
Gemel: Model Merging for Memory-Efficient, Real-Time Video Analytics at the Edge

Arthi Padmanabhan⋆§ Neil Agarwal⋆¶ Anand Iyer† Ganesh Ananthanarayanan†

Yuanchao Shu† Nikolaos Karianakis† Guoqing Harry Xu§ Ravi Netravali¶

§UCLA †Microsoft Research ¶Princeton University

Abstract
Video analytics pipelines have steadily shifted to edge de-
ployments to reduce bandwidth overheads and privacy vio-
lations, but in doing so, face an ever-growing resource ten-
sion. Most notably, edge-box GPUs lack the memory needed
to concurrently house the growing number of (increasingly
complex) models for real-time inference. Unfortunately, ex-
isting solutions that rely on time/space sharing of GPU re-
sources are insufficient as the required swapping delays re-
sult in unacceptable frame drops and accuracy loss. We
present model merging, a new memory management tech-
nique that exploits architectural similarities between edge
vision models by judiciously sharing their layers (includ-
ing weights) to reduce workload memory costs and swap-
ping delays. Our system, Gemel, efficiently integrates merg-
ing into existing pipelines by (1) leveraging several guid-
ing observations about per-model memory usage and inter-
layer dependencies to quickly identify fruitful and accuracy-
preserving merging configurations, and (2) altering edge in-
ference schedules to maximize merging benefits. Experi-
ments across diverse workloads reveal that Gemel reduces
memory usage by up to 60.7%, and improves overall accu-
racy by 8-39% relative to time or space sharing alone.

1 Introduction
Fueled by the proliferation of camera deployments and sig-
nificant advances in deep neural networks (DNNs) for vision
processing (e.g., classification, detection) [19,28,46,69,74],
live video analytics have rapidly grown in popularity [25,35,
60,71,113]. Major cities and organizations around the world
now employ thousands of cameras to monitor intersections,
homes, retail spaces, factories, and more [1, 5, 6, 10]. The
generated video feeds are continuously and automatically
queried using DNNs to power long-running applications for
autonomous driving, footfall tracking, traffic coordination,
business analytics, and surveillance [2, 11–13, 34].

In order to deliver highly-accurate query responses in real
time, video analytics deployments have steadily migrated
to the edge [25, 78, 107]. More specifically, pipelines rou-
tinely incorporate on-premise edge servers (e.g., Microsoft
Azure Stack Edge [4], Amazon Outposts [3]) that run in
hyper-proximity to cameras (in contrast to traditional edge
servers [32, 37, 79, 104]), and possess on-board GPUs to aid
video processing. These edge boxes are used to complement
(or even replace [21,29]) distant cloud servers by locally per-
forming as many inference tasks on live video streams as

⋆ These authors contributed equally to this work.

2010 2015 2020
Year

0

5

10

Pa

ra
m

et
er

s
(x

10
e8

)

Figure 1: Parameter counts in popular vision DNNs over time.
Data drawn from [92].

possible [29, 53, 71, 117]. Generating responses directly on
edge boxes reduces transfer delays for shipping data-dense
video over wireless links [44, 73, 117] while also bringing
resilience to outbound edge-network link failures [7,80] and
compliance with regional data privacy restrictions [77, 85].

To reap the above benefits, video analytics deployments
must operate under the limited computation resources of-
fered by edge boxes. On the one hand, due to cost, power,
and space constraints, edge boxes typically possess weaker
GPUs than their cloud counterparts [4, 21, 95]. On the other
hand, analytics deployments face rapidly increasing work-
loads due to the following trends: (1) more camera feeds
to analyze [21, 53, 55], (2) more models to run due to in-
creased popularity and shifts to bring-your-own-model plat-
forms [16, 24, 38, 54], and (3) increased model complexity,
primarily through growing numbers of layers and parame-
ters (Figure 1) [15, 56, 57, 108]. Taken together, the result is
an ever-worsening resource picture for edge video analytics.
Problems. Although GPU computation resources are holis-
tically constrained on edge boxes, this paper focuses on GPU
memory restrictions, which have become a primary bottle-
neck in edge video analytics for three main reasons. First,
GPU memory is costly due to its high-bandwidth nature [83,
86, 93], and is thus unlikely to keep pace with the ever-
growing memory needs of DNNs (Figure 1). Second, we em-
pirically find that existing memory management techniques
that time/space-share GPU resources [26, 39, 50, 56, 94, 110]
are insufficient for edge video analytics, resulting in skipped
processing on 19-84% of frames, and corresponding accu-
racy drops up to 43% (§3). The underlying reason is that
the costs of loading vision DNNs into GPU memory (i.e.,
swapping) are prohibitive and often exceed the correspond-
ing inference times, leading to sub-frame-rate (< 30 fps) pro-
cessing and dropped frames due to SLA violations [94,114].
Such accuracy drops are unacceptable for important vision
tasks, especially given that each generation of vision DNNs
brings only 2-10% of accuracy boosts – that after painstaking
tuning [22, 52, 64, 98]. Third, compared to computation bot-
tlenecks [29,39,40,60,71], GPU memory restrictions during
inference have been far less explored in video analytics.

Contributions. We tackle this memory challenge by mak-
ing two main contributions described below. The design and
evaluation of our solution are based on a wide range of pop-
ular vision DNNs, tasks, videos, and resource settings that
reflect workloads observed in both our own multi-city pilot
video analytics deployment and in prior studies (§2).

Our first contribution is model merging, a fundamentally
new approach to tackling GPU memory bottlenecks in edge
video analytics that is complementary to time/space-sharing
strategies (§4). With merging, we aim to share architec-
turally identical layers across the models in a workload such
that only one copy of each shared layer (i.e., one set of
weights) must be loaded into GPU memory for all models
that include it. In doing so, merging reduces both the number
of swaps required to run a workload (by reducing the overall
memory footprint) and the cost of each swap (by lowering
the amount of new data to load into GPU memory).

Our merging approach is motivated by our (surprising)
finding that vision DNNs share substantial numbers of lay-
ers that are architecturally (i.e., excluding weights) identical
(§4.1). Such commonalities arise not only between identi-
cal models (100% sharing), but also across model variants
in the same (up to 84.6%) and in different (up to 96.3%)
families. The reason is that, despite their (potentially) differ-
ent goals, vision DNNs ultimately employ traditional com-
puter vision (CV) operations (e.g., convolutions) [22, 64],
operate on unified input formats (e.g., raw frames), and per-
form object-centric tasks (e.g., detection, classification) that
rely on common features such as edges, corners, and mo-
tion [27, 31, 65, 66, 88, 106, 118, 119].

Our analysis reveals that exploiting these architectural
commonalities via merging has the potential to substantially
lower memory usage (17.9-86.4%) and boost accuracy (by
up to 50%) in practice. However, achieving those benefits
is complicated by the fact that edge vision models typically
use different weights for common layers due to training non-
linearities [62, 63] and variance in target tasks, objects, and
videos; and yet, merging requires using unified weights for
each shared layer. Digging deeper, we observe that there
exists an inverse relationship between the number of shared
layers and achieved accuracy during retraining. Intuitively,
this is because for shared layers to use unified weights, other
layers must adjust their weights accordingly during retrain-
ing; the more layers shared, the harder it is for (the fewer)
other layers to find weights to accommodate such constraints
and successfully learn the target functions [23, 70]. Worse,
determining the right layers to merge is further complicated
by the fact that (1) it is difficult to predict precisely how
many layers will be shareable before accuracy violations oc-
cur, and (2) each instance of retraining is costly.

Our second contribution is Gemel, an end-to-end system
that practically incorporates model merging into edge video
analytics by automatically finding and exploiting merg-
ing opportunities across user-registered vision DNNs (§5).

Gemel tackles the above challenges by leveraging two key
observations: (1) vision DNNs routinely exhibit power-law
distributions whereby a small percentage of layers, often to-
wards the end of a model, account for most of the model’s
memory usage, and (2) merging decisions are agnostic to
inter-layer dependencies, and accordingly, a layer’s merge-
ability does not improve if other layers are also shared.

Building on these observations, Gemel follows an incre-
mental merging process whereby it attempts to share one
additional layer during each iteration, and selects new lay-
ers in a memory-forward manner, i.e., prioritizing the (few)
memory-heavy layers. In essence, this approach aims to reap
most of the potential memory savings as quickly, and with
as few shared layers, as possible. Gemel further accelerates
the merging process by taking an adaptive approach to re-
training that detects and leverages signs of early successes
and failures. At the end of each successful iteration, Gemel
ships the resulting merged models to the appropriate edge
servers, and carefully alters the time/space-sharing scheduler
– a merging-aware variant of Nexus [94] in our implemen-
tation – to maximize merging benefits, i.e., by organizing
merged models to reduce the number of swaps, and the de-
lay for each one. Importantly, Gemel verifies that merging
configurations meet accuracy targets prior to deployment at
the edge, and also periodically tracks data drift.

Results. We evaluated Gemel on a wide range of work-
loads and edge settings (§2, §6.3). Overall, Gemel re-
duces memory requirements by up to 60.7%, which is 5.9-
52.3% more than stem-sharing approaches that are funda-
mentally restricted to sharing contiguous layers from the
start of models (Mainstream [59]), and within 9.3-29.0%
of the theoretical maximum savings (that disregard layer
weights). These memory savings lead to 13-44% fewer
skipped frames and overall accuracy improvements of 8-
39% compared to space/time-sharing GPU schedulers alone
(Nexus [94]). Source code and datasets for Gemel are avail-
able at https://github.com/artpad6/gemel nsdi23.

2 Methodology & Pilot Study
We begin by describing the workloads used in this paper.
They were largely derived from our experience in deploy-
ing a pilot video analytics system in collaboration with two
major US cities (one per coast), for road traffic monitoring.

Models and tasks. In line with other video analytics frame-
works [16,24,38,54], users in our deployment provided pre-
trained models when registering queries to run on different
video feeds. Due to the complexity of model development,
we observe that users opt to leverage existing (popular) ar-
chitectures geared for their target task (e.g., YOLOv3 for ob-
ject detection), and train those models for specific object(s)
of interest and datasets (e.g., detecting vehicles at Main St.)
to generate a unique set of weights. Despite being allowed,
custom architectures were never provided in our deployment.

https://github.com/artpad6/gemel_nsdi23

Accordingly, we selected the 7 most popular families
of models across our pilot deployment and recent litera-
ture [21,26,49,50,53,59–61,71,109]: YOLO, Faster RCNN,
ResNet, VGG, SSD, Inception, and Mobilenet. From each
family, we selected up to 4 model variants (if available)
that exhibit different degrees of complexity and compres-
sion. For instance, from YOLO, we consider {YOLOv3,
Tiny YOLOv3}; similarly, we consider ResNet{18, 50, 101,
152}. The selected models focus on two tasks – object classi-
fication and detection – and for each, we train different ver-
sions for all combinations of the following objects: people
and vehicles (e.g., cars, trucks, motorbikes). Classification
and detection accuracy are measured using F1 and mAP [36].
Videos. Our dataset consists of video streams from 12 cam-
eras in our pilot deployment that span two metropolitan ar-
eas. From each region, we consider cameras at adjacent in-
tersections, and those spaced farther apart within the same
metropolitan area; this enables us to consider different edge
box placements, i.e., at a traffic intersection vs. further up-
stream to service a slightly larger geographic location. From
each stream, we scraped 120 minutes of video that cover 24-
hour periods from four times of the year.
Edge boxes. Our review of on-premise edge boxes focused
on 5 commercial offerings: Microsoft Azure Stack Edge [4],
Amazon Outposts [3], Sony REA [97], NVIDIA Jetson [8],
and Hailo Edge-AI-box [43]. These servers each possess on-
board GPUs and offer 2-16 GB of total GPU memory. Since
edge inferences do not typically span multiple GPUs, we fo-
cus on model merging and inference scheduling per GPU.
This does not restrict Gemel to single-GPU settings; rather,
it means that our merging and scheduling techniques are ap-
plied separately to the DNNs in each GPU, with the assump-
tion that each merged model runs on only one GPU.
Workload construction. Recent works highlight that 10s of
videos are usually routed to each edge box [13, 53], which
runs upwards of 10 queries (or DNNs) on each feed [16,21].
Our experience was similar: it was typical to direct the max
possible number of feeds to an edge box, with the goal of
minimizing the number of edge boxes required to process the
workload. To cover this space, and since we focus on per-
GPU inference optimization, we generated an exhaustive list
of all possible workloads sized between 2-50 DNNs using
the models above. We then sorted the list in terms of the
potential (percentage) memory savings (using the methodol-
ogy from §4), and selected 15 workloads: 3 random work-
loads from the lower quartile (i.e., Low Potential (LP1-3)), 6
from the middle 50% (i.e., Medium Potential (MP1-6)), and
6 from the upper quartile (i.e., High Potential (HP1-6)). We
chose this ratio to match that from our deployment. MP and
HP workloads each constituted 30-50% of the total work-
loads since (1) users tended to employ the same few model
variants from a limited set of popular families, and (2) each
user typically used the same architecture (but not weights)
for different feeds in a region. LP workloads were less com-

L1 L2 L3 M1M2M3M4M5M6H1 H2 H3 H4 H5 H60

10

20

M
em

or
y

(G
B) Batch Size=1

Batch Size=4

Figure 2: Per-workload memory requirements for two popular
batch sizes used in video analytics [94]. Dashed lines represent
the available GPU memory on several commercial edge boxes.

mon (<20%), and arose from different users opting for dif-
ferent model families.

Each workload was randomly assigned to one of the cities,
with the constituent models being randomly paired with the
available videos. The extended version [82] details the work-
loads, each of which exhibits heterogeneity in terms of the
families, tasks, videos, and (combinations of) target objects.
In summary, the workloads contain 3-42 queries (avg: 15)
across 3-7 video feeds (avg: 5), featuring 2-10 unique mod-
els (avg: 6) and 2-5 different objects (avg: 4). We consider
additional workloads, models, objects, and videos in §6.3.
Result presentation. End-to-end accuracy depends on the
available GPU memory. However, each workload requires a
different minimum amount of memory to run, i.e., the GPU
should be able to load/run the most memory-intensive model
in isolation for a batch size of 1. Further, the memory needed
to avoid swapping (i.e., to load all models and run one at a
time) also varies per workload; we call this no swap. To en-
sure comparability across all presented accuracy results and
to focus on memory-bottlenecked scenarios, we assign each
workload three memory settings to be evaluated on (listed in
[82]): (1) the minimum value (min), (2) 50% of the no swap
value (50%), and (3) 75% of the no swap value (75%).

3 Motivation
3.1 Memory Pressure in Edge Video Analytics

To run inference with a given model, that model’s layers and
parameters must be loaded into the GPU’s memory, with suf-
ficient space reserved to house intermediate data generated
while running, e.g., activations. The amount of data gener-
ated (and thus, memory consumed) during inference depends
on both the model architecture and the batch size used; a
higher batch size typically requires more memory.

Figure 2 shows the total amount of memory (i.e., for both
loading and running) required for each of our workloads and
two batch sizes; the listed numbers exclude the fixed mem-
ory that ML frameworks reserve for operation, e.g., 0.8 GB
for PyTorch [18]. As shown, many workloads do not directly
fit into edge box GPUs, and the number of edge boxes nec-
essary to support a given workload can quickly escalate. For
instance, even with a batch size of 1 frame, 73% of our work-
loads need more than one edge box possessing 2 GB of GPU
memory; with a batch size of 4, 60% and 27% require more
than one edge box with 8 GB and 16 GB of memory.

Model Load Memory Run Memory (Time)

(Time) BS=1 BS=2 BS=4

YOLOv3 0.24 (49.5) 0.52 (17.0) 0.73 (24.0) 1.22 (39.9)
ResNet152 0.24 (73.3) 0.65 (24.8) 0.98 (26.3) 1.71 (26.7)
ResNet50 0.12 (27.1) 0.35 (8.4) 0.50 (8.5) 0.84 (8.5)
VGG16 0.54 (72.2) 0.74 (2.1) 0.89 (2.4) 1.18 (2.4)
Tiny YOLOv3 0.04 (6.7) 0.15 (3.0) 0.18 (5.2) 0.24 (5.2)
Faster RCNN 0.73 (117.3) 3.70 (115.4) 6.96 (210.1) 12.47 (379.4)
Inceptionv3 0.12 (11.8) 0.19 (9.1) 0.23 (9.1) 0.34 (9.1)
SSD-VGG 0.11 (16.1) 0.23 (16.5) 0.33 (25.7) 0.51 (44.6)

Table 1: Memory (GB) and time (ms) requirements for load-
ing/running inference with 3 different batch sizes (in frames).
Run memory values include load values, but exclude memory
needs of serving frameworks. Results use a Tesla P100 GPU.

Table 1 breaks this memory pressure down further by list-
ing the amount of loading and running memory required for
representative models in our workloads. When analyzed in
the context of the scale of edge video analytics workloads,
the picture is bleak, even with a batch size of 1. For exam-
ple, a 2 GB edge box can support only 1, 2, or 3 VGG16,
YOLOv3, or ResNet50 models, respectively, after account-
ing for the memory needs of the serving framework. Moving
up to 8 and 16 GB edge boxes (of course) helps, but not
enough, e.g., an 8 GB box can support 13 YOLOv3 or 2
Faster RCNN models, both of which are a drastic drop from
the 10s of models that workloads already involve (§2).

3.2 Limitations of Existing GPU Memory Management

Space and time sharing. Existing learning frameworks
recommend model allocation at the granularity of an entire
GPU [56]. Space-sharing techniques [14,17] eschew this ex-
clusivity and partition GPU memory per model. Although
space-sharing approaches are effective when a workload’s
models can fit together in GPU memory, they are insufficient
when that does not hold, which is common at the edge (§3.1)

There are two natural solutions when a workload’s models
cannot fit together in the target GPU’s memory. The first is
to place models on different GPUs [39, 94], which resource-
constrained edge settings cannot afford. The second is to
time share the models’ execution in the GPU by swapping
them in and out of GPU memory (from CPU, via a PCIe in-
terface) [26,39,50,94,110]. However, as we will show next,
time-sharing techniques are bottlenecked by frequent model
swapping, which severely limits their utility. More recently,
SwapAdvisor [50] and Antman [110] proposed swapping at
finer granularities, e.g., individual or a few layers. However,
even these approaches are limited in our case because a hand-
ful of layers in vision DNNs typically account for most mem-
ory usage (§5.2); edge boxes often lack the GPU memory to
concurrently house even these expensive singular layers.

We evaluated time-sharing strategies in our setting by con-
sidering a hybrid version that packs models into GPU mem-
ory, and executes as many models as possible while ensur-
ing that swapping costs for the next model to run are hid-
den. Concretely, we extend Nexus [94] to incorporate such
pipelining. Our variant first organizes models in round-robin

LP MP HP25
50
75

100

Ac
cu

ra
cy

 (%
)

Min
25%
75%

Figure 3: Achieved accuracy with time/space-sharing alone
(i.e., using our Nexus variant) for different memory availability
(following the definitions in §2). Bars list results for the median
workload in each class, with error bars spanning min to max.

order (as Nexus does), and profiles the workload offline
to determine the best global list of per-model batch sizes
that maximizes the minimum achieved per-model through-
put while adhering to an SLA (i.e., a per-frame processing
deadline). Using those batch sizes, the scheduler traverses
the round robin order with the goal of minimizing GPU idle
time: when loading the next model, if there does not exist
sufficient memory to load both parameters and intermedi-
ates, the most recently run model (i.e., the one whose next
use is in the most distant future) is evicted to make space.

Figure 3 shows the accuracy of the Nexus variant on our
workloads with an SLA of 100 ms; we saw similar trends
for other common SLAs in video analytics [94]. As shown,
accuracy drops are substantial, growing up to 43% relative
to a setting when there exists sufficient memory to house all
models at once. The root cause is the disproportionately high
loading times of vision DNNs that must be incurred when
swapping. As shown in Table 1, per-model loading delays
are 0.98-34.4× larger than the corresponding inference times
(for batch size 1). When facing the strict SLAs of video ana-
lytics, these loading costs result in the inability to keep pace
with incoming frame rates, and thus, dropped (unprocessed)
frames; the Nexus variant skipped 19-84% of frames.
Predicting workload characteristics. Another approach is
to selectively preload models based on predictions of the tar-
get workload [115], e.g., deprioritizing inference on streams
at night due to lack of activity. However, in edge video an-
alytics, spatial correlation between streams results in model
demands being highly correlated [55, 60, 71, 76].
Compression and quantization. These techniques gener-
ate lighter model variants that impose lower memory (and
compute) footprints and deliver lower inference times. Some
families offer off-the-shelf compressed variants (e.g., Tiny
YOLOv3), and techniques such as neural architecture search
can be used to develop cheaper variants that are amenable to
deployment constraints [40]. Regardless, in reducing model
complexity, these cheaper model variants typically sacrifice
accuracy and are more susceptible to drift, relative to their
more heavy-weight counterparts [21,100]; consequently, de-
termining the feasibility of using such models in a given set-
ting requires careful tuning and analysis by domain experts.

We consider compression and quantization as orthogonal
to merging for two reasons. First, in common workloads that
involve a mix of models and tasks (§2), it may not be possi-
ble to compress all of the models while delivering sufficient

YOLOv3
FRCNN-R50

ResNet152
ResNet50 VGG16

SSD-VGG AlexNet

YOLOv3
FRCNN-R50
ResNet152

ResNet50
VGG16

SSD-VGG
AlexNet

100.0
1.2 100.0
0.7 33.3 100.0
1.2 93.0 34.4 100.0
0.0 0.0 0.0 0.0 100.0
0.0 0.0 0.0 0.0 34.2 100.0
0.0 0.0 0.0 0.0 14.3 2.4 100.0

Sharing Opportunities
Same Model
Same Family
Similar Backbone
Derivative Of

Figure 4: Percentage of architecturally identical layers across
different model pairs. See Figure 20 for an extended version.

accuracy. However, even a handful of non-compressed mod-
els can exhaust the available GPU memory (§3.1). Second,
compressed models exhibit sharing opportunities: our work-
loads include compressed and non-compressed models (§2),
and our results show that Gemel is effective for both (§6).

4 Our Approach: Model Merging
To address the high model loading costs that plague exist-
ing memory management strategies when workloads cannot
fit together in a GPU’s memory (§3.2), we propose model
merging. Merging is complementary to time/space sharing
of GPU memory, and its goal is straightforward: share lay-
ers across models such that only one copy of each shared
layer (i.e., layer definition and weights) must be loaded into
GPU memory and can be used during inference for all of
the models that include it. The benefits are two-fold: (1) re-
duce the overall memory footprint of a workload, thereby en-
abling edge boxes to house more models in parallel and per-
form fewer swaps (or equivalently, lower the number of edge
boxes needed to run the workload), and (2) accelerate any re-
maining swaps by reducing the amount of extra memory that
the next model to load requires. Note that merging does not
involve sharing intermediates (i.e., layer outputs) for a com-
mon layer because models may run on different videos (and
thus, inputs). We next highlight the promise for merging in
edge video analytics (§4.1), and then lay out the challenges
associated with realizing merging in practice (§4.2).

4.1 Opportunities

Commonality of layers. A layer is characterized by both
its architecture and its weights. In ML frameworks (e.g., Py-
Torch, TensorFlow), the architecture is defined by first spec-
ifying a layer type (e.g., convolutional, linear, batch normal-
ization), which in turn indicates how the layer transforms
inputs, and dictates the set of defining parameters that must
be specified (e.g., convolutional: kernel, stride, etc., linear:
of input features, bias, etc.). A layer’s weights are a ma-
trix of numbers whose dimensions match the layer structure.
To successfully share a layer across a set of models, that
layer must be architecturally identical in each model, but its
weights need not be the same across appearances.

Architectural equivalence is determined directly from the
model definition in the ML framework (i.e., no inference re-

quired): the layers must be of the same type, with identi-
cal values for type-specific properties. Using this approach,
we studied pairs of 24 different models to identify and an-
alyze layers with identical architectures; Figure 20 presents
our comprehensive results. Below, we summarize our find-
ings; Figure 4 lists results for representative model pairs.

Model pairs fall into one of three categories: (1) instances
of the same model, (2) different models in the same fam-
ily (e.g., ResNet variants), and (3) different models in dif-
ferent families. Multiple instances of the same model un-
surprisingly match on every layer; this favorable scenario is
not uncommon in edge video analytics, as several model ar-
chitectures tend to dominate the landscape [20] and a given
model can be employed on different video feeds or in search
of different objects (§2). More interestingly, we also observe
sharing opportunities across different models from the same
(up to 84.6%) and divergent (up to 96.3%) families.

Models within the same family exhibit significant sharing
opportunities as larger variants are typically extended ver-
sions of the original base model. For instance, ResNet mod-
els share ResNet blocks (groups of 2-3 convolutional lay-
ers) that are repeated at different frequencies, as well as the
first convolutional layer and final fully-connected layer. As
a result, all 41 layers of ResNet18 are shared with ResNet34
(Figure 19). Similarly, in the VGG family, models share the
exact same base architecture and add different numbers of
convolutional layers, e.g., VGG19 shares all 16 of VGG16’s
layers (13 convolutional, 3 fully-connected; Figure 5 (left)).

Sharing for models in different families comes in two
main forms: (a) ‘similar backbones’ and (b) ‘derivatives of.’
Scenario (a) includes pairs of detectors that use the same
(or similar) backbone networks for feature extraction, e.g.,
SSDs that use any VGG backbone, or FasterRCNNs that
use any ResNet backbone. (a) also includes pairs of clas-
sifiers and detectors where the classifier (or a variant) is
used as the detector’s backbone. For instance, every layer
in the ResNet50 backbone of FasterRCNN (which consti-
tutes 51% of the detector’s layers) appears in the ResNet101
classifier. Similar examples include SSD-VGG with any
VGG variant, and SSD-MobileNet with MobileNet. Sce-
nario (b) involves cases where one model family was de-
rived directly from another. For example, VGG was de-
veloped by replacing AlexNet’s large kernels with multiple
smaller ones [96]; VGG16 and AlexNet share 3 out of 16 lay-
ers, including 2 fully-connected layers at the end (Figure 5
(right)). Other examples include InceptionNetV3 [102] with
GoogLeNet [101].

In summary, 43% of all pairs of different models present
sharing opportunities. Of those with substantial (≥ 10%)
common layers, 51% have models in the same family, while
49% involve models from different families; for the latter,
76% are ‘similar backbones’ and 24% are ‘derivatives of.’

These layer similarities generally follow from the fact that
the considered models are all vision processing DNNs. That

0 0.1 0.3 0.6 1.1 2.3 2.3 4.5 9 9 9 9 9 392 64 0

VG
G1

6

0 0.1 0.3 0.6 1.1 2.3 2.3 4.5 9 9 9 9 9 392 64 0

VG
G1

6

0 0.1 0.3 0.6 1.1 2.3 2.3 2.3 4.5 9 9 9 9 9 9 9 392 64 0
Memory Per Layer (MB)

VG
G1

9

0.1 1.2 2.5 3.4 2.3 144 64 0
Memory Per Layer (MB)

Al
ex

Ne
t Convolutional

Fully Connected
Batch Normalization

Figure 5: Sharing opportunities between VGG16 and VGG19 (left), and VGG16 and AlexNet (right).

0

50

100

%
 S

av
in

gs

L1 L2 L3 M1M2M3M4M5M6H1H2H3H4H5H60

10

Ra
w

Sa
vi

ng
s

(G
B)

Figure 6: Potential memory savings when all architecturally
identical layers are shared across the models in each workload.

is, they all ingest pixel representations of raw images, and
employ a series of traditional CV operations [22, 64], e.g., a
convolutional layer is applying a learned filter to raw pixel
values in preparation for downstream processing. Moreover,
the target tasks are rooted in identifying and characterizing
objects in the scene using low-level CV features such as de-
tected edges and corners [27, 49, 65, 66, 71, 118, 119].

Prior work has capitalized on such similarities for ef-
ficient multi-task learning [30, 59, 112] and architecture
search [75, 84]. Those efforts aim to reduce computation
overheads by sharing “stems” of models, i.e., contiguous lay-
ers (and their generated intermediates) starting from the be-
ginning of the models. In contrast, we aim to exploit archi-
tectural similarities to reduce memory overheads via merg-
ing. As a result, merging only requires layer definitions and
weights to be shared, but not generated intermediate values.
This distinction is paramount because, as we will discuss
in §5.2, memory-heavy layers typically reside towards the
end of vision DNNs. Consequently, stem sharing would re-
quire almost all model layers to be shared to reap substantial
memory savings, which in turn brings unacceptable accuracy
drops (§4.2 and §6). Merging, on the other hand, can share
only those memory-heavy layers to simultaneously deliver
substantial memory savings and preserve result accuracy.
Potential memory savings and accuracy improvements.
Figure 6 shows the memory savings from sharing all of the
common layers across the models in each of our workloads;
this represents an upper bound on merging benefits as it
disregards the challenge of identifying an acceptable set of
weights per shared layer (§4.2). As shown, the memory sav-
ings are substantial: per-workload memory usage dropped

LP MP HP0

20

40

Ac
cu

ra
cy

Im
pr

ov
em

en
t

(%
)

Min
25%
75%

Figure 7: Potential accuracy improvements when sharing all
architecturally identical layers. Memory availability is defined
in §2, bars list medians, and error bars span min to max.

by 17.9-86.4% relative to no merging, translating to raw sav-
ings of 0.2-9.9 GB. Importantly, these savings result in 2
and 4 new workloads fitting entirely (no swapping) on edge
boxes with 2 GB and 8 GB of GPU memory (with batch size
1). Similarly, the number of 2 GB edge boxes needed to sup-
port each workload drops from 1-9 to 1-4. We further evalu-
ated the resulting impact on end-to-end accuracy by compar-
ing the performance of the Nexus variant from §3.2 when run
on workloads with and without (maximal) merging. Models
in both cases were ordered in the same way, to maximize
the benefits of merging (§5.4). As shown in Figure 7, merg-
ing can boost accuracy by up to 50% across our workloads.
These benefits are a direct result of lower swapping costs,
and the resulting ability to run on 29-61% more frames.

4.2 Challenges

Merging layers for memory reductions requires using shared
weights across the models in which those layers appear.
However, those shared weights must not result in accuracy
violations for any of the models, despite their potentially
different architectures/tasks, target objects/videos, etc.; such
accuracy drops would forego merging benefits from faster
swapping. Concretely, there are two core challenges in prac-
tically exploiting the architectural commonalities from §4.1.

Challenge 1: sharing vs. accuracy tension. To max-
imize memory savings, merging seeks to share as many
architecturally identical layers as possible across a work-
load’s models. However, we observe that accuracy degra-
dations steadily grow as the number of shared layers in-
creases. Figure 8 illustrates this trend by sharing different
numbers of identical layers across representative pairs of
models that vary on the aforementioned properties, e.g., tar-

10 20 30 40 50 60
Shared Layers

60

70

80

90

100
Ac

cu
ra

cy
 (%

)

Same Task + Object
Same Task, Diff Object
Diff Task + Object

Figure 8: Accuracy after 5 hours of retraining when sharing
additional architecturally-identical layers for different model
pairs (starting from their origins). Tasks cover detection (Faster
RCNN) and classification (ResNet50), and two objects: people,
vehicles. Results list the lower per-model accuracies per pair.

get task. These results were obtained when we increase the
number of shared layers by moving from start to end in the
considered models, but similar trends are observed for other
selection strategies (e.g., random) and models.

The reason for this behavior is intuitive: the retraining per-
formed to assess the feasibility of a sharing configuration is
end-to-end across the considered models. During this pro-
cess, weights are being tuned for all of the layers in all of the
models, with the constraint being that the shared layers each
use a unified set of weights. Sharing more layers has three
effects: (1) more constraints are being placed on the training,
(2) it is harder to find weights for (the shrinking number of)
unshared layers that simultaneously accommodate the grow-
ing constraints, and (3) learning each model’s desired func-
tion becomes more difficult as there exist fewer overall pa-
rameters to tune [23, 70]. It is for these reasons that isolated
merging strategies such as averaging weights across copies
of each shared layer (while keeping other layers unchanged)
do not suffice; we find that sharing even single layers in this
way almost always results in unacceptable accuracy dips.

Digging deeper, the issue stems from non-convex opti-
mization of DNNs, which leads to several equally good
global minima [62, 63]. Thus, training even two identical
models on the same dataset, and for the same task/object, of-
ten results in divergent weights across each layer, despite the
resultant models exhibiting similar overall functionality.
Challenge 2: retraining costs. The retraining involved
in determining whether a set of layers to share can meet
an accuracy target, and if so, the weights to use, can be
prohibitively expensive. For instance, each epoch when
jointly retraining two Faster RCNN models that detect cars at
nearby intersections (i.e., a simple scenario) took ≈35 mins,
and different combinations of layer sharing required between
1-10 epochs to converge. These delays grow as more models
are considered since training data must reflect the behavior
of all of the unmerged models that are involved, e.g., by us-
ing the original training datasets for each of those models.
Worse, it is difficult to know, a priori, which sharing config-
urations can meet accuracy targets (and which will not) in
a reasonable time frame. For example, the model pairs in
Figure 8 have largely different ‘breaking points.’ The result

Merging

Configuration

Cloud
Server

Unmerged
Models

Edge
Server

Merged
Models

Merging
Manager

Dataset
Manager TrainerSampled

Frames

Refresh?

1

Merged
Models

1

23

4
5

Figure 9: Gemel architecture.

also fails to support the use of intuitive trends to predict the
success of sharing configurations: models targeting the same
task or object do not exhibit any discernible advantage.

5 Gemel Design
Gemel is an end-to-end system that practically integrates
model merging into edge video analytics pipelines by ad-
dressing the challenges in §4.2. We first provide an overview
of Gemel’s operation, and then describe the core observa-
tions (and resulting optimizations) that it leverages to enable
timely merging without violating accuracy requirements.

5.1 Overview

Figure 9 shows Gemel’s cloud merging and edge inference
workflows. As in existing pipelines [16,60,71], users register
inference tasks (or “queries”) at Gemel’s cloud component
by providing a DNN, and specifying the input video feed(s)
to run on as well as the required accuracy for the results.
Upon receiving new queries, Gemel bootstraps edge infer-
ence by sending unaltered versions of the registered models
to the appropriate edge box(es) 1 . When GPU memory is
insufficient to house all of those models, edge boxes run the
Nexus variant from §3.2 that pipelines inference and model
loading to maximize the min per-model throughput.

After initiating edge inference, Gemel’s cloud component
begins the merging process, during which it incrementally
searches through the space of potential merging configura-
tions across the registered models, and evaluates the efficacy
of each configuration in terms of both its potential memory
savings and its ability to meet accuracy requirements 2 .
The evaluation of each configuration involves joint retrain-
ing and validation of the models participating in merging.
Since Gemel’s goal is to ensure that the retrained models
deliver sufficient accuracy (relative to the originals) on the
target feeds, data for these tasks can be obtained in one of
two ways: users can supply the data used to train the original
models, or Gemel can automatically generate a dataset by
running the supplied model (or a high-fidelity one [60, 116])
on sampled frames from the target feed.

At the end of each merging iteration, if the considered
configuration was successfully retrained to meet the accu-
racy targets for all constituent models, Gemel shares the up-
dated merged models with the appropriate edge boxes 3 .
New merging results may result in altered edge inference
schedules to maximize merging benefits for reducing swap-
ping costs and boosting inference throughput. The iterative
merging process for the current workload then continues un-
til (1) the cloud resources dedicated to merging have been ex-

pended, (2) no configurations that can deliver superior mem-
ory savings are left to explore, or (3) models with sharing
opportunities are either newly registered or deleted by users.

Gemel periodically assesses data drift for its merged mod-
els. As in prior systems [71, 100], edge servers periodi-
cally send sampled frames (and their inference results, if
collected) to Gemel’s cloud component 4 . These sampled
frames are used to augment the datasets considered for re-
training merged models, and to track the accuracy of recent
results generated at the edge by deployed merged models.
For the latter, Gemel runs the original user models on the
sampled videos and compares the results to those from the
merged models. If accuracy is below the target for any query,
Gemel reverts edge inference to use the corresponding origi-
nal (unmerged) models, and resumes merging and retraining,
starting with the previously deployed weights 5 .
Implementation. Gemel uses PyTorch [18] to manage cloud
merging and edge inference, and is implemented in ≈3500
LOC. More details are presented in A.1.

5.2 Guiding Observations

Two key empirical observations guide Gemel’s approach to
tackling the challenges in §4.2. We describe them in turn.
Observation 1: power-law memory distributions. We find
that vision DNNs commonly exhibit power-law distributions
in terms of memory usage, whereby a few “heavy-hitter”
layers account for most of the overall model’s memory con-
sumption. Figure 10 illustrates this, showing that for 80%
of considered models, 15% of the layers account for 60-91%
of memory usage. For example, a single layer in VGG16
is responsible for 392 MB (the entire model is 536 MB) and
corresponds to the steep slope around the x=80% mark. Sim-
ilarly, Tiny YOLOv3 has three layers (around the 38%, 45%,
and 65% marks) that together use 35 MB of its total 42 MB.

Heavy-hitter layers come in one of two forms. The first
are the convolutional layers at the end of the feature extrac-
tor that condense the numerous low-level features extracted
by prior layers (e.g., shapes, colors) into higher-level, more
abstract features (e.g., eyes, nose). The second are the subse-
quent fully-connected layer(s) that learn more robust patterns
from all possible combinations of those high-level features,
e.g., eyes, nose, and fur might each suggest a dog, but the
combination is a stronger indicator. Note that models gen-
erally include one such fully-connected layer per sub-task,
e.g., detectors have one for finding bounding boxes and one
for classifying objects. Memory-heavy fully-connected lay-
ers are spatially close to one another (within a few layers),
and are usually followed by 1-2 cheap fully-connected lay-
ers that extract predictions from the final feature vector.

The main exception is ResNet, whose models use resid-
ual layers to address accuracy saturation limitations of
prior deep models [47]. ResNet models have memory-
heavy ResNet blocks (set of convolutional layers) that repeat
at varying frequencies, thereby distributing memory more

0 20 40 60 80 100
% Layers

0
20
40
60
80

100

Cu
m

ul
at

iv
e

%
 o

f
M

em
or

y
(M

B)

FasterRCNN-R50
Tiny YOLOv3

YOLOv3
VGG16

ResNet152
ResNet101

SSD-VGG
SSD-Mobilenet

Figure 10: Cumulative memory consumed by each model’s lay-
ers moving from start to end of the model. §A.4 has full legend.

evenly across the models, e.g., ResNet101 and ResNet152
repeat the same ResNet block 23 and 36×, leading to grad-
ual slopes in Figure 10. DenseNet has the same pattern [51].

Figure 10 also shows that heavy-hitter layers most often
appear in the latter half of a model’s architecture (since both
forms involve condensing features from earlier layers), com-
plicating the use of stem sharing for memory savings (§4.2).
For example, Faster RCNN’s expensive fully-connected lay-
ers fall at layers 101 and 104 out of 106, and together account
for 76% of total memory. The few cases with heavy-hitters
in the middle of a model (between the 20-60% marks) are
“single-shot” detectors (SSD-VGG, SSD-Mobilenet, Tiny
YOLOv3, YOLOv3) that find bounding boxes and classify
objects at once, rather than as disparate subtasks. These
models replace the few memory-heavy fully-connected lay-
ers (for those subtasks) with many cheaper convolutional
layers; doing so extends model lengths and shifts the large
jump from memory-heavy feature extractor layers to earlier.

These observations have two implications on merging.
First, strategies can reap most potential memory benefits by
targeting the few heavy-hitter layers in models. Thus, the
tension between memory savings and accuracy is far more
favorable than that between the number of shared layers and
accuracy (Figure 8). Second, strategies should be agnostic to
the position of heavy hitters in models, and must support the
common case where heavy hitters appear towards the end.

Observation 2: independence of per-layer merging deci-
sions. In DNNs, layers are configured based on input for-
mats, target task, execution time, etc. Hence, a natural as-
sumption is that the ability to share any one layer is depen-
dent on sharing decisions for other layers, e.g., a layer may
be shareable if and only if other layers are shared. Prior work
has highlighted that inter-layer dependencies primarily arise
between neighboring layers, e.g., with transfer learning, per-
formance drops are largest when splitting neighboring lay-
ers [112]. Thus, to determine the existence of layer-wise
dependencies as it pertains to merging, we focus our analy-
sis on (potential) dependencies between neighboring layers;
we also consider other layers via random selection. Using
the 25% most memory-heavy layers for each model in our
workloads, we test whether accuracy targets are met under
different sharing configurations (described in Table 2).

Only Alone Only Alternate Both Neither
1 Each Side 1.1% 0.0% 97.6% 1.3%
2 Each Side 3.7% 0.0% 95.0% 1.3%
Random 8.5% 0.0% 90.2% 1.3%

Table 2: Sharing a layer alone vs. alternate approaches (shar-
ing a layer with one or two neighbors on each side, or with 3
random sets of 1-10 layers). Results are % of runs that meet
accuracy targets (aggregated across 80, 90, 95%), and list cases
where the layer alone met but an alternate did not, an alternate
met but the layer alone did not, both met, and neither met.

As shown, we never observe a case where a layer is unable
to meet an accuracy target on its own, but it is able to meet
the accuracy target when some other layers are also shared
(shaded row in Table 2). This is consistent with our finding
that sharing more layers leads to larger accuracy degrada-
tions (Figure 8) since additional constraints are placed on
the weights for those layers, and fewer (unconstrained) non-
shared layers exist to help satisfy the constraints. The impli-
cation is that layers can be considered independently during
merging without harming their potential merging success.
Takeaway. Collectively, these observations motivate an in-
cremental merging process (detailed in §5.3) that attempts
to share one new layer at a time, and prioritizes heavy-
hitter layers that consume the most memory (and are thus the
most fruitful to share). In this manner, memory-heavy layers
are considered in the most favorable settings (i.e., with the
fewest other shared layers), and each increment only mod-
estly adds to the likelihood of not meeting accuracy targets.
Note. Despite arising across our diverse workloads, these
observations are not guarantees. Importantly, violation of
these observations only results in merging delays (inefficien-
cies), but not accuracy breaches; accuracy is explicitly vetted
prior to shipping merged models to the edge for inference.

5.3 Merging Heuristic

Gemel begins by enumerating the layers that appear in a
workload, and annotating each with a listing of which mod-
els the layer appears in (and where) and the total memory it
consumes across the workload; we refer to all appearances
of a given layer as a ‘group.’ Gemel then sorts this list in
descending order of memory consumption, e.g., a 100 MB
layer that appears in 4 models would be earlier than a 120
MB layer that appears 3 times. Thus, memory-heavy groups,
or those that would yield the largest memory savings if suc-
cessfully merged, are towards the start of the list.

Gemel then maintains a running merging configuration,
and simultaneously merges and trains layers across models
in an incremental fashion. To begin, Gemel selects the first
group from the sorted list (i.e., the one that consumes the
most memory in the workload) and attempts to share it across
all of the models in which it appears; this group is added to
the running configuration. While a subset of models could be
considered instead, Gemel aggressively opts to first try shar-
ing across all models in the group, and then to selectively
remove appearances of the layer when the resulting accuracy

is insufficient. The reason is that we did not observe any
model clustering strategies (e.g., based on task) that identi-
fied models consistently unable to share layers.

To retrain and merge the current running configuration,
Gemel selects initial weights for the newly added group from
a random model that includes that layer. We tried selecting
weights from each model (including the one with the highest
accuracy) but found no difference in the # of epochs needed
to meet accuracy. We also tried default initialization tech-
niques (e.g., Kaiming [48]), which led to lower accuracy. Re-
training continues until the merged models each meet their
accuracy targets, or a preset time budget elapses (10 epochs
by default). If retraining is successful, Gemel adds the next
group in the sorted list to the running configuration, and re-
sumes retraining from the weights at the end of the previous
iteration. The generated merged models are sent to the edge
box and incorporated into edge inference (§5.4).

If retraining is not successful at the end of an iteration,
Gemel must decide whether to prune layers from the cur-
rent group and try again, or to discard the group altogether
and move on to the next one in the sorted list. To do this,
Gemel follows a strategy that aims to balance fast memory
savings and avoidance of unsuccessful training rounds, with
priority on the latter since failures can consume 3-10 epochs
(each up to 30 min) and provide no new memory savings.
Specifically, recall that each time a new group is considered,
the number of shared layers in the merging configuration
grows by the size of the group. To counter this ‘additive in-
crease,’ upon unsuccessful retraining, Gemel halves the cur-
rent group, eliminating half of the layer appearances. If the
resulting layer appearances consume more memory than the
next group, Gemel considers those layers; else, Gemel re-
moves the current group from the running policy, and moves
to the next one. In either case, retraining resumes from the
weights at the end of the last successful iteration. We com-
pare against alternate merging heuristics in §6.2.

Accelerating retraining. Each iteration requires Gemel to
run retraining over many epochs, and validate the results
accuracy-wise. To accelerate training and validation, Gemel
takes an adaptive approach. During validation, as per-model
accuracy values approach their targets, it is often unneces-
sary to train further on full epochs of data. Instead, Gemel
reduces the training data once the accuracy is within a pre-
defined threshold of the target. Specifically, Gemel reduces
the amount of data so it is inversely proportional to the gap in
accuracy normalized by the lift since the previous training.
Reducing data on such early success directly translates to
lower training times. Similarly, Gemel detects early failures
by looking at the validation results and removing models that
are not improving at the same pace as the others after some
time (3 epochs by default). We empirically observe that early
success and early failure detection drastically (28% on aver-
age) reduces retraining times.

LP MP HP0

25

50

Ac
cu

ra
cy

Im
pr

ov
em

en
t

(%
)

Min
25%
75%

Figure 11: Accuracy improvements with Gemel compared to
time/space-sharing alone for different GPU memories (defined
in §2). Bars list median workloads, with error bars as min-max.

5.4 Edge Inference

Upon receiving a new set of merged models from Gemel’s
cloud component, an edge server quickly incorporates those
models into its inference schedule. However, to ensure that
merging benefits are maximized, the schedule is altered to
reduce the amount of data that must be loaded across the
anticipated swaps. During the offline profiling Nexus uses to
select per-model batch sizes, Gemel estimates per-workload-
iteration swapping delays based on per-model computation
costs and swapping delays (both influenced by merging).
The idea is that, when merging is used, in addition to or-
dering models to reduce the number of swaps, models that
share the most layers should be placed next to one another in
the load order. This lowers the cost of each swap by enabling
finer-grained swapping, where only those layers in the next
model that are not already in GPU memory must be loaded.

More generally, all schedulers will reap merging benefits
in the event that Gemel enables a workload to entirely fit
on an edge box (without swapping). Additional benefits de-
pend on the specific scheduler. For schedulers that employ a
statically-configured load order [81, 94], Gemel can directly
modify the schedule as described above to maximize bene-
fits. Other schedulers [39] dynamically select the load order
to optimize for a certain metric. Such schedulers typically
incorporate model loading times when estimating the effi-
cacy of different orders, and thus would naturally factor in
the effects of merging per swap. Note that merging benefits
would be considered in the context of meeting the optimiza-
tion metric(s) rather than minimizing global loading delays
(as in Gemel’s Nexus variant). Lastly, schedulers that ig-
nore load times in favor of policies such as FIFO [105] or
priority scheduling [111] will only see merging-induced re-
ductions in loading costs if merged models are (by chance)
neighbors in the order. Note that finer-grained [50, 110] and
space-sharing [9,14,17,21] schedulers follow the same prin-
ciples: shared layers should be adjacent in the load orders for
the former, while models with the most shared layers should
be placed in the same GPU partition for the latter.

6 Evaluation
We primarily evaluated Gemel across the diverse workloads
and settings from §2. Our key findings are:
• Gemel improves per-workload accuracies by 8-39% com-

pared to time/space-sharing strategies alone; these im-

0

50

100

%
 S

av
in

gs

L1 L2 L3 M1M2M3M4M5M6H1H2H3H4H5H6
Workloads

0

10

Ra
w

Sa
vi

ng
s

(G
B)

Figure 12: Gemel’s per-workload memory savings. Lines above
bars show the theoretical optimal savings from Figure 6.

provements result from Gemel processing 13-44% more
frames (while adhering to SLAs).

• Gemel lowers memory needs by 17.5-60.7% (0.2-5.1 GB);
savings are 5.9-52.3% more than Mainstream [59] (stem
sharing), and within 9.3-29.0% of an optimal that ignores
weights (and accuracy drops) when sharing layers.

• More than 70% of Gemel’s memory savings are achieved
within the first 24-210 minutes of merging+retraining due
to its incremental merging heuristic.

6.1 Overall Performance

End-to-end Accuracy Improvements. We first compare
Gemel with time/space-sharing solutions alone, i.e., the
Nexus variant running with only unmerged (original) mod-
els. Our experiments consider all workloads and resource
settings from §2, a per-frame processing SLA of 100 ms,
and an accuracy target of 95%; trends hold for other accu-
racy targets and SLAs, which we consider in §6.2.

Figure 11 presents our results, showing that Gemel im-
proves accuracy by 8.0%, 13.5%, and 39.1% for the median
LP, MP, and HP workloads, respectively, when the edge box
GPU’s memory is just enough to load and run the largest
model in each workload, i.e., the min setting. The origin of
these benefits is Gemel’s ability to reduce the time blocked
on swapping delays by 17.9-84.0%, which enables process-
ing on 13-44% more frames than without merging.

Our results highlight two other points. First, Gemel’s ben-
efits are highest for workloads that are most significantly bot-
tlenecked by memory restrictions (and thus loading costs).
For instance, workloads HP1 and LP1 exhibit largely dif-
ferent memory vs. computation profiles: loading costs are
66% of computation costs in the former, but only 15% in the
latter. Accordingly, Gemel’s accuracy wins across the avail-
able memory settings are 11-60% and 5-16% for workloads
HP1 and LP1. Second, Figure 11 shows that, as expected,
Gemel’s benefits per workload decrease as the available GPU
memory grows, e.g., accuracy improvements drop to 17.5%
and 10.2% for the median MP workload when GPU memory
grows to 50% and 75% of the total workload memory needs.
The reason is straightforward: larger GPU memory yields
fewer required swaps without merging.

LP MP HP0

50

100
M

em
or

y
Sa

ve
d

(%
) Optimal

Gemel
Mainstream

Figure 13: Memory savings with Gemel, an optimal that ignores
accuracy, and Mainstream [59]. Bars list the median workload
per class, with error bars spanning min to max.

Memory Reductions. Figure 12 lists the memory reduc-
tions that Gemel delivers for each considered workload by
sharing model layers and the associated weights, i.e., pa-
rameter reductions. We note that reported values here are
based on Gemel’s final merging results and an accuracy tar-
get of 95%; we analyze the incremental nature of Gemel’s
merging heuristic in §6.2. As shown, parameter reductions
are 17.5-33.9% for LP workloads, 28.6-46.9% for MP work-
loads, and 40.9-60.7% for HP workloads; the corresponding
raw memory savings are 0.2-0.3 GB, 0.2-0.8 GB, and 0.7-5.1
GB, respectively. When analyzed in terms of overall mem-
ory usage during inference (i.e., including the parameters, in-
ference framework, and intermediate data generated during
model execution), reductions are 4.5-48.1% across the work-
loads. Wins are generally higher for workloads with larger
parameter reductions, with the exception of Workloads LP1
and LP3 (reductions of 6.3% and 4.5%) whose intermediates
are particularly large relative to the parameters.

To better contextualize the above memory savings, we
compare Gemel with two alternatives. First, we consider a
theoretical optimal (Optimal) that shares all layers that are
architecturally identical across a workload’s models, without
considering accuracy (and the need to find shared weights
for those layers). Thus, Optimal represents an upper bound
on Gemel’s potential memory savings. Second, we compare
with Mainstream [59], a recent stem-sharing approach. To
run Mainstream, we trained each model in our workloads
several times, each time starting with pre-trained weights
(based on ImageNet [90]) and freezing up to different points,
e.g., freeze up to layer 10, freeze up to layer 15, etc. We
selected the configuration for each model that kept the most
layers frozen while meeting the accuracy target (95% relative
to no freezing). Then, within each workload, we merged all
layers that were shared across the frozen layer set of the con-
stituent models (note that these layers have identical weights)
and recorded the resultant memory savings.

Figure 13 shows our results, from which we draw two con-
clusions. First, Gemel’s memory savings are within 9.3%,
15.0%, and 29.0% of Optimal for the median LP, MP, and
HP workloads. Second, Gemel’s memory reductions are 5.9-
52.3% larger than Mainstream’s across all workloads. This
is a direct consequence of Gemel’s prioritization of memory-
heavy layers that routinely appear towards the end of mod-
els (§5.2). By requiring shared stems from the start of the
models, Mainstream would have to share all layers up to the

0 200 400 600
Time (Min)

0

50

M
em

or
y

Sa
ve

d
(%

)

LP
MP
HP

0 200 400 600
Time (Min)

0

10

20

Cu
m

ul
at

iv
e

BW
Us

ag
e

(G
B) LP

MP
HP

Figure 14: Gemel’s memory savings (left) and cloud-to-edge
bandwidth usage (right) over time during incremental merging.
Results show the median workload per class.

memory-heavy ones; we find that sharing nearly-entire mod-
els is rarely possible while meeting accuracy targets (Fig-
ure 8). The high variance in Mainstream’s results are due
to the fact that different models drop in accuracy at different
rates when more layers are frozen. Classifiers drop relatively
slowly (savings up to 70.1%), while detectors are a harder
task with faster accuracy drops (Mainstream was unable to
share many layers, with savings as low as 1.0%).

6.2 Analyzing Gemel
Incremental memory savings. Key to Gemel’s practicality
are its efficient merging heuristic and retraining optimiza-
tions that aim to reap memory savings early in the process;
indeed, this is important not only to reap accuracy-friendly
memory wins quickly, but also to quickly respond to work-
load changes. As shown in Figure 14 (left), 73% of Gemel’s
achieved memory savings for the median HP workload are
realized within the first 24 minutes of merging. Similarly,
86% and 64% of the total memory savings are achieved in
the first 42 and 210 minutes of merging for median MP and
LP workloads, respectively.
Network bandwidth usage. After each successful merg-
ing iteration, Gemel ships weights to edge servers for all
updated models. As shown in Figure 14 (right), cumula-
tive bandwidth usage during merging is 6.0-19.4 GB for
the three workloads. Importantly, bandwidth consumption
largely grows after substantial memory savings are already
reaped. For example, for the median MP workload, 86% of
memory savings are achieved in 42 minutes, while only 2.1
GB (of the total 6.0 GB) of bandwidth is used during that
time. The reason is that later merging iterations explore the
larger number of lower-memory layers. Thus, Gemel can
often deliver large memory savings even in constrained set-
tings with bandwidth caps. Note that shipping weights uses
cloud-to-edge (not precious edge-to-cloud) bandwidth.
Micro-benchmarks. We profile the time spent in each of
Gemel’s components. Training delays are configurable (Fig-
ure 14), but dominate cloud merging, with the remaining
<2% of time spent on identifying shareable layers (0.7-1.4s
per workload) and serializing/saving weights from success-
ful training (9.1-19.5s per round). The majority of time spent
at the edge steadily shifts from model loading to inference as
Gemel’s incremental merging results stream in; at the me-
dian, time spent blocked reduces from 32.8%, 48.3%, and
52.0% to 22.1%, 34.6%, and 27.9% for the LP, MP, and HP

LP MP HP0
10
20
30
40
50

Ge
m

el
 A

cc
ur

ac
y

W
in

s (
%

)
Varied Accuracy Target

80%
85%
90%
95%

LP MP HP

Varied FPS
5
10
20
30

LP MP HP

Varied SLA
100
200
300
400

Figure 15: Gemel’s accuracy wins (compared to time/space-sharing alone) with varied accuracy targets, FPS, and SLAs.

workloads respectively. Applying results takes <.15s and is
not blocking.

Varying accuracy, FPS, and SLA. To evaluate the impact
of each parameter, we conducted experiments using one ran-
domly selected workload from each class. In each experi-
ment, we only vary one parameter, while keeping the other
two at the fixed values from above (95%, 30 FPS, 100 ms).

Figure 15 presents our results, which exhibit three trends.
First, Gemel’s accuracy wins over time/space-sharing alone
grow (by 1.1-7.8% for the three workloads) as accuracy tar-
gets drop (from 95% to 80%). This is because certain layers
failed to meet 95% during retraining, but did meet a lower
accuracy target. Second, Gemel’s accuracy wins drop as in-
put video frame rates (FPS) drop, e.g., from 6.2-42% across
the workloads when FPS drops from 30 fps to 5 fps. The rea-
son is that lower FPS values reduce the amount of inference
in any time window (assuming a fixed SLA), which in turn
adds tolerance to high loading delays. Third, Gemel’s ben-
efits grow as SLAs become stricter: accuracy wins for the
three workloads rise by 0.4-2.3% when SLA drops from 400
to 100 ms. This is because tighter SLAs imply more skipped
frames for a given swapping delay.

Comparison to other merging heuristics. We consider
variants that differ from Gemel in one of two ways: they
choose layers to merge in a different order or they merge a
different number of layers at a time. We describe the variants
of each type below, along with the corresponding results.
Our experiments use all workloads from §2, and we report
memory saved over time. Figure 16 shows results for two
representative workloads (HP3, MP2); the remaining work-
load results are in §A.4. In summary, no variant consistently
outperforms Gemel, and the degradations (in saved mem-
ory or merging delays) that each brings to certain workloads
(from being overly aggressive or cautious) are substantial.

Rather than merging layers in descending order of mem-
ory usage (irrespective of position) as Gemel does, the vari-
ants we consider start by merging the models’ earliest lay-
ers (Earliest), latest layers (Latest), and three random layer
orderings (Random). Across all workloads, these heuristics
all resulted in significantly lower memory savings. Among
the three, Latest performed the best (median of 13.5% of
Gemel’s savings), as memory-heavy layers often appear later
in a model (but not necessarily the end). For the same rea-

0 100 200 3000

1

2

M
em

or
y

Sa
ve

d
(G

B)

0 100 200 300

0.05

0.10

0.0 0.2 0.4 0.6 0.8 1.0
Time (min)

0.0

0.5

1.0 Workload
HP3

Workload
MP2

GEMEL
TwoGroup

Earliest
Latest

Random
OneModelAtATime

Figure 16: Comparing variants of Gemel’s merging heuristic
on two representative workloads.

son, Earliest performed the worst (0.2% of Gemel’s savings).
Random’s performance varied dramatically (0.2% - 72.9%,
median of 5.7% of Gemel’s savings) based on whether a
memory-heavy layer was selected.

We consider two variants to Gemel’s approach of adding
one layer group at a time across all models that layer appears
in. First, TwoGroup more aggressively adds two groups at a
time. This can result in faster memory savings than Gemel
(3/15 workloads, including Figure 16 (left)), but most often
(8/15 workloads) misses accuracy targets and results in sub-
stantial slowdowns (78 min longer to max savings for the
median workload). The reason is that, on failure, TwoGroup
restarts training with 1 group, adding long delay without
memory savings, e.g., x=75-220 min in Figure 16 (right).
Second, OneModelAtATime less aggressively shares the se-
lected group’s layer iteratively across the models it appears
in. This reaches within 5% of Gemel’s memory savings in
8/15 workloads, but is often unnecessarily slow, e.g., in Fig-
ure 16 (left), Gemel successfully considers 5 models at once,
while OneModelAtATime individually adds models (some of
which fail) leading to the flat stretch from 0-91 min.

6.3 Generalization Study

We evaluate Gemel on over 850 more workloads that extend
our main ones by adding: (1) new scene types and the ob-
jects they bring (e.g., bags, hats, and people at a beach, boats
in a canal), and (2) new models, including more variants in
the same families (e.g., ResNet, VGG), and entirely new ar-
chitectures (e.g., GoogLeNet [101], DenseNet [51]). In total,
our analysis involves 17 videos (8 scene types), 13 objects,
and 16 models; the extended version [82] lists the values.
Constructing workloads. Each query in a workload is pa-
rameterized by a set of knobs: camera feed (and correspond-
ing scene type), model, and object of interest. To study the

C O M CO CM
Knob(s) varied per workload

50

100
%

 P
os

sib
le

M
em

or
y

Sa
ve

d

2 Queries
3 Queries
4 Queries
5 Queries

Figure 17: Memory savings across subset of generalization
workloads, organized by workload size (color) and knobs var-
ied (Camera, Object, Model). Distributions show median and
25-75%ile; accuracy target was 95%. Figure 22 has full graph.

impact of varying each knob (or combination of knobs) on
Gemel’s merging, we construct workloads as follows. For
each set of target knobs to vary, we start with a random query
and incrementally add new queries that only vary values for
the target knobs to generate workloads with 2-5 queries each.
We did this up to 30 times each for all target knob sets (as
their values permit), excluding only (1) target knob sets that
vary the scene but not camera knob, (2) queries for an object
that never appears in a given camera feed, and (3) workloads
with no possible memory sharing opportunities.

Findings. As shown in Figure 17, Gemel’s memory sav-
ings are high for 2-query workloads (89-98% of optimal at
medians), but steadily degrade as workloads grow. This is
expected as increasing workload size is (by design, and unre-
alistically) increasing heterogeneity in this experiment. The
nature of degradation depends on the knob(s) being varied.
For all combinations of {camera, object, scene}, degrada-
tions are mild moving from 2- to 5-query workloads (0-8%),
showing Gemel’s robustness to variations on those proper-
ties. Since model is constant in these cases, degradations are
because the same set of shareable layers must support more
diverse scenarios (making it harder to find shared weights).

The Model knob (alone or with other knobs) presents a
different picture, with larger drops in median memory sav-
ings (2-33%) and broader distributions. We can decompose
this into two aspects as workload sizes increase:

• Previously-shared layers appear in the new model: the
effect on memory savings heavily depends on where the
shared layer appears in the new model; recall that layers
can appear in different positions (and thus, serve different
roles) across models (Figure 19). Cases where the new
model introduces drastically different positions for shared
layers (e.g., ResNet variants) account for the low-end of
the resultant distributions, while memory savings largely
persist when positions of shared layer(s) are similar in the
new model (e.g., merging across VGG variants).

• New layers are shareable with the new model: the extra
sharing opportunities increase potential savings, but are
more challenging to realize as they reduce the number of
non-shared layers whose weights help compensate for the
constraints from sharing (§4.2).

7 Additional Related Work
Certain systems reuse model components [91], most relat-
edly via stem sharing for compute savings [59] or sharing
operators with identical weights anywhere in models [68]; in
contrast, Gemel targets memory savings, and enables shar-
ing architecturally-identical layers anywhere in models even
if they have different weights. Layer sharing in multi-task
learning is often studied in the context of transfer learning,
where models for a task with insufficient data leverage the
dataset of a related task [30,99,103]; Gemel considers multi-
ple sets of pretrained weights for sharing, each with different
goals (e.g., detection vs. classification, different objects).

Other platforms optimize model serving either by tun-
ing video analytics-specific knobs to lower compute foot-
prints [29,35,49,55,60,61,87,109,116,117], or by identify-
ing lightweight variants of individual models that match spe-
cific hardware resources [45, 89]; Gemel focuses on mem-
ory (not compute) bottlenecks, and optimizes across models.
Some frameworks reuse results across frames [31,33,42,67,
71], reducing frame rates for inference and alleviating the
impact of model loading delays. Gemel provides benefits
at lower FPS (§6.2), and also can alleviate memory pressure
across spatially correlated feeds that exhibit limited reuse op-
portunities at the same time (§3.2).

There exist training optimizations that trade off memory
usage for computation overheads [83, 86, 93]; we eschew
such techniques given the holistic constraint on compute re-
sources that edge boxes face (§1). Finally, another body of
work develops metrics to quantify how similar models will
behave [41, 58, 72]. While Gemel does not consider model
similarity metrics in its heuristic (we quantitatively observe
that ‘model similarity’ is not reflected in layer merging po-
tential), we leave it to future work to explore the relationship
between ‘model similarity’ and ‘layer similarity’ in improv-
ing Gemel’s prediction of layer merging potential.

8 Conclusion
Model merging is a new memory management technique
that exploits architectural similarities across vision DNNs by
sharing their common layers (including parameters but not
intermediates). Gemel efficiently carries out model merg-
ing by quickly finding and retraining accuracy-preserving
layer sharing configurations, and scheduling edge inference
to maximize merging benefits (8-39% accuracy boosts).

Acknowledgements. We thank Ramesh Govindan and Jen-
nifer Rexford for their valuable feedback on earlier drafts
of the paper. We thank our shepherd, Wenjun Hu, and
the anonymous NSDI reviewers for their constructive com-
ments. This work was supported in part by a Sloan
Research Fellowship, research grants from Cisco, ONR
grant N00014-18-1-2037, and NSF CNS grants 2152313,
2153449, 2147909, 2140552, 1703598, 1763172, 1907352,
2007737, 2006437, 2128653, and 2106838.

References
[1] Absolutely everywhere in beijing is now covered by

police video surveillance. https://qz.com/518874/.

[2] Are we ready for ai-powered security cameras? https:
/ / thenewstack . io / are - we - ready - for - ai - powered -
security-cameras/.

[3] AWS Outposts. https://aws.amazon.com/outposts/.

[4] Azure Stack Edge. https://azure.microsoft.com/en-
us/products/azure-stack/edge/.

[5] British transport police: Cctv. http : / / www.
btp.police.uk/advice and information/safety on and
near the railway/cctv.aspx.

[6] Can 30,000 cameras help solve chicago’s crime prob-
lem? https://www.nytimes.com/2018/05/26/us/
chicago-police-surveillance.html.

[7] Edge computing at chick-fil-a. https : / /medium.
com/@cfatechblog/edge-computing-at-chick-fil-a-
7d67242675e2.

[8] NVIDIA Jetson: The AI platform for edge comput-
ing. https://www.nvidia.com/en- us/autonomous-
machines/embedded-systems/.

[9] NVIDIA Multi-Instance GPU . https://www.nvidia.
com/en-us/technologies/multi-instance-gpu/.

[10] Paris hospitals to get 1,500 cctv cameras to combat
violence against staff. https://bit.ly/2OYiBz2.

[11] Powering the edge with ai in an iot world. https://
www.forbes.com/sites/forbestechcouncil/2020/04/06/
powering-the-edge-with-ai-in-an-iot-world/.

[12] Video analytics applications in retail - beyond secu-
rity. https://www.securityinformed.com/insights/co-
2603-ga-co-2214-ga-co-1880-ga.16620.html/.

[13] The vision zero initiative. http : / / www .
visionzeroinitiative.com/.

[14] Cuda multi-process service, April 2021.

[15] Live Video Analytics with Microsoft Rocket for re-
ducing edge compute costs, May 2021.

[16] Microsoft rocket video analytics platform, April 2021.

[17] NVIDIA TensorRT, April 2021.

[18] Pytorch, April 2021.

[19] Pytorch-yolov3. https://github.com/eriklindernoren/
PyTorch-YOLOv3, 2021.

[20] Traffic Video Analytics – Case Study Report, May
2021.

[21] R. B. , Z. Xia, G. Ananthanarayanan, J. Jiang, Y. Shu,
N. Karianakis, K. Hsieh, V. Bahl, and I. Stoica. Ekya:
Continuous learning of video analytics models on
edge compute servers. In USENIX NSDI, April 2022.

[22] M. Alam, M. Samad, L. Vidyaratne, A. Glandon,
and K. Iftekharuddin. Survey on deep neural net-
works in speech and vision systems. Neurocomputing,
417:302–321, 2020.

[23] Z. Allen-Zhu, Y. Li, and Y. Liang. Learning and gen-
eralization in overparameterized neural networks, go-
ing beyond two layers. CoRR, abs/1811.04918, 2018.

[24] Amazon. Rekognition. https://aws.amazon.com/
rekognition/.

[25] G. Ananthanarayanan, V. Bahl, L. Cox, A. Crown,
S. Nogbahi, and Y. Shu. Video analytics - killer
app for edge computing. In Proceedings of the 17th
Annual International Conference on Mobile Systems,
Applications, and Services, MobiSys ’19, pages 695–
696, New York, NY, USA, 2019. Association for
Computing Machinery.

[26] Z. Bai, Z. Zhang, Y. Zhu, and X. Jin. Pipeswitch:
Fast pipelined context switching for deep learning ap-
plications. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20), pages
499–514. USENIX Association, Nov. 2020.

[27] S. Brutzer, B. Hoferlin, and G. Heidemann. Evalu-
ation of background subtraction techniques for video
surveillance. In Proceedings of the 2011 IEEE Con-
ference on Computer Vision and Pattern Recognition,
CVPR ’11, pages 1937–1944, Washington, DC, USA,
2011. IEEE Computer Society.

[28] Z. Cai, M. Saberian, and N. Vasconcelos. Learning
complexity-aware cascades for deep pedestrian de-
tection. In Proceedings of the 2015 IEEE Interna-
tional Conference on Computer Vision (ICCV), ICCV
’15, pages 3361–3369, Washington, DC, USA, 2015.
IEEE Computer Society.

[29] C. Canel, T. Kim, G. Zhou, C. Li, H. Lim, D. G.
Andersen, M. Kaminsky, and S. R. Dulloor. Scal-
ing video analytics on constrained edge nodes. In 2nd
SysML Conference, 2019.

[30] R. Caruana. Multitask learning. Machine learning,
28(1):41–75, 1997.

https://qz.com/518874/
https://thenewstack.io/are-we-ready-for-ai-powered-security-cameras/
https://thenewstack.io/are-we-ready-for-ai-powered-security-cameras/
https://thenewstack.io/are-we-ready-for-ai-powered-security-cameras/
https://aws.amazon.com/outposts/
https://azure.microsoft.com/en-us/products/azure-stack/edge/
https://azure.microsoft.com/en-us/products/azure-stack/edge/
http://www.btp.police.uk/advice_and_information/safety_on_and_near_the_railway/cctv.aspx
http://www.btp.police.uk/advice_and_information/safety_on_and_near_the_railway/cctv.aspx
http://www.btp.police.uk/advice_and_information/safety_on_and_near_the_railway/cctv.aspx
https://www.nytimes.com/2018/05/26/us/chicago-police-surveillance.html
https://www.nytimes.com/2018/05/26/us/chicago-police-surveillance.html
https://medium.com/@cfatechblog/edge-computing-at-chick-fil-a-7d67242675e2
https://medium.com/@cfatechblog/edge-computing-at-chick-fil-a-7d67242675e2
https://medium.com/@cfatechblog/edge-computing-at-chick-fil-a-7d67242675e2
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
https://bit.ly/2OYiBz2
https://www.forbes.com/sites/forbestechcouncil/2020/04/06/powering-the-edge-with-ai-in-an-iot-world/
https://www.forbes.com/sites/forbestechcouncil/2020/04/06/powering-the-edge-with-ai-in-an-iot-world/
https://www.forbes.com/sites/forbestechcouncil/2020/04/06/powering-the-edge-with-ai-in-an-iot-world/
https://www.securityinformed.com/insights/co-2603-ga-co-2214-ga-co-1880-ga.16620.html/
https://www.securityinformed.com/insights/co-2603-ga-co-2214-ga-co-1880-ga.16620.html/
http://www.visionzeroinitiative.com/
http://www.visionzeroinitiative.com/
https://github.com/eriklindernoren/PyTorch-YOLOv3
https://github.com/eriklindernoren/PyTorch-YOLOv3
https://aws.amazon.com/rekognition/
https://aws.amazon.com/rekognition/

[31] T. Y.-H. Chen, L. Ravindranath, S. Deng, P. Bahl, and
H. Balakrishnan. Glimpse: Continuous, real-time ob-
ject recognition on mobile devices. In Proceedings of
the 13th ACM Conference on Embedded Networked
Sensor Systems, pages 155–168, 2015.

[32] M. Chow, D. Meisner, J. Flinn, D. Peek, and T. F.
Wenisch. The mystery machine: End-to-end perfor-
mance analysis of large-scale internet services. OSDI,
2014.

[33] D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin, J. E.
Gonzalez, and I. Stoica. Clipper: A Low-Latency on-
line prediction serving system. In 14th USENIX Sym-
posium on Networked Systems Design and Implemen-
tation (NSDI 17), pages 613–627, Boston, MA, Mar.
2017. USENIX Association.

[34] S. R. E. Datondji, Y. Dupuis, P. Subirats, and
P. Vasseur. A survey of vision-based traffic monitoring
of road intersections. Trans. Intell. Transport. Sys.,
17(10):2681–2698, Oct. 2016.

[35] K. Du, A. Pervaiz, X. Yuan, A. Chowdhery, Q. Zhang,
H. Hoffmann, and J. Jiang. Server-driven video
streaming for deep learning inference. In Proceed-
ings of the Annual Conference of the ACM Special
Interest Group on Data Communication on the Ap-
plications, Technologies, Architectures, and Protocols
for Computer Communication, SIGCOMM ’20, page
557–570, New York, NY, USA, 2020. Association for
Computing Machinery.

[36] M. Everingham, L. Gool, C. K. Williams, J. Winn,
and A. Zisserman. The pascal visual object classes
(voc) challenge. Int. J. Comput. Vision, 88(2):303–
338, June 2010.

[37] Google. Google edge network. https://peering.google.
com/#/infrastructure, 2016.

[38] Google. Cloud vision api. https://cloud.google.com/
vision, 2021.

[39] A. Gujarati, R. Karimi, S. Alzayat, W. Hao, A. Kauf-
mann, Y. Vigfusson, and J. Mace. Serving dnns like
clockwork: Performance predictability from the bot-
tom up. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20), pages
443–462. USENIX Association, Nov. 2020.

[40] P. Guo, B. Hu, and W. Hu. Mistify: Automating DNN
model porting for on-device inference at the edge. In
18th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 21), pages 705–719.
USENIX Association, Apr. 2021.

[41] P. Guo, B. Hu, and W. Hu. Sommelier: Curating dnn
models for the masses. In Proceedings of the 2022

International Conference on Management of Data,
pages 1876–1890, 2022.

[42] P. Guo and W. Hu. Potluck: Cross-application approx-
imate deduplication for computation-intensive mobile
applications. SIGPLAN Not., 53(2):271–284, mar
2018.

[43] HAILO. Edge AI Box. https://hailo.ai/reference-
platform/edge-ai-box/, 2021.

[44] B. Han, F. Qian, L. Ji, and V. Gopalakrishnan. Mp-
dash: Adaptive video streaming over preference-
aware multipath. In Proceedings of the 12th In-
ternational on Conference on Emerging Networking
EXperiments and Technologies, CoNEXT ’16, pages
129–143, New York, NY, USA, 2016. ACM.

[45] S. Han, H. Shen, M. Philipose, S. Agarwal,
A. Wolman, and A. Krishnamurthy. Mcdnn: An
approximation-based execution framework for deep
stream processing under resource constraints. In Pro-
ceedings of the 14th Annual International Conference
on Mobile Systems, Applications, and Services, Mo-
biSys ’16, page 123–136, New York, NY, USA, 2016.
Association for Computing Machinery.

[46] K. He, G. Gkioxari, P. Dollár, and R. B. Girshick.
Mask R-CNN. CoRR, abs/1703.06870, 2017.

[47] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual
learning for image recognition, 2015.

[48] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep
into rectifiers: Surpassing human-level performance
on imagenet classification. CoRR, abs/1502.01852,
2015.

[49] K. Hsieh, G. Ananthanarayanan, P. Bodik,
S. Venkataraman, P. Bahl, M. Philipose, P. B.
Gibbons, and O. Mutlu. Focus: Querying large
video datasets with low latency and low cost. In 13th
USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18), pages 269–286,
Carlsbad, CA, Oct. 2018. USENIX Association.

[50] C.-C. Huang, G. Jin, and J. Li. Swapadvisor: Pushing
deep learning beyond the gpu memory limit via smart
swapping. In Proceedings of the Twenty-Fifth Interna-
tional Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, AS-
PLOS ’20, page 1341–1355, New York, NY, USA,
2020. Association for Computing Machinery.

[51] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Wein-
berger. Densely connected convolutional networks,
2016.

https://peering.google.com/#/infrastructure
https://peering.google.com/#/infrastructure
https://cloud.google.com/vision
https://cloud.google.com/vision
https://hailo.ai/reference-platform/edge-ai-box/
https://hailo.ai/reference-platform/edge-ai-box/

[52] J. Hui. Object detection: speed and accuracy compar-
ison (Faster R-CNN, R-FCN, SSD, FPN, RetinaNet
and YOLOv3). https://jonathan-hui.medium.com/
object- detection- speed- and- accuracy- comparison-
faster - r - cnn - r - fcn - ssd - and - yolo - 5425656ae359,
2018.

[53] C. Hung, G. Ananthanarayanan, P. Bodik, L. Gol-
ubchik, M. Yu, P. Bahl, and M. Philipose. Videoedge:
Processing camera streams using hierarchical clusters.
In 2018 IEEE/ACM Symposium on Edge Computing
(SEC), pages 115–131, Oct 2018.

[54] IBM. Maximo remote monitoring. https://www.ibm.
com/products/maximo/remote-monitoring, 2021.

[55] S. Jain, X. Zhang, Y. Zhou, G. Ananthanarayanan,
J. Jiang, Y. Shu, V. Bahl, and J. Gonzalez. Spatula: Ef-
ficient cross-camera video analytics on large camera
networks. In ACM/IEEE Symposium on Edge Com-
puting (SEC 2020), November 2020.

[56] M. Jeon, S. Venkataraman, A. Phanishayee, J. Qian,
W. Xiao, and F. Yang. Analysis of large-scale
multi-tenant GPU clusters for DNN training work-
loads. In 2019 USENIX Annual Technical Conference
(USENIX ATC 19), pages 947–960, Renton, WA, July
2019. USENIX Association.

[57] M. Jeon, S. Venkataraman, J. Qian, A. Phanishayee,
W. Xiao, and F. Yang. Multi-tenant gpu clusters for
deep learning workloads: Analysis and implications.
Technical report, Microsoft Research, 2018.

[58] H. Jia, H. Chen, J. Guan, A. S. Shamsabadi, and
N. Papernot. A zest of LIME: Towards architecture-
independent model distances. In International Con-
ference on Learning Representations, 2022.

[59] A. H. Jiang, D. L.-K. Wong, C. Canel, L. Tang,
I. Misra, M. Kaminsky, M. A. Kozuch, P. Pillai,
D. G. Andersen, and G. R. Ganger. Mainstream: Dy-
namic stem-sharing for multi-tenant video process-
ing. In 2018 USENIX Annual Technical Conference
(USENIX ATC 18), pages 29–42, Boston, MA, July
2018. USENIX Association.

[60] J. Jiang, G. Ananthanarayanan, P. Bodik, S. Sen, and
I. Stoica. Chameleon: Scalable adaptation of video
analytics. In Proceedings of the 2018 Conference of
the ACM Special Interest Group on Data Communica-
tion, SIGCOMM ’18, page 253–266, New York, NY,
USA, 2018. Association for Computing Machinery.

[61] D. Kang, J. Emmons, F. Abuzaid, P. Bailis, and
M. Zaharia. Noscope: Optimizing neural network

queries over video at scale. Proc. VLDB Endow.,
10(11):1586–1597, Aug. 2017.

[62] K. Kawaguchi, J. Huang, and L. P. Kaelbling. Every
local minimum value is the global minimum value of
induced model in nonconvex machine learning. Neu-
ral Computation, 31(12):2293–2323, Dec 2019.

[63] K. Kawaguchi and L. P. Kaelbling. Elimination
of all bad local minima in deep learning. CoRR,
abs/1901.00279, 2019.

[64] S. H. Khan, M. Naseer, M. Hayat, S. W. Zamir, F. S.
Khan, and M. Shah. Transformers in vision: A survey.
CoRR, abs/2101.01169, 2021.

[65] H. Kim, S. Leutenegger, and A. J. Davison. Real-
time 3D reconstruction and 6-DoF tracking with an
event camera. In Computer Vision - ECCV 2016 -
14th European Conference, Amsterdam, The Nether-
lands, October 11-14, 2016, Proceedings, Part VI,
pages 349–364, 2016.

[66] B. Kueng, E. Mueggler, G. Gallego, and D. Scara-
muzza. Low-latency visual odometry using event-
based feature tracks. In 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),
pages 16–23, Oct 2016.

[67] A. Kumar, A. Balasubramanian, S. Venkataraman,
and A. Akella. Accelerating deep learning inference
via freezing. In 11th USENIX Workshop on Hot Top-
ics in Cloud Computing (HotCloud 19), Renton, WA,
July 2019. USENIX Association.

[68] Y. Lee, A. Scolari, B.-G. Chun, M. D. Santambrogio,
M. Weimer, and M. Interlandi. PRETZEL: Opening
the black box of machine learning prediction serving
systems. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18), pages
611–626, Carlsbad, CA, Oct. 2018. USENIX Associ-
ation.

[69] H. Li, Z. Lin, X. Shen, J. Brandt, and G. Hua. A
convolutional neural network cascade for face detec-
tion. In 2015 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 5325–5334,
June 2015.

[70] Y. Li and Y. Liang. Learning overparameterized neu-
ral networks via stochastic gradient descent on struc-
tured data. In Proceedings of the 32nd International
Conference on Neural Information Processing Sys-
tems, NIPS’18, page 8168–8177, Red Hook, NY,
USA, 2018. Curran Associates Inc.

https://jonathan-hui.medium.com/object-detection-speed-and-accuracy-comparison-faster-r-cnn-r-fcn-ssd-and-yolo-5425656ae359
https://jonathan-hui.medium.com/object-detection-speed-and-accuracy-comparison-faster-r-cnn-r-fcn-ssd-and-yolo-5425656ae359
https://jonathan-hui.medium.com/object-detection-speed-and-accuracy-comparison-faster-r-cnn-r-fcn-ssd-and-yolo-5425656ae359
https://www.ibm.com/products/maximo/remote-monitoring
https://www.ibm.com/products/maximo/remote-monitoring

[71] Y. Li, A. Padmanabhan, P. Zhao, Y. Wang, G. H. Xu,
and R. Netravali. Reducto: On-camera filtering for
resource-efficient real-time video analytics. In Pro-
ceedings of the Annual Conference of the ACM Spe-
cial Interest Group on Data Communication on the
Applications, Technologies, Architectures, and Proto-
cols for Computer Communication, SIGCOMM ’20,
page 359–376, New York, NY, USA, 2020. Associa-
tion for Computing Machinery.

[72] Y. Li, Z. Zhang, B. Liu, Z. Yang, and Y. Liu. Mod-
elDiff: testing-based DNN similarity comparison for
model reuse detection. In Proceedings of the 30th
ACM SIGSOFT International Symposium on Software
Testing and Analysis. ACM, jul 2021.

[73] Z. Li, Y. Shu, G. Ananthanarayanan, L. Shang-
guan, K. Jamieson, and V. Bahl. Spider: A multi-
hop millimeter-wave network for live video analyt-
ics. In ACM/IEEE Symposium on Edge Computing.
ACM/IEEE, December 2021.

[74] T. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan,
and S. Belongie. Feature pyramid networks for ob-
ject detection. In 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 936–
944, July 2017.

[75] H. Liu, K. Simonyan, and Y. Yang. DARTS: differ-
entiable architecture search. CoRR, abs/1806.09055,
2018.

[76] X. Liu, P. Ghosh, O. Ulutan, B. S. Manjunath,
K. Chan, and R. Govindan. Caesar: Cross-camera
complex activity recognition. In Proceedings of the
17th Conference on Embedded Networked Sensor Sys-
tems, SenSys ’19, page 232–244. Association for
Computing Machinery, 2019.

[77] Microsoft. Enabling Data Residency and Data Pro-
tection in Microsoft Azure Regions. https://azure.
microsoft.com/en-us/resources/achieving-compliant-
data-residency-and-security-with-azure/, 2021.

[78] S. A. Noghabi, L. Cox, S. Agarwal, and G. Anantha-
narayanan. The emerging landscape of edge com-
puting. GetMobile: Mobile Comp. and Comm.,
23(4):11–20, May 2020.

[79] E. Nygren, R. K. Sitaraman, and J. Sun. The aka-
mai network: A platform for high-performance inter-
net applications. SIGOPS, 2010.

[80] OfCom. Residential landline and fixed broadband
services. https://www.ofcom.org.uk/ data/assets/
pdf file/0015/113640/landline-broadband.pdf, 2017.

[81] C. Olston, N. Fiedel, K. Gorovoy, J. Harmsen, L. Lao,
F. Li, V. Rajashekhar, S. Ramesh, and J. Soyke.
Tensorflow-serving: Flexible, high-performance ml
serving, 2017.

[82] A. Padmanabhan, N. Agarwal, A. Iyer, G. Anantha-
narayanan, Y. Shu, N. Karianakis, G. H. Xu, and
R. Netravali. Gemel: Model merging for memory-
efficient, real-time video analytics at the edge, 2022.

[83] X. Peng, X. Shi, H. Dai, H. Jin, W. Ma, Q. Xiong,
F. Yang, and X. Qian. Capuchin: Tensor-based gpu
memory management for deep learning. In Proceed-
ings of the Twenty-Fifth International Conference on
Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’20, page 891–905.
Association for Computing Machinery, 2020.

[84] H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and
J. Dean. Efficient neural architecture search via pa-
rameter sharing. CoRR, abs/1802.03268, 2018.

[85] R. Poddar, G. Ananthanarayanan, S. Setty, S. Volos,
and R. A. Popa. Visor: Privacy-preserving video an-
alytics as a cloud service. In 29th USENIX Security
Symposium (USENIX Security 20), pages 1039–1056.
USENIX Association, Aug. 2020.

[86] S. Rajbhandari, O. Ruwase, J. Rasley, S. Smith,
and Y. He. Zero-infinity: Breaking the GPU mem-
ory wall for extreme scale deep learning. CoRR,
abs/2104.07857, 2021.

[87] X. Ran, H. Chen, X. Zhu, Z. Liu, and J. Chen.
Deepdecision: A mobile deep learning framework
for edge video analytics. In IEEE INFOCOM 2018
- IEEE Conference on Computer Communications,
pages 1421–1429, 2018.

[88] H. Rebecq, T. Horstschaefer, and D. Scaramuzza.
Real-time visual-inertial odometry for event cam-
eras using keyframe-based nonlinear optimization.
In British Machine Vision Conference 2017, BMVC
2017, London, UK, September 4-7, 2017, 2017.

[89] F. Romero, Q. Li, N. J. Yadwadkar, and C. Kozyrakis.
INFaaS: Automated model-less inference serving.
In 2021 USENIX Annual Technical Conference
(USENIX ATC 21), pages 397–411. USENIX Asso-
ciation, July 2021.

[90] O. Russakovsky, J. Deng, H. Su, J. Krause,
S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-
Fei. ImageNet Large Scale Visual Recognition Chal-
lenge. International Journal of Computer Vision
(IJCV), 115(3):211–252, 2015.

https://azure.microsoft.com/en-us/resources/achieving-compliant-data-residency-and-security-with-azure/
https://azure.microsoft.com/en-us/resources/achieving-compliant-data-residency-and-security-with-azure/
https://azure.microsoft.com/en-us/resources/achieving-compliant-data-residency-and-security-with-azure/
https://www.ofcom.org.uk/__data/assets/pdf_file/0015/113640/landline-broadband.pdf
https://www.ofcom.org.uk/__data/assets/pdf_file/0015/113640/landline-broadband.pdf

[91] S. S. Sarwar, A. Ankit, and K. Roy. Incremental
learning in deep convolutional neural networks using
partial network sharing. IEEE Access, 8:4615–4628,
2019.

[92] J. Sevilla, P. Villalobos, and J. Cerón. Pa-
rameter counts in Machine Learning. https : / /
www.lesswrong.com/posts/GzoWcYibWYwJva8aL/
parameter-counts-in-machine-learning, 2021.

[93] A. Shah, C. Wu, J. Mohan, V. Chidambaram, and
P. Krähenbühl. Memory optimization for deep net-
works. CoRR, abs/2010.14501, 2020.

[94] H. Shen, L. Chen, Y. Jin, L. Zhao, B. Kong, M. Phili-
pose, A. Krishnamurthy, and R. Sundaram. Nexus:
A gpu cluster engine for accelerating dnn-based video
analysis. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles, SOSP ’19, pages
322–337, New York, NY, USA, 2019. Association for
Computing Machinery.

[95] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. Edge
computing: Vision and challenges. IEEE internet of
things journal, 3(5):637–646, 2016.

[96] K. Simonyan and A. Zisserman. Very deep convo-
lutional networks for large-scale image recognition,
2014.

[97] Sony. REA-C1000 Edge Analytics Appliance. https:
//pro.sony/ue US/products/ptz-cameras/rea-c1000-
edge-analytics-appliance, 2021.

[98] F. Sultana, A. Sufian, and P. Dutta. Evolution of
image segmentation using deep convolutional neural
network: A survey. Knowledge-Based Systems, 201-
202:106062, 2020.

[99] X. Sun, R. Panda, R. Feris, and K. Saenko. Adashare:
Learning what to share for efficient deep multi-task
learning. arXiv preprint arXiv:1911.12423, 2019.

[100] A. Suprem, J. Arulraj, C. Pu, and J. Ferreira. Odin:
Automated drift detection and recovery in video ana-
lytics. Proc. VLDB Endow., 13(12):2453–2465, July
2020.

[101] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabi-
novich. Going deeper with convolutions, 2014.

[102] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and
Z. Wojna. Rethinking the inception architecture for
computer vision, 2015.

[103] S. Vandenhende, S. Georgoulis, B. De Braban-
dere, and L. Van Gool. Branched multi-task net-
works: deciding what layers to share. arXiv preprint
arXiv:1904.02920, 2019.

[104] L. M. Vaquero and L. Rodero-Merino. Finding your
way in the fog: Towards a comprehensive definition
of fog computing. CCR, 44(5):27–32, Oct. 2014.

[105] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agar-
wal, M. Konar, R. Evans, T. Graves, J. Lowe, H. Shah,
S. Seth, B. Saha, C. Curino, O. O’Malley, S. Radia,
B. Reed, and E. Baldeschwieler. Apache hadoop yarn:
Yet another resource negotiator. In Proceedings of the
4th Annual Symposium on Cloud Computing, SOCC
’13, New York, NY, USA, 2013. Association for Com-
puting Machinery.

[106] A. R. Vidal, H. Rebecq, T. Horstschaefer, and
D. Scaramuzza. Ultimate slam? combining events,
images, and IMU for robust visual SLAM in HDR and
high-speed scenarios. IEEE Robotics and Automation
Letters, 3(2):994–1001, 2018.

[107] J. Wang, Z. Feng, S. George, R. Iyengar, P. Pillai, and
M. Satyanarayanan. Towards scalable edge-native ap-
plications. In Proceedings of the 4th ACM/IEEE Sym-
posium on Edge Computing, SEC ’19, page 152–165,
New York, NY, USA, 2019. Association for Comput-
ing Machinery.

[108] M. Wang, C. Meng, G. Long, C. Wu, J. Yang, W. Lin,
and Y. Jia. Characterizing deep learning training
workloads on alibaba-pai, 2019.

[109] Y. Wang, W. Wang, J. Zhang, J. Jiang, and K. Chen.
Bridging the edge-cloud barrier for real-time ad-
vanced vision analytics. In 11th USENIX Workshop
on Hot Topics in Cloud Computing (HotCloud 19),
Renton, WA, July 2019. USENIX Association.

[110] W. Xiao, S. Ren, Y. Li, Y. Zhang, P. Hou, Z. Li,
Y. Feng, W. Lin, and Y. Jia. Antman: Dynamic scaling
on GPU clusters for deep learning. In 14th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 20), pages 533–548, 2020.

[111] A. B. Yoo, M. A. Jette, and M. Grondona. Slurm:
Simple linux utility for resource management. In
JSSPP, 2003.

[112] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How
transferable are features in deep neural networks? In
Proceedings of the 27th International Conference on
Neural Information Processing Systems - Volume 2,
NIPS’14, page 3320–3328, Cambridge, MA, USA,
2014. MIT Press.

https://www.lesswrong.com/posts/GzoWcYibWYwJva8aL/parameter-counts-in-machine-learning
https://www.lesswrong.com/posts/GzoWcYibWYwJva8aL/parameter-counts-in-machine-learning
https://www.lesswrong.com/posts/GzoWcYibWYwJva8aL/parameter-counts-in-machine-learning
https://pro.sony/ue_US/products/ptz-cameras/rea-c1000-edge-analytics-appliance
https://pro.sony/ue_US/products/ptz-cameras/rea-c1000-edge-analytics-appliance
https://pro.sony/ue_US/products/ptz-cameras/rea-c1000-edge-analytics-appliance

[113] A. Yousefpour, C. Fung, T. Nguyen, K. Kadiyala,
F. Jalali, A. Niakanlahiji, J. Kong, and J. P. Jue. All
one needs to know about fog computing and related
edge computing paradigms: A complete survey. Jour-
nal of Systems Architecture, 98:289–330, 2019.

[114] A. R. Zamani, M. Zou, J. Diaz-Montes, I. Petri,
O. Rana, A. Anjum, and M. Parashar. Deadline con-
strained video analysis via in-transit computational
environments. IEEE Transactions on Services Com-
puting, 13(1):59–72, 2020.

[115] X. Zeng, B. Fang, H. Shen, and M. Zhang. Dis-
tream: Scaling live video analytics with workload-
adaptive distributed edge intelligence. In Proceedings
of the 18th Conference on Embedded Networked Sen-
sor Systems, SenSys ’20, page 409–421, New York,
NY, USA, 2020. Association for Computing Machin-
ery.

[116] H. Zhang, G. Ananthanarayanan, P. Bodik, M. Phili-
pose, P. Bahl, and M. J. Freedman. Live video analyt-
ics at scale with approximation and delay-tolerance.

In 14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 17), pages 377–
392, Boston, MA, Mar. 2017. USENIX Association.

[117] T. Zhang, A. Chowdhery, P. V. Bahl, K. Jamieson,
and S. Banerjee. The design and implementation of
a wireless video surveillance system. In Proceed-
ings of the 21st Annual International Conference on
Mobile Computing and Networking, MobiCom ’15,
pages 426–438, New York, NY, USA, 2015. ACM.

[118] A. Z. Zhu, N. Atanasov, and K. Daniilidis. Event-
based feature tracking with probabilistic data asso-
ciation. In 2017 IEEE International Conference on
Robotics and Automation, ICRA 2017, Singapore,
Singapore, May 29 - June 3, 2017, pages 4465–4470,
2017.

[119] A. Z. Zhu, N. Atanasov, and K. Daniilidis. Event-
based visual inertial odometry. In 2017 IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 5816–5824, July 2017.

A Appendix
A.1 Implementation Details

Gemel’s main components are training models at the cloud
server and running the scheduler at the edge. During train-
ing, a single optimizer manages the weights across all con-
sidered models; the optimizer holds a single copy of weights
for each layer that is shared across the models. Aside
from this, Gemel’s training process mirrors classic multi-task
training [30]: it forms a collective pool of an equal num-
ber of data samples from all models and randomly selects
batches from this pool. Samples are run through their re-
spective models, each model calculates its loss individually,
and losses are summed over all models. In this way, lay-
ers that are shared are updated by the concurrent training of
multiple models within a single batch.

The Nexus-variant scheduler chooses when to load and
evict models as described in §5.4. To load a model into
GPU memory, the scheduler simply calls “.cuda()” on that
model’s PyTorch object. PyTorch automatically only loads
layer weights not already in GPU memory. However, when
evicting a model, PyTorch, by default, removes all of the
layers’ weights from GPU memory. This poses a problem if
some of those weights are needed by models still in GPU
memory (i.e., they are shared). To avoid this, the sched-
uler: (1) maintains a running list of shared layers that are
needed by models currently in GPU memory or next in line
to be loaded, and (2) when a model needs to be evicted, only
evicts weights corresponding to layers not in the list. Over-
all, Gemel is implemented in ≈3500 LOC: 500 for finding
shared layers and sharing them according to the heuristic,
2500 for dataset management and retraining, and 500 for
scheduling models at the edge.

A.2 Generalization Workload Query Knobs

Knob Values
Object Truck, Person, Bus, Boat, Shoe, Skateboard, Car, Hat, Back-

pack, Wine Glass, Traffic Light, Parking Meter, Surfboard
Camera A0, A1, A2, A3, B0, B1, B2, B3, B4, B5, B6, Restaurant,

Mall, Beach, Canal, Parking Lot, Street
Model SSD-VGG, AlexNet, YOLOv3, Tiny-YOLOv3, DenseNet,

SqueezeNet, GoogLeNet, ResNet-18, ResNet-34, ResNet-
50, ResNet-101, ResNet-152, VGG-11, VGG-13, VGG-16,
VGG-19

Scene CityA Traffic, CityB Traffic, Restaurant, Beach, Mall, Canal,
Parking Lot, Street

Table 3: Knob values considered in generalization study.

A.3 Workload Memory Settings

Workload L1 L2 L3
Min 4.50 1.45 4.50
50% 5.12 1.59 4.72
75% 5.43 1.66 4.83

Table 4: Edge box memory settings for LP workloads (in GB).

Workload M1 M2 M3 M4 M5 M6
Min 3.35 1.45 1.32 1.32 1.45 3.35
50% 4.56 1.62 1.55 1.45 1.83 3.77
75% 5.16 1.70 1.65 1.52 2.02 3.99

Table 5: Edge box memory settings for MP workloads (in GB).

Workload H1 H2 H3 H4 H5 H6
Min 3.35 4.50 4.50 1.45 4.50 4.50
50% 4.87 6.60 10.25 2.17 10.41 10.26
75% 5.63 7.66 13.13 2.53 13.36 13.14

Table 6: Edge box memory settings for HP workloads (in GB).

A.4 Additional Figures

0 20 40 60 80 100
% Layers

0

20

40

60

80

100

Cu
m

ul
at

iv
e

%
 o

f
M

em
or

y
(M

B)
FasterRCNN-R101
FasterRCNN-R50
YOLOv3
Tiny YOLOv3
ResNet152
ResNet101
ResNet50
ResNet34

ResNet18
VGG19
VGG16
VGG13
VGG11
InceptionV3
SSD-VGG
SSD-Mobilenet

MobileNet
AlexNet
GoogleNet
SqueezeNet
DenseNet201
DenseNet169
DenseNet161
DenseNet121

Figure 18: Extended version of Figure 10. Cumulative memory
consumed by each model’s layer groups moving from start to
end of the model.

0.00.00.10.00.10.00.10.00.10.00.30.00.60.00.00.00.60.00.60.01.10.02.20.00.10.02.20.02.20.04.50.09.00.00.50.09.00.09.00.00.0

Re
sN

et
18

Convolutional
Fully Connected
Batch Normalization

0.00.00.10.00.10.00.10.00.10.00.10.00.10.00.30.00.60.00.00.00.60.00.60.00.60.00.60.00.60.00.60.01.10.02.20.00.10.02.20.02.20.02.20.02.20.02.20.02.20.02.20.02.20.02.20.02.20.04.50.09.00.00.50.09.00.09.00.09.00.09.00.00.0
Memory Per Layer (MB)

Re
sN

et
34

Figure 19: ResNet18 and ResNet34 are variants within the ResNet model family [47]. They share 41/73 layers (20 convolutional, 1
fully-connected and 20 batch normalization).

AlexNet

DenseNet121
DenseNet161

DenseNet169
DenseNet201

FRCNN-R101
FRCNN-R50

GoogLeNet
Inceptionv3

MobileNet
ResNet101

ResNet152
ResNet18

ResNet34
ResNet50

SSD-MobileNet
SSD-VGG

SqueezeNet
VGG11

VGG13
VGG16

VGG19
YOLOv3

YOLOv3-Tiny

Alex
Net

DenseN
et1

21

DenseN
et1

61

DenseN
et1

69

DenseN
et2

01

FRCNN-R101

FRCNN-R50

Goog
LeN

et

Incep
tion

v3

MobileN
et

ResN
et1

01

ResN
et1

52

ResN
et1

8

ResN
et3

4

ResN
et5

0

SSD-MobileN
et

SSD-VGG

Squeez
eN

et

VGG11

VGG13

VGG16

VGG19

YO
LO

v3

YO
LO

v3-Tin
y

100.0
62/38/0

0.0
0/0/0

100.0
50/0/50

0.0
0/0/0

3.1
0/0/100

100.0
50/0/50

0.0
0/0/0

66.7
50/0/50

4.1
0/0/100

100.0
50/0/50

0.0
0/0/0

50.5
50/0/50

4.6
0/0/100

76.2
50/0/50

100.0
50/0/50

0.0
0/0/0

5.8
24/4/72

0.0
0/0/0

3.9
19/0/81

3.5
19/0/81

100.0
50/2/48

0.0
0/0/0

7.6
24/4/72

0.0
0/0/0

4.9
19/0/81

4.3
19/0/81

52.6
50/4/47

100.0
50/4/47

0.0
0/0/0

2.3
88/12/0

0.2
100/0/0

1.3
100/0/0

1.0
100/0/0

2.2
86/14/0

3.2
86/14/0

100.0
50/1/50

0.0
0/0/0

0.5
100/0/0

0.2
100/0/0

0.4
100/0/0

0.2
100/0/0

0.5
100/0/0

0.7
100/0/0

15.5
10/0/90

100.0
50/1/50

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

100.0
56/2/42

0.0
0/0/0

5.6
25/0/75

0.0
0/0/0

4.0
19/0/81

3.6
19/0/81

96.3
50/0/50

49.1
50/0/50

1.9
100/0/0

0.8
67/33/0

0.0
0/0/0

100.0
50/0/50

0.0
0/0/0

6.1
19/0/81

0.0
0/0/0

4.7
14/0/86

4.2
14/0/86

65.4
50/0/50

33.3
50/0/50

1.4
100/0/0

0.6
67/33/0

0.0
0/0/0

67.2
50/0/50

100.0
50/0/50

0.0
0/0/0

5.2
7/0/93

0.0
0/0/0

3.6
8/0/92

3.0
8/0/92

14.8
39/0/61

27.3
39/0/61

0.6
100/0/0

0.0
0/0/0

0.0
0/0/0

15.2
39/0/61

10.3
39/0/61

100.0
49/2/49

0.0
0/0/0

6.1
6/0/94

0.0
0/0/0

4.3
6/0/94

3.7
6/0/94

24.1
38/0/62

36.8
30/0/70

0.5
100/0/0

0.0
0/0/0

0.0
0/0/0

24.8
38/0/62

18.9
41/0/59

56.2
49/2/49

100.0
49/1/49

0.0
0/0/0

7.4
25/0/75

0.0
0/0/0

5.0
19/0/81

4.3
19/0/81

49.1
50/0/50

93.0
50/0/50

2.8
100/0/0

1.0
67/33/0

0.0
0/0/0

51.2
50/1/50

34.4
50/1/50

28.7
39/0/61

38.5
30/0/70

100.0
50/1/50

0.0
0/0/0

0.7
100/0/0

0.0
0/0/0

0.6
100/0/0

0.5
100/0/0

0.8
100/0/0

1.1
100/0/0

1.1
100/0/0

0.3
100/0/0

28.7
100/0/0

0.8
100/0/0

0.6
100/0/0

0.0
0/0/0

0.0
0/0/0

1.1
100/0/0

100.0
58/0/42

2.4
100/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

100.0
100/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

100.0
100/0/0

18.8
33/67/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

21.1
100/0/0

0.0
0/0/0

100.0
73/27/0

16.7
33/67/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

26.3
100/0/0

0.0
0/0/0

84.6
73/27/0

100.0
77/23/0

14.3
33/67/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

34.2
100/0/0

0.0
0/0/0

68.8
73/27/0

81.2
77/23/0

100.0
81/19/0

12.5
33/67/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

31.7
100/0/0

0.0
0/0/0

57.9
73/27/0

68.4
77/23/0

84.2
81/19/0

100.0
84/16/0

0.0
0/0/0

1.6
100/0/0

0.0
0/0/0

1.0
100/0/0

0.9
100/0/0

0.8
100/0/0

1.2
100/0/0

1.6
100/0/0

0.3
100/0/0

0.0
0/0/0

0.8
100/0/0

0.7
100/0/0

1.6
100/0/0

1.4
100/0/0

1.2
100/0/0

0.3
100/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

100.0
51/0/49

0.0
0/0/0

0.4
100/0/0

0.0
0/0/0

0.3
100/0/0

0.2
100/0/0

0.8
100/0/0

1.5
100/0/0

3.0
100/0/0

0.5
100/0/0

0.0
0/0/0

0.9
100/0/0

0.6
100/0/0

0.0
0/0/0

0.0
0/0/0

1.6
100/0/0

0.5
100/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

12.5
47/0/53

100.0
54/0/46

Sharing Opportunities
Same Model
Same Family
Similar Backbone
Derivative Of

Figure 20: Extended version of Figure 4. For each unique pair of models, we show the percentage of architecturally identical layers
and of those layers, the percent breakdown across layer types (%Convolutional / %Linear / %BatchNorm).

0 100 200 3000.0

0.1

0.2

0.3
L1L1L1L1L1L1

0 100 200 3000.00

0.05

0.10

0.15 L2L2L2L2L2L2

0 100 200 3000.00

0.05

0.10

0.15
L3L3L3L3L3L3

0 100 200 3000.0

0.2

0.4

M1M1M1M1M1M1

0 100 200 3000.00
0.02
0.04
0.06
0.08
0.10 M2M2M2M2M2M2

0 100 200 3000.0

0.1

0.2

0.3 M3M3M3M3M3M3

0 100 200 3000.00
0.05
0.10
0.15
0.20
0.25 M4M4M4M4M4M4

0 100 200 3000.0

0.1

0.2

0.3

0.4 M5M5M5M5M5M5

0 100 200 3000.0

0.2

0.4

M6M6M6M6M6M6

0 100 200 3000.0

0.5

1.0

1.5

2.0 H1H1H1H1H1H1

0 100 200 3000.0

0.5

1.0

1.5

2.0
H2H2H2H2H2H2

0 100 200 3000

1

2
H3H3H3H3H3H3

0 100 200 3000.0

0.2

0.4

0.6 H4H4H4H4H4H4

0 100 200 3000

1

2
H5H5H5H5H5H5

0 100 200 3000

1

2
H6H6H6H6H6H6

Time (min)

M
em

or
y

Sa
ve

d
(M

B)

GEMEL TwoGroup Earliest Latest Random OneModelAtATime

Figure 21: Complete version of Figure 16. Comparison of Gemel with other merging heuristics.

C O M CS CO CM OM COS COM OCMS
Knob(s) varied per workload

25

50

75

100

%
 P

os
sib

le
M

em
or

y
Sa

ve
d

2 Queries
3 Queries
4 Queries
5 Queries

Figure 22: Extended version of Figure 17. Memory savings across 872 workloads, organized by workload size (color) and knobs
varied (x-axis). We plot the median of each distribution (error bars spanning 25-75P). Knobs are labeled as follows: C:Camera,
O:Object, M:Model, S:Scene.

	Introduction
	Methodology & Pilot Study
	Motivation
	Memory Pressure in Edge Video Analytics
	Limitations of Existing GPU Memory Management

	Our Approach: Model Merging
	Opportunities
	Challenges

	Gemel Design
	Overview
	Guiding Observations
	Merging Heuristic
	Edge Inference

	Evaluation
	Overall Performance
	Analyzing Gemel
	Generalization Study

	Additional Related Work
	Conclusion
	Appendix
	Implementation Details
	Generalization Workload Query Knobs
	Workload Memory Settings
	Additional Figures

