it into
the swap cache. When memory runs low, the kernel releases
existing pages from the swap cache to make room for newly

fetched pages. Clean pages can be removed right away and
dirty pages must be written back. To write back a page, the
swap system must first allocate a swap entry using a free-list-
based allocation algorithm. Finally, an RDMA write request
is generated and the page is written into the entry via RDMA.

In each remote access, extensive locking is needed for
swap entry allocation—shared allocation metadata (e.g., free
list) must be protected when multiple applications/threads
request swap entries simultaneously. Although there are ac-
tive efforts [48, 46] in the Linux community to optimize
swap entry allocation, their performance and scalability is
unsatisfactory for cloud workloads (see Appendix B).

3 Motivating Performance Study
To understand the impact of interference, we conducted a
study with a set of widely-deployed applications including
Apache Spark [109], Neo4j [79], XGBoost [23] (i.e., a pop-
ular ML library), Snappy [38] (i.e., Google’s fast compres-
sor/decompressor), as well as Memcached [4]. Spark and
Neo4j are managed applications running on the JVM, while
the other three are native applications. They cover a spec-
trum of cloud workloads from data storage through analyt-
ics to ML. In addition, they include both batch jobs (such
as Spark) and latency-sensitive jobs (such as Memcached).
Co-running them represents a typical scenario in a mod-
ern datacenter where operators fill left-over cores unused by
latency-sensitive tasks with batch-processing applications to
improve CPU utilization [15]. For example, in a Microsoft
Bing cluster, batch jobs are colocated with latency-sensitive
services on over 90,000 servers [49]. Google also reported
that 60% of machines in their compute cluster co-run at least
five jobs [112].

We ran these programs, individually vs. together, on a
machine with two Xeon(R) Gold 6252 processors, running
Linux 5.5. Another machine with two Xeon(R) CPU E5-
2640 v3 processors and 128GB memory was used for re-
mote memory. Each machine was equipped with a 40
Gbps Mellanox ConnectX-3 InfiniBand adapter and inter-
connected by one Mellanox 100 Gbps InfiniBand switch.
Using cgroup, the same amounts of CPU and local mem-
ory resources were given to each application throughout the
experiments. RDMA bandwidth was not saturated for both
application individual runs and co-runs. The amount of lo-
cal memory configured for each application was 25% of its
working set.

Snappy (S)
Memcached (M)

XGBoost (X) Spark Neo4j
0.0

2.5

5.0

N
or

m
al

iz
ed

Sl
ow

do
w

n S+M+X+Spark
S+M+X+Neo4j

Figure 2: Slowdowns of co-running applications compared
to running each individually.

https://github.com/uclasystem/canvas


Performance Interference and Degradation. To understand
the overall performance degradation and how it changes with
different applications, we used two managed applications:
Spark and Neo4j. Figure 2 reports each application’s perfor-
mance degradation when co-running with other applications
compared to running alone. The blue/orange bars show the
slowdowns when the three native applications co-run with
Spark/Neo4j. Clearly, co-running applications significantly
reduces each application’s performance. We observed an
overall 3.9/2.2× slowdown when native applications co-run
with Spark/Neo4j. Spark persists a large RDD in memory
and keeps swapping in/out different parts of the RDD, while
Neo4j is a graph database and holds much of its graph data
in local memory and thus does not swap as much as Spark.

Another observation is that the impact of interference dif-
fers significantly for different applications. Applications that
generate high swap throughputs aggressively invade swap
and RDMA resources of other applications. In our experi-
ments, Memcached, XGBoost, and Spark all need frequent
swaps. However, Spark runs many more threads (>90 ap-
plication and runtime threads) than Memcached (4) and XG-
Boost (16), resulting in a much higher swap throughput. As
such, Spark takes disproportionally more resources, leading
to severe degradation for Memcached and XGBoost.
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Figure 3: Prefetching contribution of Leap: the percentage
of page faults served by Leap-prefetched pages (%).

Reduced Prefetching Effectiveness. Sharing the same
prefetching policy reduces the prefetching effectiveness
when multiple applications co-run. Figure 3 reports prefetch-
ing contribution—the percentage of page faults served by
prefetched pages—the higher the better; if a prefetched page
is never used, prefetching it would only incur overhead. We
used Leap [73] as our prefetcher. The left six bars report such
percentages for the applications running individually. When
applications co-run, the rightmost three bars report the aver-
age percentages across applications. As shown, co-running
dramatically reduces the contribution.

Note that Leap [73] uses a majority-vote algorithm to
identify patterns across multiple applications. However,
when applications that exhibit drastically different behaviors
co-run, Leap cannot adapt its prefetching mechanism and
policy to each application. Furthermore, Leap is an aggres-
sive prefetcher—even if Leap does not find any pattern, it
always prefetches a number of contiguous pages. However,
aggressive prefetching for applications such as Spark with

garbage collection (GC) is ineffective—e.g., prefetching for
a GC thread has zero benefit and only incurs overhead. De-
tailed evaluation of prefetching can be found in §6.4.
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Figure 4: Swap entry allocation throughput when applica-
tions run individually (a) and together (b).
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Figure 5: RDMA swap-in bandwidth when applications run
individually (a) and together (b).

Lock Contention. We observed severe lock contention in the
swap system when applications co-run, particularly at swap
entry allocation associated with each swap-out.

We experimented with Spark (Logistic Regression), XG-
Boost, and Snappy. Our results show that in windows of
frequent remote accesses, co-running applications can spend
up to 70% of the window time on obtaining swap entries.
Lock contention leads to significantly reduced swap-entry al-
location throughput, reported in Figure 4. The total lines in
Figure 4(a) and (b) show the total throughput (i.e., the sum
of each application’s allocation throughput). The co-running
throughput (b) is drastically reduced compared to the indi-
vidual run’s throughput (a) (i.e., ∼450Kps to ∼200Kps).
Reduced RDMA Utilization. Figure 5 compares the RDMA
read bandwidth (for swap-ins) when applications run indi-
vidually and together. Similarly, the total line represents
the sum of each application’s RDMA bandwidth. The total
RDMA utilization is constantly below ∼1000MBps in Fig-
ure 5(b), which is 3.28× lower than that in Figure 5(a) due to
various issues (e.g., locking, reduced prefetching, etc.). The
RDMA write bandwidth degrades by an overall of 2.80×.
Demand v.s. Prefetching Interference. Optimizations such
as Fastswap [8] improve swap performance by dividing the
RDMA queue pairs (QP) into sync and async. The high-
priority synchronous QP is used for demand swaps, while
the low priority async QP is used for prefetching requests.
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Figure 6: Latency of prefetching and on-demand swapping.

This separation reduces head-of-line blocking incurred by
prefetching. However, when applications co-run, this design
adds a delay for prefetching. Figure 6 depicts the CDF of
the latency of RDMA packets from demand and prefetch-
ing requests, when the four applications co-run on Leap. As
shown, 99% of the on-demand requests are served within
40µs. However, the latency of 36.9% of prefetching requests
is longer than 512µs and it can reach up to 52ms! Long la-
tency renders prefetched pages useless because prefetching
is meant to load pages to be used soon. Our profiling shows
that among the prefetched pages that are actually accessed
by the application, 90% are accessed within 70µs, indicat-
ing that ∼70% of the pages prefetched return too late. A late
prefetch of a page would subsequently block a demand re-
quest of the page when it is accessed by the application. This
problem motivates our two-dimensional RDMA scheduling
(§5.3).
Takeaway. The root cause of performance degradation is
that multiple applications, whose resource needs and swap
behaviors are widely apart, all run on a global swap system
with the same allocator and prefetcher. Table 1 summarizes
these problems, their performance impact, and our solutions.

4 Swap System Isolation
Canvas extends cgroup for users to specify size constraints
for swap partition, swap cache, and RDMA bandwidth. We
discuss the kernel support to enforce these new constraints,
laying a foundation for adaptive optimizations in §5.
Swap Partition Isolation. In Linux, remote memory is man-
aged via a swap partition interface, shared by all applica-
tions. If there are multiple available swap partitions, they are
used in a sequential manner according to their priorities. As
a result, data of different applications are mixed and stored
in arbitrary locations.

Canvas separates remote memory of each cgroup to iso-
late capacity and performance. The user creates a cgroup to
set a size limit of remote memory for an application. Canvas
allocates remote memory in a demand-driven manner—upon
a pressure in local memory, Canvas allocates remote mem-
ory and registers it as a RDMA buffer. Canvas enables per-
cgroup swap partitions by creating a swap partition inter-
face and attaching it to each cgroup. For each cgroup, a

separate swap-entry manager is used for allocating and free-
ing swap entries. Swap entry allocation can now be charged
to the cgroup, which controls how much remote memory
each application can use. Our adaptive swap entry allocation
algorithm is discussed in §5.1.

Canvas explicitly enables a private swap cache for each
cgroup (a default value of 32MB), whose size is charged to
the memory budget specified in the cgroup. As a result, the
size of an application’s swap cache changes in response to
its own memory usage, without affecting other applications.

For each demand swap-in, Canvas first checks the
mapcount of the page, which indicates how many processes
this page has been mapped to before. If the page belongs
only to one process, it is placed in its private swap cache.
Otherwise, it has to be placed in a global swap cache (dis-
cussed shortly). To release pages (e.g., when the applica-
tion’s working set increases, pushing the boundary of the
swap cache), Canvas scans the swap cache’s page list, re-
leasing a batch of pages to shrink the cache.
RDMA Bandwidth Isolation. For each cgroup, Canvas iso-
lates RDMA bandwidth with a set of virtual RDMA queue
pairs (VQPs) and a centralized packet scheduler. Users can
set the swap-in/swap-out RDMA bandwidth of a cgroup

with our extended interface. Our RDMA scheduler works
in two dimensions. The first dimension schedules pack-
ets across applications, while the second dimension sched-
ules on a per-application basis—each cgroup has its sub-
scheduler that schedules packets that belong to the cgroup

between demand swapping and prefetching.
VQPs are high-level interfaces, implemented with lock-

free linked lists. Each cgroup pushes its requests to the
head of its VQP, while the scheduler pops requests from
their tails. At the low level, our scheduler maintains three
physical queue pairs (PQP) per core, for demand swap-in,
prefetching, and swap-out, respectively. The scheduler polls
all VQPs and forwards packets to the corresponding PQPs,
using a two-dimensional scheduling algorithm (see §5.3).
Handling of Shared Pages. Processes can share pages due to
shared libraries or memory regions. These pages cannot go
to any private swap cache. Canvas maintains a global swap
partition and cache for shared pages. When a page is evicted
and ummapped, Canvas checks its mapcount and adds it to
the global swap cache if the page is shared between different
processes. All pages in the global swap cache will be even-
tually swapped out to the global partition using the original
lock-based allocation algorithm. Conversely, pages swapped
in (and prefetched) from the global swap partition are all
placed into the global swap cache. For typical cloud ap-
plications such as Spark, Cassandra and Neo4j, the number
of shared pages is much smaller than process-private pages,
using locks in a normal way would not incur a large over-
head. We cannot charge applications’ cgroups for pages
in the global swap cache, because which process(es) share
these pages is unknown before they get mapped into pro-



Problem Description Performance Impact Canvas’s Solution

Unlimited use of swap Apps generating higher swap thruput Holistic isolation of swap system
and RDMA resources use disproportionately more resources RDMA isolation and scheduling (§4, §5.3)

Lock conten. at swap entry alloc. Reduced swap-out thruput (1) Swap parti. isolation (§4); (2) adaptive entry alloc. (§5.1)

Single low-level prefetcher Increased fault-handling latency Two-tier adaptive prefetching (§5.2)

prefetching v.s. demand interfere Increased fault-handling latency Two-dimensional RDMA scheduling (§5.3)

Table 1: Summary of major issues and Canvas’s solution.

cesses’ address spaces. Canvas allows users to create a spe-
cial cgroup, named cgroup-shared, to limit the size of
the global swap cache/partition.

One limitation of our cgroup-based approach is that
cgroup can only partition resources statically while appli-
cations’ resource usage may change from time to time and
static partitioning could lead to resource underutilization.
However, the focus of this paper is to ensure isolation and
future work could incorporate max-min fair allocation to im-
prove resource utilization.

5 Isolation-Enabled Swap Optimizations
On top of the isolated swap system, we develop three opti-
mizations, which dynamically adapt their strategies to each
application’s resource patterns and semantics.

5.1 Adaptive Swap Entry Allocation

As discussed in §3, swap entry allocation suffers from severe
lock contention under frequent remote accesses—allocation
is needed at every swap-out. To further motivate, we use
a simple experiment by running Memcached alone on re-
mote memory with different core numbers. As the number
of cores increases, the average entry allocation time grows
super-linearly—it grows from 10µs under 16 cores quickly
to 130µs under 48 cores due to increased lock contention
(see Figure 16). Creating a per-application swap partition
mitigates the problem to a certain degree. However, applica-
tions like Spark run more than 90 threads; frequent swaps in
these threads can still incur significant locking overhead.

To further reduce contention, we develop a novel swap en-
try allocator that adapts allocation strategies in response to
each application’s own memory access/usage. Our first idea
is to enable a one-to-one mapping between pages and swap
entries. At the first time a page is swapped out, we allocate
a new swap entry using the original (lock-protected) algo-
rithm. Once the entry is allocated, Canvas writes the entry
ID into the page metadata (i.e., struct page). This ID re-
mains on the page throughout its life span. As a result, sub-
sequent swap-outs of the page can write data directly into the
entry corresponding to this ID. We pay the locking overhead
only once for each page at its first swap-out.

This approach requires a swap entry to be reserved for
each page. For example, if the local memory size is S and
the remote memory allocation is 3S, with one-to-one map-
ping the remote memory allocation would be 4S (i.e., each

page residing in local memory also has a remote page, result-
ing in a 33% overhead). However, this overhead may not be
necessary. For example, modern applications exhibit strong
epochal behaviors. Under the original allocator, swap entries
for pages accessed in one epoch can be reused for those in
another epoch. Under this approach, however, all pages in
all epochs must have their dedicated swap entries through-
out the execution, which can lead to an order-of-magnitude
increase in remote memory usage.

Our key insight is: we should trade off space for time if
an application has much available swap space, but time for
space when its space limit is about to be reached. As such,
when the remote memory usage is about to reach the limit
specified in cgroup (i.e., 75% in our experiments), Canvas
starts removing reservations to save space. The next ques-
tion is which pages we should consider first as our candi-
dates for reservation removal. Our idea is that we should first
consider “hot pages” that always stay in local memory and
are rarely swapped. This is because hot pages (i.e., data on
such pages are frequently accessed) are likely to stay in local
memory for a long time; hence, locking overhead is less rele-
vant for them. On the contrary, “cold” pages whose accesses
are spotty are more likely to be swapped in/out and hence
swap efficiency is critical. Here “hot” and “cold” pages are
relatively defined as they are specific to execution stages—a
cold page swapped out in a previous stage can be swapped
in and become hot in a new stage.

To this end, we develop an adaptive allocator. Canvas
starts an execution by reserving swap entries for all pages to
minimize lock contention. Reservation removal begins when
remote-memory pressure is detected. Canvas adaptively re-
moves reservations for hot pages. We detect hot pages for
each application by periodically scanning the application’s
LRU active list—pages recently accessed are close to the
head of the active list. Each scan identifies a set of pages
from the head of the list; a page is considered “hot” if it ap-
pears in a consecutive number of sets recently identified.

Removing the reservation for a hot page can be done by
(1) removing the entry ID from the page metadata and (2)
freeing its reserved swap entry in remote memory, adding
the entry back to the free list. Once a hot page becomes cold
and gets evicted, it does not have a reservation any more,
and hence, it goes through the original (lock-protected) al-
location algorithm to obtain an entry. In this case, the page



receives a new swap entry and remembers this new ID in its
metadata.
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Figure 7: FSM describing our page management when
remote-memory pressure is detected.

Figure 7 shows the page state machine, which describes
the page handling logic. A cold page (to be evicted) can be
in one of the two states: state 2 and state 5. A page comes
to state 2 if it is (1) a brand new page that has never been
swapped out or (2) previously a hot page but has not been
accessed for long. Once it reaches state 2, the page does not
have a reserved swap entry ID and hence, swapping out this
page goes through the normal allocation path. In the case of
swap-in (state 5), the swap entry ID is already remembered
on the page. The next swap-out will directly use this entry
and be lock-free. If the page becomes hot (from state 5 to 3),
Canvas removes the entry ID and releases the entry reserva-
tion. The entry is then added back to the free list.
Performance Analysis. To understand the performance of
the adaptive entry allocation algorithm, let us consider the
following two scenarios. In the first scenario, the application
performs uniformly random accesses. As a result, Canvas
cannot clearly distinguish hot/cold pages, and thus randomly
cancels their reservations. However, due to the random pro-
cess, when a page is swapped out, it has a certain probability
of still possessing a reserved swap entry (depending on the
ratio of remaining reservations) and hence Canvas can still
improve the allocation performance.

In the second scenario, the application follows a repetitive
pattern of accessing a page a few times (making it hot) and
then moving on to accessing another page; it will not come
back to the page in a long while. Under our allocation algo-
rithm, every page will be identified as a hot page, leading to
the cancellation of its reservation. However, each page will
be swapped out when it is cold enough; at each swap-out,
the page has to go through the original allocation algorithm.
This is the worst-case scenario, and even in this case, Canvas
has the same (worst-case) performance as the original Linux
allocator, which allocates an entry at each swap-out.

Some of the recent patches submitted to the Linux com-
munity also attempt to reduce lock contention for swap entry
allocation. A detailed description of how Canvas differs from
these patches can be found in Appendix B.

5.2 Two-tier Adaptive Prefetching
Problems with Current Prefetchers. Current prefetchers
all focus on low-level (streaming or strided) access pat-

terns. While such patterns exist widely in native array-
based programs, applications written in high-level languages
such as Python and Java are dominated by reference-based
data structures—operations over such data structures involve
large amounts of pointer chasing, making it hard for current
prefetchers to identify clear patterns.

Furthermore, cloud applications such as Spark are heav-
ily multi-threaded. Modern language runtimes, such as the
JVM, run an additional set of auxiliary threads, e.g., for GC
or JIT compilation. How these user-level threads map to ker-
nel threads is often implemented differently in different run-
times. Consequently, kernel prefetchers such as Leap [73]
cannot distinguish patterns from different threads.

To develop an adaptive prefetcher, Canvas employs a two-
tier design, illustrated in Figure 8. At the low (kernel) tier,
Canvas uses an existing kernel prefetcher that prefetches data
for each application into its own private swap cache (un-
less data comes from the global swap partition). A ker-
nel prefetcher is extremely efficient and can already cover a
range of (array-based) applications. For applications whose
accesses are too complex for the kernel prefetcher to handle,
we forward the addresses up to the application level, letting
the application/runtime analyze semantic access patterns at
the level of threads, references, arrays, etc.
Prefetching Logic. In Canvas, we adopt the sync/async sep-
aration design in Fastswap [8], which prevents head-of-line
blocking. As stated earlier, we use three PQPs per core, one
for swap-out, one for (sync) demand swap-in, and one for
(async) prefetching. Canvas polls for completions of crit-
ical (demand) operations, while configuring interrupt com-
pletions for asynchronous prefetches.

Canvas determines whether to use an application-tier
prefetcher based on how successful kernel-tier prefetching
is. If the number of pages prefetched for an application is
lower than a threshold at the most recent N (=3 in our evalua-
tion) faults consecutively, Canvas starts forwarding the fault-
ing addresses up to the application-tier prefetcher (discussed
shortly) although the kernel-tier prefetcher is still used as the
first-line prefetcher.

Canvas stops forwarding whenever the kernel-tier
prefetcher becomes effective again. Our key insight is: the
kernel-tier prefetcher is efficient without needing additional
compute resources (as it uses the same core as the faulting
thread), while the application-tier prefetcher needs extra
compute resources to run. As such, we disable application-
tier prefetchers as long as the kernel-tier prefetcher is
effective. To pass a faulting address to the application, we
modify the kernel’s userfaultfd interface, allowing appli-
cations to handle faults at the user space. Our modification
makes the kernel forward the faulting address only if the
kernel’s prefetcher continuously fails to prefetch pages.
Runtime Support for Application-tier Prefetching. A ma-
jor challenge is how to develop application-tier prefetchers.
On the one hand, application-tier prefetchers should conduct



Low‐tier 
Prefetcher

Low‐tier 
Prefetcher

App A

…
forward via 
userfaultfd

High‐tier 
Prefetcher

for(i = 0; i < 1000; i++)
{  b = a[i]; … }

User u = session.getUser();
Account a = 
u.getAccount();
Balance b = a.getBalance();
…

App B

User space

Kernel
major fault major fault

demand swap prefetching demand swap

asyn. 
prefetching

Swap Partition

Figure 8: Canvas’s two-tier prefetcher: App A is an array-
based program while B is a modern web application that uses
reference-based data structures. The low-tier prefetcher suc-
cessfully prefetches pages for A, but not for B. Hence, Can-
vas forwards the addresses up to B’s high-tier prefetcher.

prefetching based on application semantics, of which the
kernel is unaware. On the other hand, application developers
may not be familiar with a low-level activity like prefetch-
ing; understanding memory access patterns and developing
prefetchers can be a daunting task for them.

Our insight is: applications that benefit from application-
tier prefetching are mostly written in high-level languages
and run on a managed runtime such as the JVM. Inspired
by previous work on using language runtime to solve mem-
ory efficiency problems for data analytics applications [81,
78, 82, 80, 72], Canvas currently supports application-tier
prefetching for the JVM as a platform. However its support
could be easily extended to other managed runtimes for high-
level languages like Go and C#. Leveraging language run-
time solves both problems discussed above—it has access to
semantic information such as how objects are connected and
the number of application threads; furthermore, the burden
of developing an application-tier prefetcher is shifted from
application developers to runtime developers. Thus, it is not
necessary to supply a custom application-tier prefetcher per
application, but define it once for each language runtime.

In this work, we develop an application-tier prefetcher in
Oracle’s OpenJDK as a proof-of-concept. It works for all
(Java, Scala, Python, etc.) programs that run on the JVM.
Our JVM-based prefetcher considers two semantic patterns:
(1) reference-based (i.e., accessing an object brings in pages
containing objects referenced by this object) and (2) thread-
based (i.e., accesses from different application threads are
separately analyzed to find patterns).

For (1), we modify the JVM to add support that can
quickly find, from a faulting address, the object in which
the address falls. We use write barrier, a piece of code in-
strumented by the JVM at each object field write, as well
as the garbage collector to record references between pages.
For example, for each write of the form a.f=b, if the ob-
jects referenced by a and b are on different page groups, we
record an edge on a summary graph where each node repre-
sents a consecutive group of pages and each edge represents
references between groups. During prefetching, we traverse

the graph from the node that represents the accessed page
and prefetch pages that can be reached within 3 hops. The
traversal does not follow cycles and its overhead is negligi-
ble. This approach is suitable for applications that store a
large amount of data in memory, such as Spark and Cassan-
dra.

For (2), we leverage the JVM’s user-kernel thread map.
For each faulting address, Canvas additionally forwards the
thread information (i.e., pid) to the JVM, which consults the
map to filter out non-application (e.g., GC, compilation, etc.)
threads and segregate addresses based on Java threads (as
opposed to kernel threads). Segregated addresses allow us
to analyze (sequential/strided) patterns on a per-thread basis
(using Leap’s majority-vote algorithm [73]). Once patterns
are found, the prefetcher sends the prefetching requests to
the kernel via async prefetch.

For native programs that directly use kernel threads (e.g.,
pthread), the thread information is straightforward and im-
mediately visible to Canvas. We can easily segregate ad-
dresses accessed from different threads and analyze patterns
based upon addresses from each individual thread.
Policy. To improve effectiveness, the JVM uses a search tree
to record information about large arrays. Upon the allocation
of an array whose size exceeds a threshold (i.e., 1MB in our
experiments), the JVM records its starting address and size
into the tree. The JVM runs a daemon prefetching thread.
Once receiving a sequence of faulting addresses, we deter-
mine which semantic pattern to use based on how many ap-
plication threads are running and whether the faulting ad-
dresses fall into a large array. If there are many threads and
the faulting addresses fall into arrays, the JVM uses (2) to
find per-thread patterns. If either condition does not hold,
the JVM uses (1) to prefetch based on references. For native
applications, we only enable (2), as we observed that our na-
tive programs do not use many deep data structures.

5.3 Two-Dimensional RDMA Scheduling

To provide predictable performance for applications sharing
RDMA resources, our RDMA scheduling algorithm should
provide four properties: (1) weighted fair bandwidth shar-
ing [18, 30] across applications; (2) high overall utilization;
(3) treating demand and prefetching requests with different
priorities; and (4) timely handling of prefetching requests.

Canvas performs two-dimensional scheduling by extend-
ing existing techniques. Canvas uses max-min fair schedul-
ing to assign bandwidth across applications, and priority-
based scheduling with timeliness to schedule prefetching and
demand requests within each application. Although these
scheduling techniques are not new themselves, Canvas com-
bines them in a unique way to solve the interference problem.
Canvas maintains three PQPs on each core, respectively,
for swap-outs, demand swap-ins, and prefetching swap-ins.
Swap-outs are only subject to fair scheduling while swap-ins
are subject to both fair and priority-based scheduling.



Vertical: Fair Scheduling. Under max-min fairness, each
application receives a fair share of bandwidth. If there is ex-
tra bandwidth, we give it to the applications in the reverse
order of their bandwidth demand until bandwidth is satu-
rated. The high overall utilization of bandwidth is achieved
by redistributing unconsumed bandwidth proportionally to
the weights of unsatisfied applications. Canvas implements
weighted fair queuing with virtual clock [84, 30, 110].
Horizontal: Priority Scheduling with Timeliness. Within
each cgroup, Canvas schedules demand requests with a
higher priority than prefetching requests. However, this
could lead to long latency for prefetching requests. To
bound the latency of prefetching, our scheduler employs a
history-based heuristic algorithm to identify and drop out-
dated prefetching requests. In particular, Canvas maintains
the timeliness distribution of prefetched pages per cgroup.
Timeliness is a metric that measures the time between a page
being prefetched and accessed. We attach a timestamp to
each request when pushing it into a VQP. The scheduler
maintains packets statistics on-the-fly to estimate the round-
trip latency and arrival time of each prefetching request. Re-
quests are dropped if the estimated arrival time exceeds the
estimated timeliness threshold.

Special care must be taken to drop prefetching requests.
Before issuing a prefetching request, the kernel creates a
page in the swap cache and sets up its corresponding PTE.
The page is left in a locked state until its data comes back.
However, a thread that accesses an address falling into the
page may find this locked page in the swap cache and block
on it. Dropping prefetching requests may cause the thread to
hang. To solve the problem, we detect threads that block on
prefetching requests for too long and generate new demand
requests for them.

We rely on a per-entry timestamp to efficiently detect
threads that block on prefetching requests. In Canvas, we
attach a timestamp field to the swap entry metadata. Can-
vas’s scheduler records the timestamp every time it enqueues
a prefetching request into VQP. If another thread faults on
the same page later, it will retrieve the same swap entry
from the PTE. If the swap entry contains a timestamp, the
faulting thread knows that a prefetching request has already
been issued. Next, the faulting thread calculates the time
elapsed since the timestamp, and compares it with a time-
out threshold (maintained by the RDMA scheduler based on
page-fetching latencies). If it exceeds the timeout threshold,
the faulting thread drops the prefetching request. The drop
operation is elaborated below:

Before issuing each (demand or prefetching) request, the
kernel first allocates a physical page in the swap cache and
locks the page until the request returns. Upon the return of
the data, the data is written into the page; the page is un-
locked and mapped into the page table. In order to safely
drop a request, we add another field valid in the swap en-
try metadata, indicating whether the prefetching request on

the go is valid. Once a faulting thread identifies a delayed
prefetching request (by using the timestamp as discussed
above), it sets the valid field in the swap entry to false and
then creates a new physical page in the swap cache. The
thread goes ahead and issues another (demand) I/O request
based on this new page. When the delayed prefetching re-
quest returns, it checks the valid field and discards itself once
it sees the false value. The field is then set back to true.

When a demand request is issued, Canvas clears the times-
tamp field in its corresponding swap entry. If a thread faults
on the same page, it will block on the request instead of is-
suing a new one due to the empty timestamp (indicating that
the request on the go is a demand one).

6 Evaluation
It took us 17 months to implement Canvas in Linux 5.5. The
application-tier prefetcher was implemented in OpenJDK 12.

Application Workload Dataset Size / (|E|, |V |)
Managed
Cassandra 5M read, 5M insert YCSB[26] 10M records
Neo4j PageRank Baidu[5] (17M, 2M)
Spark PageRank (SPR) Wikipedia[5] (57M, 1.5M)

KMeans (SKM) Wikipedia[5] 188M points
Logistic Regression (SLR) Wikipedia[5] 188M points
Skewed Groupby (SSG) synthetic 256K records
Triangle Counting (GTC) synthetic (1.5M, 384K)

MLlib Bayes Classifiers (MBC) KDD [3] 1.5M instances
GraphX Connected Components (GCC) Wikipedia[5] (188M, 9M)

PageRank (GPR) Wikipedia[5] (188M, 9M)
Single Src. Shortest Path (GSP) synthetic 2M vertices

Native
XGBoost Binary Classification HIGGS[12] 22M instances
Snappy Compression enwik9 [1] 16GB
Memcached 45M gets, 5M sets YCSB[26] 10M records

Table 2: Programs and their workloads.

Setup. We included a variety of cloud applications in our
experiments, including managed (Java) applications such as
Spark [109], Cassandra [10] (a NoSQL database), Neo4j [79]
(a graph database), as well as three native applications:
XGBoost [23], Snappy [38], and Memcached [4]. Spark,
Cassandra, Neo4j, Memcached, and XGBoost are multi-
threaded while Snappy is single-threaded. The Spark appli-
cations span popular libraries such as GraphX and MLlib.

We co-ran different combinations of programs. The
same application in different combinations receives the same
amount of local (CPU and memory) resources. To sim-
plify performance analysis, we let each combination of ap-
plications co-run contain one managed (Spark, Cassandra,
or Neo4j) application and the three native programs, which
consume less resources. These experiments were conducted
on two machines, one used to execute applications and a sec-
ond to provide remote memory. The configurations of these
machines was reported earlier in §3. We carefully config-
ured Linux with the following configuration to achieve the
best performance for Linux: (1) SSD-like swap model, (2)
per-VMA prefetching policy, and (3) cluster-based swap en-



try allocation. We disabled hyper-threads, CPU C-states, dy-
namic CPU frequency scaling, transparent huge pages, and
the kernel’s mitigation for speculation attacks.

For each combination, we limited the amounts of CPU re-
sources for the managed application, XGBoost, Memcached,
and Snappy to be 24, 16, 4, and 1 core(s). For local memory,
we used two ratios: 50% and 25%, meaning each application
has 50/25% of its working set locally. When using Canvas,
we additionally limited the sizes of swap partitions in such a
way that for each application the total size of its swap par-
tition and assigned local memory is slightly larger than its
working set. In doing so, each application has just enough
(local and remote) memory to run and reservation cancella-
tion (§5.1) is triggered in all executions.

The swap cache size for each application starts at 32MB
and changes dynamically. The global swap cache size (con-
figured by cgroup-share) was also set to 32MB. Canvas
uses max-min fair scheduling to assign bandwidth across ap-
plications, and their initial weights are proportional to their
swap partition assignments. We ran each application 10
times. Their average execution times (with error bars) are
reported in all experiments throughput this section.
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Figure 9: Performance of different swap systems.

6.1 Basic Swap Systems

We used Fastswap [8] as our underlying swap system, with
a small amount of code changes to port Fastswap (originally
built against Linux 4.11) to Linux 5.5. We first compared the
performance of each individual application running on ba-
sic swap systems including Infiniswap [39], Infiniswap with
Leap [73], the original Fastswap [8], and Canvas’s ported
Fastswap (without isolation and optimizations). We could
not run LegoOS [91] as it does not support network-related
system calls, which are required for applications such as
Spark. LegoOS implements swaps with RPCs as opposed to
paging, but our idea (i.e., isolation and adaptive swapping) is
applicable to this approach as well.

We ran Infiniswap and Leap on Linux 4.4, and Fastswap
on Linux 4.11. The results are reported in Figure 9. Infin-
iswap hung on XGBoost and Spark, and its corresponding
bars are thus not reported in Figure 9. Since Canvas-swap
was built off Fastswap, they have similar performance.

6.2 Overall Performance

Next, we demonstrate the overall performance when appli-
cations co-run together under Canvas. Each experiment ran
the same set of three native programs with one managed ap-
plication: Spark-LR, Spark-KM, Cassandra, or Neo4j. The
results for the 25% and 50% local memory configurations
are reported in Figure 10(a) and (b), respectively.

The four bars in each group represent an application’s per-
formance when running alone on Linux 5.5, co-running with
other applications on Linux 5.5, co-running on the original
Fastswap, and co-running on Canvas (with all optimizations
enabled). Across all experiments, Canvas improves applica-
tions’ co-run performance by up to 6.2× (average 3.5×) and
up to 3.8× (average 1.9×) under the two memory configura-
tions. Canvas enables Spark and Neo4j to even outperform
their individual runs due to the optimizations that could also
improve single-application performance.

6.3 Isolation Reduces Degradation and Variation

This experiment measures the effectiveness of isolation
alone. We used a variant of Canvas with the isolated swap
system and RDMA bandwidth (i.e., vertical scheduling be-
tween applications) but without our swap-entry optimization,
two-tier prefetcher, and horizontal RDMA scheduling.
Degradation Reduction. We ran the same set of experiments
under 25% local memory. As shown in Figure 11, isolation
reduces the running time by up to 5.2×, with an average of
2.5×. Isolation is particularly useful for applications that do
not have many threads but need to frequently access remote
memory, such as Memcached, which has 4 threads and can-
not compete for resources with managed applications such as
Spark and Cassandra, which have more than 90 (application
and runtime) threads. As such, its performance is improved
by 3.3× with dedicated swap resources. Isolation improves
the average RDMA utilization by 2.8× from 692MB/s to
1908MB/s, making the peak bandwidth reach 4494MB/s.

Table 3: Performance variations of three native applications
when co-running with each of the 11 managed applications
under 25% local memory (Canvas / Linux 5.5 / Fastswap).

Program Mean Min Max σ

Snappy 1.07 1.28 1.23 1.03 1.10 1.08 1.23 1.69 1.46 0.07 0.20 0.14
Memcached 1.45 3.24 3.76 1.30 1.48 2.05 1.91 6.05 8.17 0.20 1.82 2.14
XGBoost 1.05 3.17 2.81 1.01 1.38 1.91 1.13 6.13 4.76 0.04 1.59 1.11
Overall 1.21 2.56 2.60 1.01 1.10 1.08 1.91 6.13 8.17 0.23 1.64 1.72

Variation Reduction. One significant impact of interference
is performance variation—the same application has drasti-
cally different performance when co-running with different
applications (as shown in Figure 2). To demonstrate our
benefits, we co-ran the three native applications with each
of the eleven managed applications listed in Table 2, which
cover a wide spectrum of computation and memory access
behaviors. Table 3 reports various statistics of their perfor-
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Figure 10: Performance of each program under 25% and 50% local memory when the three native programs, Snappy (S),
Memcached (M), and XGBoost (X), co-run with a managed application. Canvas ran with all optimizations enabled.
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Figure 11: Performance of native applications co-run with different managed applications under 25% local memory; for Canvas,
only isolation was enabled (i.e., without adaptive optimizations).
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Figure 12: Benefit of adaptive swap entry allocation. Com-
pared are the times of the application running individually
on Linux 5.5, co-running on Canvas with adaptive entry al-
location disabled, and enabled.

mance including the mean, minimum, maximum, and stan-
dard deviation of their slowdowns (compared to their indi-
vidual runs). Clearly, the performance of the three programs
is much more stable (indicated by a small σ) under Canvas
than Linux—variations are reduced by 7× overall.

6.4 Effectiveness of Adaptive Optimizations

This subsection evaluates the benefit of each swap optimiza-
tion on top of the isolated swap system by turning it on/off.

6.4.1 Adaptive Swap Entry Allocator

Isolation already reduces lock contention at swap entry allo-
cation because each process has its own swap entry manager.
However, for multi-threaded applications such as Spark and

Cassandra, their processing threads still have to go through
the locking process. In this subsection, we focus on managed
applications due to their extensive use of threads. Figure 12
shows the performance of Spark LR, Spark KM, Cassandra,
and Neo4j when they each co-run with the other three na-
tive programs. On average, our adaptive allocation enables
an additional boost of 1.50× for Spark LR, 1.77× for Spark
KM, 1.31× for Cassandra, and 1.28× for Neo4j.

Table 4: Swap-out throughput w/ and w/o adaptive swap-
entry allocation when native programs co-run with Spark.

Thruput (KPages/s) Linux 5.5 Canvas w/o adap. alloc. Canvas w/

Avg. Spark apps 98 164 295
Avg. all apps 185 309 468

Table 4 reports the swap-out throughput when the native
applications co-run with Spark. As shown, isolation im-
proves the throughput by 1.67× while adaptive allocation
provides an additional boost of 1.51×. This benefit is ob-
tained after applying all optimizations in Linux 5.5.
Effectiveness of Entry Reservation. We compared our adap-
tive allocation algorithm with the original allocator in Linux
5.5 by running Memcached with varying (8 – 48) cores under
25% local memory. As shown in Figure 13(a), for Canvas,
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Figure 13: Entry allocation comparison between the allo-
cation algorithm in Canvas and Linux 5.5 for Memcached
under 25% local memory. The Y-axis in (b) is log-scaled.

(1) the swap-out rate increases with the core number (show-
ing good scalability) and (2) the swap entry allocation rate
remains low. This is due to Canvas’s entry reservation al-
gorithm that effectively reuses a significant number of swap
entries for page swap-outs. On the contrary, in Linux 5.5,
the swap-out rate (which is the same as its entry allocation
rate) decreases when more cores are used. This is because
each entry allocation takes significantly longer, reducing the
swap-out throughput. A comparison of per-entry allocation
time can be seen in Figure 13(b). We additionally com-
pared the allocation algorithm between Canvas, Linux 5.5,
and Linux 5.14; these results are reported in Appendix B.
6.4.2 Prefetching Effectiveness

Our baseline is the kernel’s default prefetcher on the isolated
swap system with adaptive swap allocator enabled. Since
application-tier prefetching is designed primarily for high-
level languages, here we focus on managed programs.
Time. We compare the running time for three Spark ap-
plications LR, KM, TC, and Neo4j, between the kernel’s
prefetcher over Canvas’s isolated swap system and Canvas’s
two-tier prefetcher, when each managed application co-runs
with the three native applications under the 25% local mem-
ory configuration. Application-tier prefetching brings 33%,
17%, 19%, and 8% additional performance benefits on top
of the kernel prefetching with the isolated swap system. All
the four managed applications benefit from the thread-level
pattern analysis while the managed applications have seen
5-9% contributions from using the reference-based pattern.
The thread-level pattern analysis we added for native pro-
grams brings a 5% and 11% improvement for Memcached
and XGBoost.

We have also run Leap [73], a prefetcher that aggressively
prefetches a number of contiguous pages if it cannot find any
pattern. This approach may work for native applications be-
cause these applications access arrays; hence, the contigu-
ous pages aggressively prefetched are likely to be useful for
array accesses. However, it works poorly for high-level lan-
guage applications such as Spark and Neo4j, which use deep
data structures and run graph-traversal GC tasks (which ex-
hibit neither sequential nor strided patterns). Aggressively

prefetching useless pages wastes the RDMA bandwidth and
the swap cache. Leap slows down our managed applications
by 1.4×, compared to the kernel’s default prefetcher.

Table 5: Prefetching contribution and accuracy when differ-
ent Spark and Neo4j co-run with native applications.

Contribution Spark-LR Spark-KM Spark-TC Neo4j

Leap 23.4% 25.8% 42.2% 67.0%
Kernel 63.3% 68.0% 65.9% 41.1%
Canvas Two-tier 79.2% 79.3% 75.3% 45.0%

Accuracy Spark-LR Spark-KM Spark-TC Neo4j

Leap 16.8% 17.2% 35.9% 6.1%
Kernel 95.6% 96.4% 93.9% 80.4%
Canvas Two-tier 94.3% 94.8% 94.9% 87.1%

Prefetching Contribution and Accuracy. Table 5 compares
prefetching contribution and accuracy for the four managed
applications when each of them co-runs with the same three
native applications. Contribution is defined as a ratio be-
tween the number of page faults hitting on the swap cache
and the total number of page faults (including both cache
hits and demand swap-ins). Accuracy is defined as a ratio
between the number of page faults hitting on the swap cache
and the total number of prefetches. Clearly, contribution has
a strong correlation with performance while accuracy mea-
sures the pattern recognition ability of a prefetcher. For ex-
ample, for a conservative prefetcher that prefetches pages
only if a pattern can be clearly identified, it can have a high
accuracy (i.e., prefetched pages are all useful) but a low con-
tribution (i.e., the number of prefetches is small).

Here we report prefetching contribution and accuracy for
three prefetchers: Leap (on our isolated swap system), the
kernel prefetcher (also on our isolated swap system), and
Canvas’s two-tier prefetcher. Among the three prefetchers,
for all but Neo4j, Leap has the lowest accuracy and contri-
bution because it is an aggressive prefetcher. Leap keeps
prefetching pages even when it cannot detect any patterns,
which greatly reduces the prefetching accuracy. Second, due
to the limited swap cache, the useless pages prefetched can
cause previously prefetched pages to be released before they
are accessed, hurting contribution. The kernel prefetcher
and Canvas have comparable accuracy because the kernel
prefetcher is much more conservative than Leap. It stops
prefetching when no clear pattern can be observed. However,
Linux has lower contribution than our two-tier prefetcher
since Canvas prefetches more useful pages using semantics.
6.4.3 RDMA Scheduling

We evaluate our two-dimensional RDMA scheduling. For
the vertical dimension, we use the weighted min-max ratio
(WMMR) min(xi/wi)

max(xi/wi)
[96] as our bandwidth fairness metric

(the closer to 1, the better), where xi is the bandwidth con-
sumption of the application i, andwi is its weight. We set the



weight proportionally to the average bandwidth of each ap-
plication when running individually. Our vertical scheduling
achieves an overall of 0.88 WMMR.

The horizontal dimension (i.e., priority scheduling with
timeliness) is our focus here because interference between
prefetching and demand swapping is a unique challenge we
overcome in this work. We ran GraphX Connected Compo-
nents (GraphX-CC) with the three native applications. Fig-
ure 14 compares the latency of sync vs. async swap-in re-
quests with and without the horizontal scheduling of RDMA.
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Figure 14: Horizontal scheduling effectiveness for GraphX-
CC: (a) prefetching latency reduced, and (b) prefetching con-
tribution and accuracy improved.

As shown, our scheduler does not incur overhead for the
synchronous, demand requests but reduces the (90th per-
centile) latency of the asynchronous prefetching requests by
∼5%. Note that these results were obtained with Canvas’s
two-tier prefetcher enabled, which already generates precise
prefetching requests. With the Leap prefetcher, the (90th per-
centile) latency reduction can be as high as 9×. To under-
stand how the latency reduction improves prefetching effec-
tiveness, we have also compared the prefetching contribution
and accuracy with and without the horizontal scheduling, as
shown in Figure 14(b). Due to the high timeliness require-
ment of prefetching requests, even 5% latency reduction can
lead to noticeable improvements in prefetching—e.g., the
contribution/accuracy of GraphX-CC increases by 10.7%
and 5.5% on top of the two-tier prefetcher—which ulti-
mately translate to a 7-12% overall improvement.

7 Related Work
Remote Memory. The past few years have seen a prolif-
eration of remote-memory systems that built on the ker-
nel’s swap mechanisms (including recent works such as Le-
goOS [91], Infiniswap [39], Fastswap [8], and Semeru [104]
as well as earlier attempts [32, 6, 31, 34, 28, 45, 61, 105]).
Remote memory is part of a general trend of resource disag-
gregation in datacenters [43, 21, 36, 14, 11, 66, 65, 58, 7, 9,
83, 95], which holds the promise of improving resource uti-
lization and simplifying new hardware adoption. Under dis-
aggregated memory, application data are stored on memory
servers, making swap interference a more serious problem.

Resource Isolation. Interference exists in a wide variety of
settings [29, 69, 111] and resource isolation is crucial for
delivering reliable performance for user workloads. There
is a large body of work on isolation of various kinds of
resources including compute time [64, 16, 25], processor
caches [35, 57, 106], memory bandwidth [67, 68, 71, 50,
107], I/O bandwidth [40, 96, 70, 74, 97, 103, 108], net-
work bandwidth [13, 41, 37, 94, 87, 77, 53], congestion con-
trol [27, 44], as well as CPU involved in network process-
ing [59]. Techniques such as IX [17] and MTCP [52] isolate
data-plane and application processing at the core granularity.
Prefetching. Prefetching has been extensively studied, in
the design of hardware cache [101, 42, 114, 100, 76], com-
pilers [98, 63, 89, 86, 60, 33], as well as operating sys-
tems [102, 73]. Detecting spatial patterns [75] is a common
way to prefetch data. For example, various hardware tech-
niques [93, 54, 51] have been developed to identify patterns
(i.e., sequential or stride) in addresses accessed. Leap [73]
is a kernel prefetcher designed specifically for applications
using remote memory. Swap interference can reduce the ef-
fectiveness of any existing prefetchers, let alone that none
of them consider complex (semantic) patterns. Early work
such as [85, 20] proposes application-level prefetching for
efficient file operations on slow disks. Our prefetcher is,
however, designed for a new setting where applications trig-
ger page faults frequently and read pages from fast remote
memory, with much tighter latency budgets.
RDMA Optimizations. There is a body of recent work on
RDMA scheduling [88, 92] and scalability improvement [99,
24, 56, 55, 113]. These techniques focus more on scalability
when RDMA NICs are shared among multiple clients.

8 Conclusion
We observed swap resources must be isolated when multiple
applications use remote memory simultaneously. As such,
Canvas isolates swap cache, swap partition, and RDMA
bandwidth to prevent applications from invading each other’s
resources. Now that resource accounting is done separately
for applications, Canvas offers three optimizations that adapt
kernel operations such as swap-entry allocation, prefetching,
and RDMA scheduling to each application’s resource usage,
providing additional performance boosts.
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Figure 15: Percentage of time spent on swap entry allocation
when applications run individually (a) and together (b).

Figure 15 compares the percentage of time spent on swap
entry allocation between individual runs and co-runs under
Linux 5.5. As shown, each application, when co-run with
other applications, spend significantly more time on allocat-
ing swap entries due to the increased locking time.

B Recent Kernel Development
As an optimization in Linux 5.5, the kernel keeps swap en-
tries for clean pages—when clean pages are evicted, they
do not need to be written back if their swap entries are not
released for other allocations. Once a page becomes dirty,
its swap entry must be immediately released. Clearly, this
approach works for read-intensive applications where most
pages are clean, but not for write-intensive workloads such
as Spark. We tried various entry-keeping thresholds (i.e.,
entry keeping starts when the percentage of available swap
entries exceeds this threshold) between 25% and 75%, and
saw only marginal performance differences (<5%) across
our programs.

We have closely followed the kernel development since
the release of Linux 5.5 and found two recent patches re-
lated to our approach. These two patches, submitted by Intel
and merged into the kernel at 5.8, also attempt to optimize
locking overhead at swap entry allocation. The idea of the
first patch [48] is using fine-grained locking—dividing swap
entries into clusters and assigning each core a random clus-
ter upon an allocation request. The second patch [46] per-
forms batch entry allocation by scanning more swap entries
while holding the lock to make each batch larger. Note that
our adaptive allocation algorithm solves a much bigger prob-
lem than these patches—Canvas avoids allocating entries for
most swap-outs, while these patches reduce the overhead of
locking for each allocation. As such, Canvas is completely
lock-free for reserved entries while these patches must still
go through the allocation path, requiring locking if multiple
cores are assigned the same cluster (i.e., core collision).

In fact, the probability of collision increases quickly with
the number of cores. As shown below in Figure 16, the allo-
cation performance of these patches degrades super-linearly
when the number of cores exceeds 24. Another major draw-
back is that none of these patches build on isolated swap par-
titions. Lack of swap partition isolation makes applications
search for swap entries globally, which can still result in in-
terference—applications such as Spark can quickly saturate
these clusters with all its executor threads, making other ap-
plications wait before they can obtain the locks. By reserving
entries, our algorithm significantly reduces the number of en-
try allocation requests (due to entry reusing) and the cost of
each allocation (due to reduced lock contention).
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Figure 16: Entry allocation comparison between Canvas and
the allocation algorithm when Memcached runs on Linux
5.14 on RAMDisk.

Comparison with Linux 5.5 and Linux 5.14. As the ker-
nel is fast evolving and our latest InfiniBand driver is only
compatible with Linux 5.5, we compared the swap-entry al-
location performance between Canvas, Linux 5.5, and the
latest Linux 5.14 over RAMDisk, by running Memcached
with varying (8 – 48) cores.

As Figure 16(a) shows, our adaptive entry reservation al-
gorithm reduces the allocation rate by several orders of mag-
nitude compared to Linux 5.14. Note that the allocation rate
under Linux 5.5 drops as the number cores increases because
each allocation takes much longer and hence the swap-out
throughput (i.e., allocation throughput) reduces (i.e., the ap-
plication runs slower).

Figure 16(b) compares our algorithm with Linux 5.5 and
Linux 5.14 on per-entry allocation time. As shown, the
optimization in [48, 46] is unscalable—as the number of
cores increases, the per-entry allocation cost increases signif-
icantly. In fact, the allocation cost grows superlinearly after
24 cores due to core collision. On the contrary, Canvas’s per-
entry allocation cost remains low and stable. With 48 cores,
our algorithm outperforms Linux 5.14’s entry allocator (that
uses [48, 46]) by 13×.
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